
18 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Computational Interpretations of Logics

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/90204 since 2016-06-30T15:11:10Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Silvia Ghilezan; Silvia Likavec. Computational Interpretations of Logics.
ZBORNIK RADOVA. 12(20) pp: 159-215.

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/90204

Silvia Ghilezan and Silvia Likavec

COMPUTATIONAL INTERPRETATIONS OF LOGICS

Abstract. The fundamental connection between logic and computation, known
as the Curry–Howard correspondence or formulae-as-types and proofs-as-programs
paradigm, relates logical and computational systems. We present an overview

of computational interpretations of intuitionistic and classical logic:
• intuitionistic natural deduction - λ-calculus

• intuitionistic sequent calculus - λGtz-calculus

• classical natural deduction - λµ-calculus
• classical sequent calculus - λµeµ-calculus.

In this work we summarise the authors’ contributions in this field. Fundamen-

tal properties of these calculi, such as confluence, normalisation properties,
reduction strategies call-by-value and call-by-name, separability, reducibility

method, λ-models are in focus. These fundamental properties and their coun-
terparts in logics, via the Curry–Howard correspondence, are discussed.

Contents

Introduction 3
Part 1 – Background 4
1. Natural deduction and sequent calculus 4
1.1. Natural deduction: intuitionistic logic NJ and classical logic NK 5
1.2. Sequent calculus: intuitionistic logic LJ and classical logic LK 6
2. λ-calculus 7
2.1. Untyped λ-calculus 7
2.2. Typed λ-calculus 9
2.3. Intersection types for λ-calculus 10
3. λGtz-calculus 11
3.1. Syntax and reduction rules 11
3.2. Simply typed λGtz-calculus 12
4. λµ-calculus 13
4.1. Syntax and reduction rules 13
4.2. Simply typed λµ-calculus 13
5. λµµ̃-calculus 14
5.1. Syntax and reduction rules 14
5.2. Simply typed λµµ̃-calculus 16
6. Curry–Howard correspondence 16
Part 2 – Contributions 18
7. Intuitionistic natural deduction and λ-calculus 18
7.1. Terms for natural deduction and sequent calculus intuitionistic logic 18
7.2. Logical interpretation of intersection types 19
7.3. Intersection types and topologies in λ-calculus 21

2

COMPUTATIONAL INTERPRETATIONS OF LOGICS 3

7.4. Reducibility method 22
7.5. Behavioural inverse limit models 24
8. Intuitionistic sequent calculus and λGtz-calculus 27
8.1. Intersection types for λGtz-calculus 27
8.2. Subject reduction and strong normalisation 28
9. Classical natural deduction and λµ-calculus 30
9.1. Terms for natural deduction and sequent calculus classical logic 30
9.2. Separability in λµ-calculus 31
9.3. Simple types for extended λµ-calculus 33
10. Classical sequent calculus and λµµ̃-calculus 33
10.1. Confluence of call-by-name and call-by-value disciplines 33
10.2. Strong normalisation in unrestricted λµµ̃-calculus 35
10.3. Dual calculus 39
10.4. Symmetric calculus 42
11. Application in programming language theory 44
11.1. Functional languages 44
11.2. Object-oriented languages 47
Part 3 – Related work 49
References 51

4 SILVIA GHILEZAN AND SILVIA LIKAVEC

Introduction

Gentzen’s natural deduction is a well established formalism for expressing proofs.
The simply typed λ-calculus of Church is a core formalism for writing programs. Ac-
cording to Curry–Howard correspondence, first formulated in 1969 by Howard [97],
simply typed λ-calculus represents a computational interpretation of intuitionistic
logic in natural deduction style and simplifying a proof corresponds to executing a
program.

Griffin extended the Curry–Howard correspondence to classical logic in his sem-
inal 1990 paper [90], by observing that classical tautologies suggest typings for
certain control operators. The λµ-calculus of Parigot [117] expresses the content
of classical natural deduction and has been the basis of a number of investiga-
tions into the relationship between classical logic and theories of control in pro-
gramming languages [118, 40, 116, 19, 3]. At the same time proof-term calculi
expressing a computational interpretation of classical logic serve as tools for ex-
tracting the constructive content of classical proofs [114, 6]. The recent interest
in the Curry–Howard correspondence for sequent calculus [92, 12, 58, 56] made it
clear that the computational content of sequent derivations and cut-elimination can
be expressed through various extensions of the λ-calculus. There are several term
calculi based on sequent calculus, in which reduction corresponds to cut elimina-
tion [93, 143, 34, 147, 103]. In contrast to natural deduction proof systems, sequent
calculi exhibit inherent symmetries in proof structures which create technical diffi-
culties in analyzing the reduction properties of these calculi.

In this work we summarise the authors’ contributions in this field.

• Part 1 – Background gives a brief account on different formulations
of intuitionistic and classical propositional logic as well as on λ-calculus
and other proof-term calculi which express computational interpretations
of logics.

– Section 1 presents natural deduction and sequent calculus formulations
of intuitionistic and classical propositional logic;

– Section 2-5 present different term calculi that embody proofs in logics:
the well-known λ-calculus of Church, λµ-calculus of Parigot [117], λ̄-
calculus of Herbelin [92], λGtz-calculus of Esṕırito Santo [56] and λµµ̃-
calculus of Curien and Herbelin [34];

– Section 6 presents the fundamental relation between logic and compu-
tation, the Curry–Howard correspondence, which links formulae with
types and proofs with terms and programs.

• Part 2 – Contributions has five sections and is the main part of this
work, concentrating on the authors’ contributions in each of the following
fields:

– Section 7 – Intuitionistic natural deduction and λ-calculus: summarises
the results of Barendregt and Ghilezan [12], Ghilezan [71, 73, 72, 74,
76, 75, 77, 78, 79], Dezani, Ghilezan and Venneri [45], Ghilezan and
Likavec [86, 87], Ghilezan and Kunčak [82, 83], Ghilezan, Kunčak

COMPUTATIONAL INTERPRETATIONS OF LOGICS 5

and Likavec [84], Likavec [105], Dezani and Ghilezan [41, 43, 42], and
Dezani, Ghilezan and Likavec [44];

– Section 8 – Intuitionistic sequent calculus and λGtz-calculus: sum-
marises the results of Esṕırito Santo, Ghilezan and Ivetić [57], and
Ghilezan and Ivetić [81];

– Section 9 – Classical natural deduction and λµ-calculus: summarises
the results of Herbelin and Ghilezan [94];

– Section 10 – Classical sequent calculus and λµµ̃-calculus: summarises
the results of Dougherty, Ghilezan and Lescanne [48, 49, 50, 51],
Dougherty, Ghilezan, Lescanne and Likavec [52], and Likavec and Les-
canne [107];

– Section 11 – Application to functional and object-oriented program-
ming languages: summarises the results of Herbelin and Ghilezan [94],
Likavec [106], and Bettini, Bono and Likavec [13, 14, 15, 16, 17, 18].

• Part 3 – Related work gives some pointers to the related work in the
literature.

Part 1 – Background

1. Natural deduction and sequent calculus

In 1879 Gottlob Frege wrote his Begriffsschrift [66] paving a path for modern
logic. Frege wanted to show that logic gave birth to mathematics. He invented
axiomatic predicate logic, including quantified variables, adding iterations to the
previous world of the logical constants and, or, if... then..., not, some and all.
With Frege’s “conceptual notation” inferences involving very complex mathemati-
cal statements could be represented. He formalised the rule of modus ponens using
two kinds of judgements: premises and conclusions. Over time, Frege’s pictorial
notation (see [147] for an example of the original notation) evolved into the nota-
tion similar to the one we use today, namely A → B meaning “A implies B” and
` A asserting “A is true”. Here is the modus ponens rule using this notation

` A→ B ` A

` B

Axiomatic systems in the Hilbert tradition consist of axioms, modus ponens, and
a few other inference rules. Another perspective to capture mathematical reasoning
was to describe deduction through inference rules which explain the meaning of the
logical connectives and quantifiers.

This giant step in formalizing logic was Gerhard Gentzen’s Unterschungen über
das logische Schliessen [69] written in 1935. In this work, Gentzen introduced the
systems of natural deduction and sequent calculus for propositional and predicate
logic, in both intuitionistic and classical variants. These two systems have the
same set of derivable statements. In his work, Gentzen introduced assumptions, so
his judgement had the following form:

A1, . . . , An ` B

6 SILVIA GHILEZAN AND SILVIA LIKAVEC

meaning “Under the assumption that A1, . . . , An are true we can conclude that B
is true”. Using this notation, the modus ponens rule is written as follows

Γ ` A→ B ∆ ` A

Γ,∆ ` B

where Γ and ∆ denote sequences of formulae.

1.1. Natural deduction: intuitionistic logic NJ and classical logic NK. We
now present the two systems of Gentzen: natural deduction for intuitionistic logic,
denoted by NJ, and classical logic, denoted by NK, as well as sequent calculus for
intuitionistic logic, denoted by LJ, and classical logic, denoted by LK. For compre-
hensive account of the subject we refer the reader to [124].

The set of formulae of propositional logic is given by the following abstract
syntax:

A,B = X | A→ B | A ∧B | A ∨B | ¬A
where X denotes an atomic formula and capital Latin letters A,B,C, . . . denote
formulae or single propositions. We will mostly deal with implicational formulae
only and sometimes comment on other connectives. Hence, a formula can be one
of the following: atomic formula X or implication A → B. Capital Greek letters
Γ,∆, . . . are used to denote sequences of formulae called antecedents and succedents.
Γ, A stands for Γ ∪ {A}.

A ∈ Γ
(axiom)

Γ ` A

Γ ` A→ B Γ ` A
(→ elim)

Γ ` B

Γ, A ` B
(→ intro)

Γ ` A→ B

Figure 1. NJ: intuitionistic natural deduction

(axiom)
Γ, A ` A,∆

Γ ` A→ B,∆ Γ ` A,∆
(→ elim)

Γ ` B,∆

Γ, A ` B,∆
(→ intro)

Γ ` A→ B,∆

Figure 2. NK: classical natural deduction

The rules of Gentzen’s natural deduction intuitionistic logic NJ and classical
logic NK are given in Figures 1 and 2, respectively. Gentzen’s system consists of
structural and logical rules. The only structural rule is the axiom, whereas each of
the connectives has introduction and elimination logical rules. Each introduction
rule has the connective in the conclusion but not in the premises, whereas each
elimination rule has the connective in the premises but not in the conclusion.

The following formulae are provable in classical logic, but not in intuitionistic:

COMPUTATIONAL INTERPRETATIONS OF LOGICS 7

• Pierce’s law: (A→ B)→ A→ A
• Excluded middle: A ∨ ¬A
• Double negation: ¬¬A→ A.

The connection between logical connectives in classical logic and their depen-
dencies is well known. As opposed to classical logic, connectives in intuitionistic
logic are independent.

1.2. Sequent calculus: intuitionistic logic LJ and classical logic LK. Gentzen
introduced the sequent calculus primarily as a tool to prove the consistency of pred-
icate logic. In sequent calculus, a sequent has the form

A1, . . . , An ` B1, . . . , Bm or shorter Γ ` ∆

which corresponds to the formula

A1 ∧ . . . ∧An → B1 ∨ . . . ∨Bm.
For each connective, there are left and right logical rules, depending on whether the
connective is introduced in antecedent or succedent. The rules of Gentzen’s sequent
calculus intuitionistic logic LJ and classical logic LK are given in Figures 3 and 4,
respectively. Right rules in sequent calculus correspond to introduction rules in
natural deduction, whereas left rules correspond to elimination rules. Both natural
deduction and sequent calculus can be extended to incorporate other connectives,
as well as quantifiers.

A ∈ Γ
(axiom)

Γ ` A

Γ ` A Γ, B ` C
(→ left)

Γ, A→ B ` C

Γ, A ` B
(→ right)

Γ ` A→ B

Γ ` A Γ, A ` B
(cut)

Γ ` B

Figure 3. LJ: intuitionistic sequent calculus

(axiom)
Γ, A ` A,∆

Γ ` A,∆ Γ, B ` ∆
(→ left)

Γ, A→ B ` ∆

Γ, A ` B,∆
(→ right)

Γ ` A→ B,∆

Γ ` A,∆ Γ, A ` ∆
(cut)

Γ ` ∆

Figure 4. LK: classical sequent calculus

8 SILVIA GHILEZAN AND SILVIA LIKAVEC

The cut rule simplifies and shortens deductions, but at the same time makes
it impossible to reconstruct the proofs, since we cannot know which formula was
eliminated using the cut rule. Therefore, it is of uttermost importance to know
that it is possible to leave out the cut rule and still obtain the system with the
same set of derivable statements. This is exactly what Gentzen’s Cut elimination
property (Hauptsatz) proves.

Gentzen also formulated the subformula property : given a judgement Γ ` A,
its proof can be simplified in such a way that only the propositions appearing in Γ
and A and their subformulae appear in the proof of Γ ` A.

Theorem (Equivalence).
A formula is derivable in NJ if and only if it is derivable in LJ.
A formula is derivable in NK if and only if it is derivable in LK.

2. λ-calculus

2.1. Untyped λ-calculus. The λ-calculus was originally formalised by Alonzo
Church in 1932 [27] as a part of a general theory of functions and logic, in order to
establish the limits of what was computable. Later on, it was shown that the full
system was inconsistent. But the subsystem dealing with functions only proved to
be a successful model for the computable functions and is called the λ-calculus.

The λ-calculus is a formal system that is meant to deal with functions and
constructions of new functions. Expressions in this theory are called λ-terms and
each such expression denotes a function. We denote the set of λ-terms by Λ.

Church developed a formalism for defining computable functions using three
basic constructions: variables, λ-abstraction, and application, with one reduction
rule. The formal syntax of λ-calculus is given by the following:

t ::= x | λx.t | tt
where x is a variable, λx.t is a λ-abstraction (which represents a mapping x 7→ t),
and tt is the application (which represents application of a function to its argument).
For comprehensive account of the subject we refer the reader to [10].

The set Fv(t) of free variables of a λ-term t is defined inductively.

1. Fv(x) = {x} 2. Fv(t1t2) = Fv(t1) ∪ Fv(t2) 3. Fv(λx.t) = Fv(t)\{x}.
The set Λ◦ of closed lambda terms is the set of lambda terms with no free variables

Λ◦ = {t ∈ Λ | Fv(t) = ∅}.
The following reduction rule is called the α-reduction

λx.t→ λy.t[x := y],

where all the free occurrences of the variable x in t are replaced with a fresh variable
y not occurring in t. The substitution t1[x := t2] is not part of the syntax and it
is defined so that all the free occurrences of the variable x in t1 are replaced by t2,
taking into account that the free variables in t2 remain free in the term obtained.

The main reduction rule of the λ-calculus is the β-reduction

(λx.t1)t2 →β t1[x := t2].

COMPUTATIONAL INTERPRETATIONS OF LOGICS 9

A λ-term of the form (λx.t1)t2 is called a redex. The transitive reflexive con-
textual closure of →β is denoted by →→β . The β-equality =(β) (β-conversion) is the
symmetric transitive closure of →→β .

The η-reduction is given by

λx.tx→η t, x /∈ Fv(t),

where λx.tx is called an η-redex, provided that x /∈ Fv(t). The transitive reflexive
closure of →η is denoted by →→η. The η-equality =(η) is the symmetric transitive
closure of →→η. The reductions β and η together generate a reduction denoted by
→→.

This simple syntax equipped with simple reduction rules gives rise to a powerful
formal system which is Turing complete. The functions representable in λ-calculus
coincide with Turing computable functions and recursive functions.

We give now some of the basic notions that we will use later.
• If t ≡ λx1 . . . xn.(λx.t0)t1 . . . tm, n > 0, m > 1, then (λx.t0)t1 is called the

head-redex of t (Barendregt [10, p. 173]). We write t→h t
′ if t′ is obtained

from t by reducing the head redex of t (head reduction). We write t→i t
′ if

t′ is obtained from t by reducing a redex other than the head redex (internal
reduction). We also use the transitive closures of these relations, notation
→→h and →→i, respectively.

• A term is a normal form if it does not contain any redex. A term is
normalising (has a normal form) if it reduces to a normal form. The set
of all λ-terms that have a normal form will be denoted by N . All normal
forms are of the form:

λy1 . . . yn.zt1 . . . tk,

where ti, 1 6 i 6 k, 0 6 k, are again normal forms, and z can be one of
yj , 1 6 j 6 n, 0 6 n.

• A term is strongly normalising if all its reduction paths end in a normal
form (are finite). SN will denote the set of strongly normalising terms, i.e.,

SN = {t ∈ Λ | ¬(∃t1, t2, . . . ∈ Λ) t →β t1 →β t2 →β . . .}.

• A head normal form is a term of the form

λx1 . . . xn.yt1 . . . tl,

where y can be one of xi, 1 6 i 6 n, 0 6 n and tj ∈ Λ, 1 6 j 6 l, 0 6 l.
• A term t is solvable (has a head normal form) if there exists t′ ∈ Λ such

that t→ t′ and t′ is a head normal form. The set of all solvable λ-terms is
denoted by HN . A term is unsolvable if it is not solvable.

• A term is a weak head normal form if it starts with an abstraction, or with
a variable. A term is weakly head normalising (has a weak head normal
form) if it reduces to a weak head normal form. The set of all λ-terms that
have a weak head normal form will be denoted by WN .

WN = {t ∈ Λ | (∃t′, t1, . . . , tn ∈ Λ) t →→β λx.t
′ or t →→β xt1 . . . tn}.

10 SILVIA GHILEZAN AND SILVIA LIKAVEC

• Church-Rosser theorem (Confluence): If t1←← t→→ t2, then there exists a λ-
term t3 ∈ Λ such that t1→→ t3←← t2.

2.2. Typed λ-calculus. In 1940 Church formulated typed λ-calculus [28] as a way
to avoid the paradoxes existing in other logics. Types are syntactical objects as-
signed to λ-terms in order to specify the properties of these λ-terms.

The basic type assignment system is the simply typed λ-calculus λ→, or Curry’s
type inference system. The types in this system are formed using only the arrow
operator →. The application of λ-terms yields the arrow elimination on types,
while the abstraction yields the arrow introduction.

The set Type of types is defined as follows.

A,B ::= X | A→ B

where X ranges over a denumerable set TV ar of type atoms.
The following notions will be used in our work:
• A type assignment is an expression of the form t : A, where t ∈ Λ and
A ∈ Type.

• A context (basis) Γ is a set {x1 : A1, . . . , xn : An} of type assignments with
different term variables, DomΓ = {x1, . . . , xn} and Γ r x = {A1, . . . , An}.
We use capital Greek letters Γ,∆,Γ1, . . . to denote contexts.

• A context extension Γ, x : A denotes the set Γ∪{x : A}, where x /∈ DomΓ.
The type assignment t : B is derivable from the context Γ in the type system

λ→, notation Γ ` t : B, if Γ ` t : B can be generated by the axiom and rules given
in Figure 5.

(ax)
Γ, x : A ` x : A

Γ ` t1 : A→ B Γ ` t2 : A
(→ E)

Γ ` t1t2 : B

Γ, x : A ` t : B
(→ I)

Γ ` λx.t : A→ B

Figure 5. λ→: simply typed λ-calculus

We list some of the most important properties of λ→. The property of preser-
vation of types under reduction is referred to as Subject reduction.

Theorem (Subject reduction). If Γ ` t : A and t→→u, then Γ ` u : A.

An important property, which might be a reason for introducing types in λ-
calculus, is the strong normalisation of all typeable terms.

Theorem (Strong normalisation). If a term is typeable in λ→, then it is strongly
normalising.

The correspondence between formulae of intuitionistic logic NJ and types of
λ →, together with the correspondence of proofs in NJ and terms of λ →, was
given by Howard [97] based on earlier work of Curry. It is nowadays referred to as
the Curry–Howard correspondence between logic and computation.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 11

Theorem (Curry–Howard correspondence). Γ ` t : A if and only if Γ r x ` A is
derivable in NJ.

There are many known extensions of λ →. Extensions with polymorphic types
and dependent types fit perfectly in the so called Barendregt’s cube. For compre-
hensive account of the subject we refer the reader to [9].

2.3. Intersection types for λ-calculus. The extension of λ → which charac-
terises exactly the strongly normalising terms is with intersection types, which are
also suitable for analysing λ models and various normalisation properties of λ-
terms. The intersection type assignment systems are originated by Coppo and
Dezani [29, 30], Barendregt et al. [11], Copo et al. [31], Pottinger [123], and
Sallé [130]. In this system, the new type-forming operator is introduced, the inter-
section ∩, whose properties are in accordance with its interpretation as intersection
of types. Consequently, it is possible to assign two types A and B to a certain λ-
term at the same time. Another outstanding feature of this system is the universal
type Ω which can be assigned to all λ-terms. Therefore the question of typability
is trivial in these systems.

We focus on the intersection type assignment system λ∩Ω with the type Ω. The
set Type of types in λ∩Ω is defined as follows

A,B ::= X | Ω | A→ B | A ∩B

where X ranges over a denumerable set TV ar of type atoms. A type assignment,
a context, and a context extension are defined as usual.

The preorder on Type is defined in the following way:

(i) The relation 6 is defined on Type by the following axioms and rules:

1. A 6 A 5. A 6 B, A 6 C ⇒ A 6 B ∩ C
2. A 6 B, B 6 C ⇒ A 6 C 6. A 6 A′, B 6 B′ ⇒ A ∩B 6 A′ ∩B′

3. A ∩B 6 A, A ∩B 6 B 7. A 6 A′, B 6 B′ ⇒ A′ → B 6 A→ B′

4. (A→ B) ∩ (A→ C) 6 A→ B ∩ C 8. A 6 Ω
9. A→ Ω 6 Ω→ Ω.

(ii) The induced equivalence relation is defined by:
A ∼ B ⇔ A 6 B & B 6 A.

The usual axiom of the preorder on intersection types is Ω 6 Ω→ Ω (Barendregt
et al. [11]). Having this axiom one can distinguish head normalising terms from un-
solvable terms by their typeability, but cannot distinguish weakly head normalising
terms from unsolvable terms. Instead we adopt the axiom A→ Ω 6 Ω→ Ω, which
allows us to distinguish weakly head normalising from unsolvable terms (Dezani et
al. [47]).

The type assignment t : B is derivable from the context Γ in the type system
λ∩Ω, notation Γ ` t : B, if Γ ` t : B can be generated by the axioms and rules
given in Figure 6.

12 SILVIA GHILEZAN AND SILVIA LIKAVEC

(ax)
Γ, x : A ` x : A

(Ω)
Γ ` t : Ω

Γ ` t1 : A→ B Γ ` t2 : A
(→ E)

Γ ` t1t2 : B

Γ, x : A ` t : B
(→ I)

Γ ` λx.t : A→ B

Γ ` t : A Γ ` t : B
(∩I)

Γ ` t : A ∩B

Γ ` t : A, A 6 B
(6)

Γ ` t : B

Figure 6. λ∩Ω: intersection type assignment system

The following rule is derivable from the rules given in Figure 6:

Γ ` t : A ∩B
(∩E).

Γ ` t : A (B)

Some of the type assignment systems that can be obtained by combining the
rules above and can be regarded as restrictions of λ∩Ω are given by the following
axioms and rules:

• λ∩: (ax), (→ E), (→ I), (∩E), (∩I), and (6).
• D: (ax), (→ E), (→ I), (∩E), and (∩I).
• DΩ: (ax), (→ E), (→ I), (∩E), (∩I), and (Ω).

All the eight typed calculi of Barendregt’s cube satisfy the strong normalisation
property, meaning that typeability in the system implies strong normalisation. A
unique property of the two intersection type systems without Ω, namely λ∩ and
D, is the inverse of strong normalisation property. In these systems all strongly
normalising terms are typeable. Thus terms typeable in these systems coincide
with strongly normalising terms. This outstanding property of intersection type
systems has merited a lot of attention and has been proven by different authors
and different means in [123, 31, 145, 73, 1], the list is not complete.

Theorem (Strong normalisation). The calculi λ∩ and D satisfy the following

t is typable ⇔ t is strongly normalising.

There are many known extensions of the λ-calculus with intersection types:
Lengrand’s et al. calculus with explicit substitutions [104], Matthes’s calculus with
generalised applications [109], Dougherty’s et al. calculus for classical logic [51],
Carlier and Wells’s and Kfoury and Wells’s calculi with expansion variables for
type inference [26, 99], Dunfield and Pfenning’s calculus with intersection, union,
indexed, and universal and existential dependent types [54], to name just a few.

3. λGtz-calculus

3.1. Syntax and reduction rules. There were several attempts, over the years,
to design a term calculus which would embody the Curry–Howard correspondence

COMPUTATIONAL INTERPRETATIONS OF LOGICS 13

for intuitionistic sequent calculus. The first calculus accomplishing this task is Her-
belin’s λ̄-calculus given in [92]. Recent interest in the Curry–Howard correspon-
dence for sequent calculus [92, 12, 58, 56] made it clear that the computational
content of sequent derivations and cut-elimination can be expressed through an
extension of the λ-calculus. The λGtz-calculus was proposed by Esṕırito Santo [56]
as a modification of Herbelin’s λ̄-calculus. Its simply typed version corresponds to
the sequent calculus for implicational fragment of intuitionistic logic.

The abstract syntax of λGtz is given by:

(Terms) t, u, v ::= x |λx.t | tk
(Contexts) k ::= x̂.t |u :: k.

Terms are either variables, abstractions or cuts tk. A context is either a selection
or a context cons(tructor). According to the form of k, a cut may be an explicit
substitution t(x̂.v) or a multiary generalised application t(u1 :: · · ·um :: x̂..v),
m > 1. In the last case, if m = 1, we get a generalised application t(u :: x̂.v); if
v = x, we get a multiary application t[u1, · · · , um] (x̂.x can be seen as the empty
list of arguments).

In λx.t and x̂.t, t is the scope of the binders λx and x̂, respectively. The scope
of binders extends to the right as much as possible.

Reduction rules of λGtz are the following:

(β) (λx.t)(u :: k) → u(x̂.tk)
(π) (tk)k′ → t(k@k′)
(σ) tx̂.v → v[x := t]
(µ) x̂.xk → k, if x /∈ k

where v[x := t] denotes meta-substitution defined as usual, and k@k′ is defined by

(u :: k)@k′ = u :: (k@k′) (x̂.t)@k′ = x̂.tk′.

The rules β, π, and σ reduce cuts to the trivial form y(u1 :: · · ·um :: x̂.v), for
some m > 1, which represents a sequence of left introductions. Rule β generates
a substitution, and rule σ executes a substitution on the meta-level. Rule π gen-
eralises the permutative conversion of the λ-calculus with generalised applications.
Rule µ has a structural character, and it either performs a trivial substitution in
the reduction t(x̂.xk)→ tk, or it minimises the use of the generality feature in the
reduction t(u1 · · ·um :: x̂.xk)→ t(u1 · · ·um :: k).

3.2. Simply typed λGtz-calculus. The set Type of types, ranged over by A,B,C,
. . . , A1, . . ., is defined inductively:

A,B ::= X | A→ B

where X ranges over a denumerable set TV ar of type atoms.
There are two kinds of type assignment:

− Γ ` t : A for typing terms;
− Γ;B ` k : A for typing contexts.

14 SILVIA GHILEZAN AND SILVIA LIKAVEC

The special place between the symbols ; and ` is called the stoup and was
proposed by Girard [89]. Stoup contains a selected formula, the one with which we
continue computation.

The type assignment system λGtz → is given in Figure 7.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` t : A Γ;B ` k : C
Γ;A→ B ` t :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ, x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 7. λGtz →: simply typed λGtz-calculus

4. λµ-calculus

4.1. Syntax and reduction rules. The original version of the typed λµ-calculus
was formulated by Parigot [117] as the extension of λ-calculus with certain sequen-
tial operators and was meant to provide a proof term assignment for classical logic
in natural deduction style. As said in [19], “λµ-calculus is a typed λ-calculus which
is able to save and restore the runtime environment.”

The λµ-calculus was introduced as a call-by-name language, but it received a
call-by-value interpretation by Ong and Stewart in [116].

The syntax of the λµ-calculus is given by the following:

unnamed terms: t ::= x | λx.t | tu | µβ.c
named terms: c ::= [α]t.

We distinguish two kinds of variables: λ-variables (x, y, . . . x1, . . .) and µ-variables
(α, β, . . . α1, . . .). We also distinguish two kinds of terms: named and unnamed
terms. Named terms enable us to name arbitrary subterms by µ-variables and
refer to them later.

The reduction rules of the λµ-calculus are:

(λx.u)t → u[x := t]
(µβ.c)t → µβ.c[[β]w := [β](wt)]

[α](µβ.c) → c[β := α].

In the second rule, every subterm of c of the form [β]w is replaced by a term [β](wt).

4.2. Simply typed λµ-calculus. The original version of the λµ-calculus is typed.
A type assignment t : A is derivable from the contexts Γ and ∆ in the system

λµ, notation
Γ ` t : A,∆

COMPUTATIONAL INTERPRETATIONS OF LOGICS 15

if Γ ` t : A,∆ can be generated by the following axiom and rules given in Figure 8.

(axiom)
Γ, y : A ` y : A,∆

Γ ` u : A→ B,∆ Γ ` t : A,∆
(→ elim)

Γ ` ut : B,∆

Γ, y : A ` u : B,∆
(→ intro)

Γ ` λy.u : A→ B,∆

Γ ` u : A,∆, β : A,α : B
(µ)

Γ ` µα.[β]u : B,∆, β : A

Figure 8. Simply typed λµ-calculus

The typed calculus is both, strongly normalising and confluent and the types
are preserved by the reduction.

5. λµµ̃-calculus

5.1. Syntax and reduction rules. The λµµ̃-calculus was introduced by Curien
and Herbelin in [34].

The untyped version of the calculus can be seen as the foundation of a functional
programming language with explicit notion of control and was further studied by
Dougherty, Ghilezan, and Lescanne in [85, 48, 49, 51].

The syntax of λµµ̃ is given by the following, where v ranges over the set Term of
terms, e ranges over the set Coterm of coterms and c ranges over the set Command
of commands:

t ::= x | λx . t | µα . c e ::= α | t • e | µ̃x . c c ::= 〈t ‖ e〉.

There are two kinds of variables in the calculus: the set Varv of variables (de-
noted by Latin letters x, y, . . .) and the set Vare of covariables (denoted by Greek
letters α, β, . . .). The variables can be bound by λ-abstraction or by µ̃-abstraction,
whereas the covariables can be bound by µ-abstraction. The sets of free variables
and covariables, Fv t and Fve, are defined as usual, respecting Barendregt’s con-
vention [10] that no variable can be both, bound and free, in the expression.

Terms yield values, while coterms consume values. A command is a cut of a
term against a coterm. Commands are the place where terms and coterms interact.
The components can be nested and more processes can be active at the same time.

There are only three rules that characterise the reduction in λµµ̃:

(→′) 〈λx . t1 ‖ t2 • e〉 → 〈t2 ‖ µ̃x.〈t1 ‖ e〉〉
(µ) 〈µα . c ‖ e〉 → c[α := e]
(µ̃) 〈t ‖ µ̃x . c〉 → c[x := t].

The above substitutions are defined as to avoid variable capture [10].

16 SILVIA GHILEZAN AND SILVIA LIKAVEC

As a rewriting calculus λµµ̃ has a critical pair 〈µα . c1 ‖ µ̃x . c2〉 where both, (µ)
and (µ̃) rule can be applied non-deterministically, producing two different results.
For example,

〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →µ 〈y ‖ β〉 and 〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 →eµ 〈z ‖ γ〉,
where α and β denote syntactically different covariables.

Hence, the calculus is not confluent. But if the priority is given either to (µ)
or to (µ̃) rule, we obtain two confluent subcalculi λµµ̃T and λµµ̃Q. There are
two possible reduction strategies in the calculus that depend on the orientation
of the critical pair. If the priority is given to (µ) redexes, call-by-value reduction
is obtained (λµµ̃Q-calculus), whereas giving the priority to (µ̃) redexes, simulates
call-by-name reduction (λµµ̃T -calculus).

This is more than simply a reflection of the well-known fact that the equational
theories of call-by-name and call-by-value differ. It is a reflection of the great ex-
pressive power of the language: a single expression containing several commands
can encompass several complete computational processes, and the µ and µ̃ reduc-
tions allow free transfer of control between them.

We first give the syntactic constructs of λµµ̃T and λµµ̃Q, respectively:

λµµ̃T λµµ̃Q
c ::= 〈t ‖ e〉 c ::= 〈t ‖ e〉
t ::= x | λx . t| µα . c V ::= x | λx . t
E ::= α | t • E t ::= µα . c | V
e ::= µ̃x . c | E e ::= α | µ̃x . c | V • e.

In λµµ̃T the new syntactic subcategory E of coterms, called applicative contexts, is
introduced, in order to model call-by-name reduction. In λµµ̃Q, notice the presence
of the new syntactic construct V that models the values.

The reduction rules for λµµ̃T and λµµ̃Q are the following:

λµµ̃T
(→) 〈λx . t1 ‖ t2 • E〉 → 〈t1[x← t2] ‖ E〉
(µ) 〈µα . c ‖ E〉 → c[α := E]
(µ̃) 〈t ‖ µ̃x . c〉 → c[x := t]

λµµ̃Q
(→′) 〈λx . t1 ‖ V2 • e〉 → 〈V2 ‖ µ̃x.〈t1 ‖ e〉〉
(µ) 〈µα . c ‖ e〉 → c[α := e]
(µ̃) 〈V ‖ µ̃x . c〉 → c[x := V].

Notice that in [34] only the rule (→′) is considered for both subcalculi. In [85,
48, 49, 51] only the rule (→) is used. In [107, 106] (→) reduction is used rather
than (→′) reduction in the case of λµµ̃T , since the application of the (→′) rule
will always be immediately followed by the application of the (µ̃) rule and that is
exactly the rule (→). This choice makes explicit the priorities of the rules in each
subcalculus.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 17

In their original work on the λµµ̃-calculus [34], Curien and Herbelin defined
a call-by-name and a call-by-value cps-translations of the complete typed λµµ̃-
calculus into simply typed λ-calculus. The important point to notice is that they
also interpret the types of the form A−B, which are dual to the arrow types A→ B.
The translations validate call-by-name and call-by-value discipline, respectively.

In addition, as described in [34], the sequent calculus basis for λµµ̃ supports
the interpretation of the reduction rules of the system as operations of an abstract
machine. In particular, the right- and left-hand sides of a sequent directly represent
the code and environment components of the machine. This perspective is elabo-
rated more fully in [32]. See [33] for a discussion of the importance of symmetries
in computation.

5.2. Simply typed λµµ̃-calculus. The set Type of types for the λµµ̃-calculus is
obtained by closing a set of base types X under implication

A,B ::= X | A→ B.

Type bases have two components, the antecedent a set of bindings of the form
Γ = x1 : A1, . . . , xn : An, and the succedent of the form ∆ = α1 : B1, . . . , αk : Bk,
where xi, αj are distinct for all i = 1, . . . , n and j = 1, . . . , k. The judgements of
the type system are given by the following:

Γ ` r : A | ∆ Γ | e : A ` ∆ c : (Γ ` ∆)

where Γ is the antecedent and ∆ is the succedent. The first judgement is a typing
for a term, the second one is a typing for a coterm and the third one is a typing for
a command. The box denotes a distinguished output or input, i.e., a place where
the computation will continue or where it happened before. The type assignment
system for the λµµ̃-calculus, introduced by Curien and Herbelin in [34], is given in
Figure 9.

(axR)
Γ, x : A ` x : A | ∆

(axL)
Γ | α : A ` α : A,∆

Γ ` r : A | ∆ Γ | e : B ` ∆
(→ L)

Γ | r • e : A→ B ` ∆

Γ, x : A ` r : B | ∆
(→ R)

Γ ` λx.r : A→ B | ∆

c : (Γ ` α : A,∆)
(µ)

Γ ` µα.c : A | ∆

c : (Γ, x : A ` ∆)
(µ̃)

Γ | µ̃x.c : A ` ∆

Γ ` r : A | ∆ Γ | e : A ` ∆
(cut)

〈r ‖ e〉 : (Γ ` ∆)

Figure 9. Simply typed λµµ̃-calculus

18 SILVIA GHILEZAN AND SILVIA LIKAVEC

6. Curry–Howard correspondence

The fundamental connection between logic and computation is given by Curry–
Howard correspondence or formulae-as-types, proofs-as-terms, proofs-as-programs
interpretation. It relates many computational and logical systems and can be ap-
plied to intuitionistic and classical logic, to sequent calculus and natural deduction.

Under the traditional Curry–Howard correspondence formulae provable in in-
tuitionistic natural deduction coincide with types inhabited in simply typed λ-
calculus. This was observed already by Curry, first formulated by Howard in
1969 [97], used extensively by de Bruijin in the Automath project and by Lam-
bek in category theory. This correspondence extends to all eight calculi of Baren-
dregt’s cube and corresponding logical systems. We refer the reader to [135] for an
extensive account of this topic.

Only in 1990 Griffin [90] showed that this correspondence can be extended to
classical logic, pointing out that classical tautologies suggest typings for certain
control operators: the Pierce’s Law corresponds to the type of call-cc operator in
Scheme (introduced by Sussman and Steele [139]) and the Law of Double Negation
corresponds to the type of C operator (introduced by Felleisen et al. [61, 62]).

Extensive research in both natural deduction and sequent calculus formulations
of classical logic followed. One of the cornerstones is the λµ-calculus of Parigot [117]
which corresponds to classical natural deduction. It was followed by term calculi
designed to incorporate classical sequent calculus: the Symmetric Lambda Calculus
of Barabanera and Berardi [6], the λµµ̃-calculus of Curien and Herbelin [34], and
the Dual calculus of Wadler [147, 148].

COMPUTATIONAL INTERPRETATIONS OF LOGICS 19

Part 2 – Contributions

In this part we give an overview of the work done by the authors in the field
of computational interpretations of logics. In Section 7 we focus on intuitionistic
natural deduction and the λ-calculus. In Section 8 we deal with intuitionistic
sequent calculus and the λGtz-calculus of [56]. In Sections 9 and 10 we concentrate
on classical logic: the λµ-calculus [117], proof term assignment for classical natural
deduction; and three proof term calculi for classical sequent calculus: the λµµ̃-
calculus [34], the dual calculus [147, 148] and the Symmetric Lambda Calculus [6].
Finally, in Section 11 we turn to application to programming language theory.

7. Intuitionistic natural deduction and λ-calculus

7.1. Terms for natural deduction and sequent calculus intuitionistic logic.
The correspondence between sequent calculus derivations and natural deduction
derivations is not a one-to-one map: several cut-free derivations correspond to
one normal derivation. In Barendregt and Ghilezan [12] this is explained by two
extensionally equivalent type assignment systems for untyped λ-terms, namely λN
and λL, one corresponding to intuitionistic natural deduction NJ and the other to
intuitionistic sequent calculus LJ. These two systems constitute different grammars
for generating the same (type assignment relation for untyped) λ-terms. Moreover,
the second type assignment system has a ‘cut-free’ fragment (λLcf) which generates
exactly the typeable λ-terms in normal form. The cut elimination theorem becomes
a simple consequence of the fact that typed λ-terms posses a normal form.

There are three type systems that assign types to untyped λ-terms:
• λN is the simply typed λ-calculus, λ→, given in Figure 5;
• λL given in Figure 10;
• λLcf , the cut-free fragment of λL (rules of Figure 10 without the (cut)

rule).
The last two systems have been described by Gallier [68], Barbanera et al. [8],
and Mints [110]. The three systems λN , λL, and λLcf correspond exactly to the
intuitionistic natural deduction NJ (Figure 1), the intuitionistic sequent calculus
LJ (Figure 3), and the cut-free fragment of LJ. We denote NJ, LJ, and cut-free LJ
by N , L and Lcf respectively.

(x : A) ∈ Γ
(axiom)

Γ ` x : A

Γ ` s : A Γ, x : B ` t : C
(→ left)

Γ, y : A→ B ` t[x := ys] : C

Γ, x : A ` t : B
(→ right)

Γ ` λx.t : A→ B

Γ,` s : A Γ, x : A ` t : B
(cut)

Γ ` t[x := s] : B

Figure 10. λL-calculus

20 SILVIA GHILEZAN AND SILVIA LIKAVEC

First we show the known relation between derivation in N and L: for all Γ and
A the following holds

Γ `N A⇐⇒ Γ `L A.
The following result was observed for N and λN by Curry, Howard, de Bruijn

and Lambek. It is referred to as the Curry–Howard, formulae-as-types, proofs-as-
terms and proofs-as-programs correspondence (interpretation, paradigm).

Theorem (Curry–Howard correspondence). Let S be one of the logical systems N ,
L or Lcf and let λS be the corresponding type assignment system. Then

Γ r x `S A ⇐⇒ ∃t ∈ Λ◦(x) Γ `λS t : A.

where Λ◦(x) = {t ∈ Λ | Fv(t) ⊆ x}.

The proof of the equivalence between systems N and L can be ‘lifted’ to that of
λN and λL, i.e.,

Γ `λL t : A⇐⇒ Γ `λN t : A.
Finally, using the cut-free system we get as bonus the Hauptsatz of [69] for

minimal implicational sequent calculus, i.e.,

Γ `L A⇐⇒ Γ `Lcf A.

The main contribution of this work is expository, since it deals with well known
results. In this work, the emphasis is on λ-terms rather than on derivations, since
λ-terms are easier to reason about than two dimensional derivations.

7.2. Logical interpretation of intersection types. In Ghilezan [70] we con-
sider the inhabitation in intersection and union type assignment system versus
provability in intuitionistic (Heyting’s) natural deduction propositional logic NJ
with conjunction and disjunction (as given in Section 1.1, where the language of
NJ contains also the constant >).

Γ, x : A ` t1 : C Γ, x : B ` t1 : C Γ ` t2 : A ∪B
(∪E)

Γ ` t1[x := t2] : C

Γ ` t : A

Γ ` t : A ∪B

Γ ` t : B
(∪I)

Γ ` t : A ∪B

Figure 11. λ ∩ ∪: intersection and union type assignment system

The intersection and union type assignment system λ∩∪ is obtained by extending
the system λ∩Ω with the rules given in Figure 11 where a pre-order 6 on λ ∩ ∪ is
the extension of the pre-order 6 on λ∩Ω obtained by adding the following rules:
(i) A 6 A ∪B,B 6 A ∪B, (ii) A ∪ A 6 A, (iii) A 6 C,B 6 C ⇒ A ∪B 6 C, and
(iv) A ∩ (B ∪ C) 6 (A ∩B) ∪ (A ∩ C).

The Curry–Howard correspondence between types inhabited in the intersection
and union type assignment system and formulae provable in intuitionistic propo-
sitional logic with implication, conjunction, disjunction, and truth does not hold.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 21

Inhabitation implies provability, but there are provable formulae which are not in-
habited. This is shown in Hindley [95] in a syntactical way. We give a semantical
proof of this fact by giving the appropriate type interpretations in P(D), starting
from any lambda model M = 〈D, ·, [[]]〉 (see [11]) and by mapping the set of inter-
section and union types into the set of propositional formulae that replaces each
occurrence of ∩, ∪, and Ω in a type by ∧, ∨, and > respectively.

The fact that types inhabited in λ∩Ω do not correspond to the provable formulae
in intuitionistic propositional logic with → and ∧, was shown in Hindley [95] by
showing that the type

(A→ A) ∩ ((A→ B → C)→ (A→ B)→ A→ C)

is not inhabited in λ∩Ω although it is provable in intuitionistic logic.
To show that some provable formulae are not inhabited we construct a model of

λ∩Ω which is not a model of some provable formula, i.e., its interpretation in this
model is empty.

In order to obtain the Curry–Howard correspondence for intuitionistic proposi-
tional logic LJ with conjunction and disjunction, we consider the extension of the
simply typed lambda calculus with conjunction and disjunction types and the cor-
responding elimination and introduction rules, given in Figure 12. For this purpose,
the set Type of types is given by the following

A,B = X | A→ B | A ∧B | A ∨B

and the set of lambda terms Λc is obtained by expanding the set Λ with new
constants c, c1, and c2 for conjunction and d, d1, and d2 for disjunction. λ→∧ denotes
the type assignment system obtained from λ → by adding the rules considering
conjunction and λc denotes the type assignment system obtained from λ → by
adding the rules considering conjunction and disjunction.

Γ ` t : A ∧B

Γ ` c1t : A

Γ ` t : A ∧B
(∧E)

Γ ` c2t : B

Γ ` t1 : A Γ ` t2 : B
(∧I)

Γ ` ct1t2 : A ∧B

Γ, x : A ` t1 : C Γ, x : B ` t2 : C Γ ` t3 : A ∪B
(∨E)

Γ ` dxt1t2t3 : C

Γ ` t : A

Γ ` d1t : A ∨B

Γ ` t : B
(∨I)

Γ ` d2t : A ∨B

Figure 12. λc: type assignment system with conjunction and disjunction

We link the inhabitation in the intersection and union type assignment system
with the inhabitation in this extension of the simply typed lambda calculus. We

22 SILVIA GHILEZAN AND SILVIA LIKAVEC

prove that inhabitation is decidable in λ→∧ and λc by linking them to the question
of decidability of provability in logics.

The difference between the special conjunction ∩ (called intersection) and the
arbitrary propositional conjunction ∧ is in the rule (∩I). In order to show that
the term t has the intersection type it is necessary to show that t has both types
in the same basis. t is the same in the conclusion as in both premises of the rule
(∩I). The same holds for the rule (∩E). Thus in these two steps t remains the same
although the deduction grows and the λ-terms do not correspond to the deductions.
With the usual propositional conjunction ∧ the lambda terms correspond to the
deductions since it is possible to obtain a term of conjunction type from two terms
with different types. Something similar happens with the special disjunction ∪
(called union).

In Dezani, Ghilezan and Venneri [45] we consider intersection and union types
in Combinatory logic, which is a formal system equivalent to λ-calculus. In [45] we
investigate the Curry–Howard correspondence between Hilbert (axiomatic) style
intuitionistic logic and Combinatory logic. We propose a typed version of Combi-
natory logic with intersection and union types. This was a novelty, since all the
existing systems with intersection types up to 1990s were type assignment systems.
For the difference between typed systems (typeability à la Church) and type as-
signment systems (typeability à la Curry) we refer the reader to Barendregt [9].
Different typed lambda calculi with intersection types were further proposed by
Liquori and Ronchi Della Rocca [23] and Bono et al. [108].

7.3. Intersection types and topologies in λ-calculus. In Ghilezan [78] ty-
peability of terms in the full intersection type assignment system λ∩Ω is used to
introduce topologies on the set of lambda terms Λ. We consider sets of lambda
terms that can be typeable by a given type in a given environment:

VΓ,A = {t ∈ Λ | Γ ` t : A}.

For a fixed Γ the family of sets {VΓ,A}A∈Type forms the basis of a topology on Λ,
called the Γ-fit topology. Open sets in the Γ-fit topology are unions of basic open
sets.

These topologies lead to simple proofs of some fundamental results of the lambda
calculus such as the continuity theorem and the genericity lemma. We show that
application is continuous, unsolvable terms are bottoms, and βη-normal forms are
isolated points with respect to these topologies.

The restriction of these topologies to the set of closed lambda terms Λ◦, called
the fit topology, appears to be unique. It is defined by considering the set of all
closed lambda terms that can be typed by a given type:

VA = {t ∈ Λ◦ ` t : A}.

The family {VA}A∈Type forms a basis for a topology on Λ◦.
We compare the fit topology and the filter topology [11] and show that: (i) they

coincide on the set Λ◦ of closed λ-terms, (ii) for every Γ-fit topology on the set Λ
there is a coincident topology on Λ and vice versa.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 23

The fit topology is a simpler description of the filter topology since the main
difference between these topologies is that the former is a topology introduced on
the set of types and then traced on terms by the inverse map, whereas the latter is
introduced directly on the set of terms.

7.4. Reducibility method. The reducibility method is a well known framework
for proving reduction properties of λ-terms typeable in different type systems. It
was introduced by Tait [140] for proving the strong normalisation property of simply
typed λ-calculus. Later it was used to prove strong normalisation property of
various type systems in [141, 88, 101, 73], the Church-Rosser property (confluence)
of βη-reduction in [100, 137, 111, 112] and to characterise some special classes of
λ-terms such as strongly normalising terms, normalising terms, head normalising
terms, and weak head normalising terms by their typeability in various intersection
type systems in [67, 47, 41].

In Ghilezan and Likavec [86] we develop a general reducibility method for proving
reduction properties of λ-terms typeable in intersection type systems with and
without the universal type Ω, whereas in [87] we focus only on the intersection type
assignment system λ∩Ω with the type Ω. Sufficient conditions for its application
are derived. This method leads to uniform proofs of confluence, standardization,
and weak head normalisation of terms typeable in the system with the type Ω. In
this system the reducibility method can be extended to a proof method suitable to
prove reduction properties of untyped λ-terms with certain invariance.

The general idea of the reducibility method is to provide a link between terms
typeable in a type system and terms satisfying certain reduction properties (e.g.,
strong normalisation, confluence). For that reason types are interpreted by suitable
sets of λ-terms: saturated and stable sets in Tait [140] and Krivine [101] and
admissible relations in Mitchell [111] and [112]. These interpretations are based
on the sets of terms considered (e.g., strong normalisation, confluence). Then the
soundness of type assignment with respect to these interpretations is obtained. A
consequence of soundness is that every term typeable in the type system belongs
to the interpretation of its type. This is an intermediate step between the terms
typeable in a type system and terms satisfying the reduction property considered.

Necessary notions for the reducibility method are (as presented in [87]): 1. type
interpretation; 2. term valuations; 3. closure conditions; 4. soundness of the type
assignment.

1. Type interpretation. We consider the set of all λ-terms Λ as the applicative
structure whose domain are λ-terms and where the application is the application
of terms. If P ⊆ Λ is a fixed set, the type interpretation [[−]] : Type→ 2Λ is defined
by:

(I1) [[X]] = P, X is an atom;
(I2) [[A ∩B]] = [[A]] ∩ [[B]];
(I3) [[A→ B]] = ([[A]]⇒[[B]]) ∩ P = {t ∈ P | ∀s ∈ [[A]] ts ∈ [[B]]};
(I4) [[Ω]] = Λ.

An important property of the type interpretation is that [[A]] ⊆ P for all types
A 6∼ Ω.

24 SILVIA GHILEZAN AND SILVIA LIKAVEC

2. Term valuations. Let ρ : var → Λ be a valuation of term variables in Λ.
Then [[−]]ρ : Λ→ Λ is defined as follows

[[t]]ρ = t[x1 := ρ(x1), . . . , xn := ρ(xn)], where Fv(t) = {x1, . . . , xn}.
The semantic satisfiability relation � connects the type interpretation with the

term valuation.
(i) ρ � t : A iff [[t]]ρ ∈ [[A]];

(ii) ρ � Γ iff (∀(x : A) ∈ Γ) ρ(x) ∈ [[A]];
(iii) Γ � t : A iff (∀ρ � Γ) ρ � t : A.
3. Closure conditions. Let us impose some conditions on P ⊆ Λ.
− X ⊆ Λ satisfies the P-variable property, notation V AR(P,X), if

(∀x ∈ var) (∀n > 0) (∀t1, . . . , tn ∈ P) xt1 . . . tn ∈ X .
− X ⊆ Λ is P-saturated, notation SAT (P,X), if

(∀t, s ∈ Λ) (∀n > 0) (∀t1, . . . , tn ∈ P)

t[x := s]t1 . . . tn ∈ X ⇒ (λx.t)st1 . . . tn ∈ X .
− X ⊆ Λ is P-closed, notation CLO(P,X), if t ∈ X ⇒ λx.t ∈ P.

The preorder on types is interpreted as the set theoretic inclusion. We prove the
following realizability property, which is referred to as the soundness property or
the adequacy property.

Theorem (Soundness of the type assignment). If V AR(P,P), SAT (P,P), and
CLO(P,P) are satisfied, then Γ ` t : A⇒ Γ � t : A.

An immediate consequence of soundness is the following statement.

Theorem (Reducibility method). If V AR(P,P), SAT (P,P), and CLO(P,P),
then for all types A 6∼ Ω and A 6∼ Ω→ B, where B 6∼ Ω

Γ ` t : A⇒ t ∈ P.

Proof method for Λ. To establish a proof method for untyped λ-terms it is neces-
sary that a set P ⊆ Λ is invariant under abstraction, i.e.,

t ∈ P ⇔ λx.t ∈ P. �

If P is invariant under abstraction and satisfies V AR(P,P) and SAT (P,P),
then P = Λ. This method is applicable when:

− P = C = {t ∈ Λ | β-reduction is confluent on t};
− P = S = {t | every reduction of t can be done in a standard way};
− P =WN = {t | t is weakly head normalising}.

In [86] we distinguish the following two different kinds of type interpretation
with respect to a given set P ⊆ Λ.

(i) The type interpretation [[−]] : Type→ 2Λ is defined by:
(I1) [[X]] = P, X is an atom;
(I2) [[A ∩B]] = [[A]] ∩ [[B]];
(I3) [[A→ B]] = [[A]]⇒[[B]] = {t ∈ Λ | ∀s ∈ [[A]] ts ∈ [[B]]}.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 25

(ii) The Ω-type interpretation [[−]]Ω : TypeΩ → 2Λ is defined by
(Ω1) [[X]]Ω = P, X is an atom;
(Ω2) [[A ∩B]]Ω = [[A]]Ω ∩ [[B]]Ω;
(Ω3) [[A→ B]]Ω = [[A]]Ω⇒Ω[[B]]Ω = ([[A]]Ω⇒[[B]]Ω) ∩ P =

= {t ∈ WN | ∀s ∈ [[A]]Ω ts ∈ [[B]]Ω};
(Ω4) [[Ω]]Ω = Λ.

Also, we distinguish two different closure conditions which a given set P ⊆ Λ
has to satisfy. By combining different type interpretations with appropriate closure
conditions on P ⊆ Λ we prove the soundness of the type assignment in both cases.
In this way a method for proving properties of λ-terms typeable with intersection
types is obtained.

Preliminary version of the work presented in [87, 86] is [84].

The problem of typability in a type system is whether there exists a type for a
given term. The typability in the full intersection type assignment system λ∩Ω is
trivial since there exists a universal type Ω which can be assigned to every term in
this system.

But without the rule (Ω), the situation changes. In Likavec [105] we focus on
typability of terms in the intersection type assignment systems without the type
Ω. We show that all the strongly normalising terms are typable in these systems.
They are the only terms typable in these systems. We also present detailed proofs
for [86, 87].

7.5. Behavioural inverse limit models. In Dezani et al. [44] we construct two
inverse limit λ-models which completely characterise sets of terms with similar
computational behaviours:

Normalisation properties

(1) A term t has a normal form, t ∈ N , if t reduces to a normal form.
(2) A term t has a head normal form, t ∈ HN , if t reduces to a term of the

form λ~x.y~t (where possibly y appears in ~x).
(3) A term t has a weak head normal form, t ∈ WN , if t reduces to an abstrac-

tion or to a term starting with a free variable.

Persistent normalisation properties

(1) A term t is persistently normalising, t ∈ PN , if t~u ∈ N for all ~u ∈ N .
(2) A term t is persistently head normalising, t ∈ PHN , if t~u ∈ HN for all

~u ∈ Λ.
(3) A term t is persistently weak head normalising, t ∈ PWN , if t~u ∈ WN for

all ~u ∈ Λ.

Closability properties

(1) A term t is closable, t ∈ C, if t reduces to a closed term.
(2) A term t is closable normalising, t ∈ CN , if t reduces to a closed normal

form.
(3) A term t is closable head normalising, t ∈ CHN , if t reduces to a closed

head normal form.

26 SILVIA GHILEZAN AND SILVIA LIKAVEC

We build two inverse limit λ-models D∞ and E∞, according to Scott [132], which
completely characterise each of the mentioned sets of terms. For that we need to dis-
cuss the functional behaviours of the terms belonging to these classes with respect
to the step functions. Given compact elements a and b in the Scott domains A and
B respectively, the step function a⇒ b is defined by λλc. if a v c then b else ⊥

Definition of models
(1) Let D∞ be the inverse limit λ-model obtained by taking as D0 the lattice

in Figure 13, as D1 the lattice [D0 → D0]⊥, and by defining the embedding
iD0 : D0 → [D0 → D0]⊥ as follows:

iD0 (n̂) = (⊥ ⇒ ĥ) t (n⇒ n̂), iD0 (n) = (ĥ⇒ h) t (n̂⇒ n),
iD0 (ĥ) = ⊥ ⇒ ĥ, iD0 (h) = ĥ⇒ h, iD0 (⊥) = ⊥.

(2) Let E∞ be the inverse limit λ-model obtained by taking as E0 the cpo
in Figure 13, as E1 the cpo [E0 → E0], and by defining the embedding
iE0 : E0 → [E0 → E0] as follows:

iE0 (n̂) = (⊥ ⇒ ĥ) t (n⇒ n̂), iE0 (n) = (ĥ⇒ h) t (n̂⇒ n),
iE0 (ĥ) = ⊥ ⇒ ĥ, iE0 (h) = ĥ⇒ h,
iE0 (c) = c⇒ c, iE0 (⊥) = ⊥ ⇒ ⊥.

(3) We will denote the partial orders on D∞ and E∞ by vD and vE , respec-
tively.

n̂
��

ĥ t n
����

��
888

ĥ
��

::: n
�����

h
��

⊥

n̂
��

ĥ t n
����

��
::: n t c

�������

ĥ
��

::: n
�����

h t c
��xxqqqqq

h
��

=== c
�����

⊥

Figure 13. The lattice D0 and the cpo E0

More precisely, for each of these sets of terms there is a corresponding element in
at least one of the two models such that a term belongs to the set if and only if its
interpretation (in a suitable environment) is greater than or equal to that element.
This is the result of the following theorem.

Theorem (Main Theorem, Version I). Let D∞ and E∞ be the inverse limit λ-
models defined above and ρn̂ the environment defined by ρn̂(x) = n̂ for all x ∈ var

(since each variable is in PN). Then:
(1) t ∈ PN iff [[t]]D∞ρn̂

wD n̂ iff [[t]]E∞ρn̂
wE n̂;

(2) t ∈ N iff [[t]]D∞ρn̂
wD n iff [[t]]E∞ρn̂

wE n;
(3) t ∈ PHN iff [[t]]D∞ρn̂

wD ĥ iff [[t]]E∞ρn̂
wE ĥ;

COMPUTATIONAL INTERPRETATIONS OF LOGICS 27

(4) t ∈ HN iff [[t]]D∞ρn̂
wD h iff [[t]]E∞ρn̂

wE h;
(5) t ∈ PWN iff [[t]]D∞ρn̂

wD
⊔
n∈N(⊥ ⇒ . . .⇒ ⊥︸ ︷︷ ︸

n

⇒ ⊥);

(6) t ∈ WN iff [[t]]D∞ρn̂
wD ⊥ ⇒ ⊥;

(7) t ∈ CN iff [[t]]E∞ρn̂
wE c t n;

(8) t ∈ CHN iff [[t]]E∞ρn̂
wE c t h;

(9) t ∈ C iff [[t]]E∞ρn̂
wE c.

This is proved by using the finitary logical descriptions of the models D∞ and
E∞, obtained by defining two intersection type assignment systems in the follow-
ing way. Starting from atomic types corresponding to the elements of D0 and E0,
we construct the sets TTD and TTE of types using the function type constructor →
and the intersection type constructor ∩ between compatible types, where two types
are compatible if the corresponding elements have a join. Types are denoted by
A,B,A1, An → B is short for A→ · · · → A︸ ︷︷ ︸

n

→ B (n > 0). The preorder be-

tween types is induced by reversing the order in the initial cpo and by encoding the
initial embedding, according to the correspondence: (i) function type constructor
corresponds to step function and (ii) intersection type constructor corresponds to
join.

Then, we define the sets FD and FE of filters on the sets TTD and TTE , respectively.
Both FD and FE , ordered by subset inclusion, are Scott domains. The compact
elements are precisely the principal filters, and the bottom element is ↑ Ω. FD is
an ω-algebraic complete lattice, since it has the top element TTD.

We can show that FD and D∞ are isomorphic as ω-algebraic complete lattices,
and that FE and E∞ are isomorphic as Scott domains. This isomorphism falls in
the general framework of Stone dualities. The interest of the above isomorphism
lies in the fact that the interpretations of λ-terms in D∞ and E∞ are isomorphic to
the filters of types one can derive in the corresponding type assignment systems.
This gives the desired finitary logical descriptions of the models.

Theorem (Finitary logical descriptions).

(1) For any t ∈ Λ and ρ : var 7→ FD, [[t]]F
D

ρ = {A ∈ TTD | ∃Γ. ΓB ρ & Γ `D t : A};
(2) For any t ∈ Λ and ρ : var 7→ FE , [[t]]F

E

ρ = {A ∈ TTE | ∃Γ. ΓB ρ & Γ `E t : A},
where ΓB ρ means that for (x : B) ∈ Γ one has that B ∈ ρ(x).

Therefore, the primary complete characterisation can be stated equivalently as
follows: a term belongs to one of the nine sets mentioned if and only if it has a
certain type (in a suitable basis) in one of the obtained type assignment systems.
This is the result of the following theorem.

Theorem (Main Theorem, Version II).
(1) t ∈ PN iff Γν̂ `D t : ν̂ iff Γν̂ `E t : ν̂;
(2) t ∈ N iff Γν̂ `D t : ν iff Γν̂ `E t : ν;
(3) t ∈ PHN iff Γν̂ `D t : µ̂ iff Γν̂ `E t : µ̂;
(4) t ∈ HN iff Γν̂ `D t : µ iff Γν̂ `E t : µ;

28 SILVIA GHILEZAN AND SILVIA LIKAVEC

(5) t ∈ PWN iff Γν̂ `D t : Ωn → Ω for all n ∈ N;
(6) t ∈ WN iff Γν̂ `D t : Ω→ Ω;
(7) t ∈ CN iff Γν̂ `E t : γ ∩ ν;
(8) t ∈ CHN iff Γν̂ `E t : γ ∩ µ;
(9) t ∈ C iff Γν̂ `E t : γ.

The proofs of the (⇒) parts are mainly straightforward inductions and case split,
with the exception of the case of persistently normalising terms, which are treated
using the notions of safe and unsafe suberms (see [21]). The proofs of the (⇐)
parts require the set-theoretic semantics of intersection types and saturated sets,
which is referred to as the reducibility method. To that purpose we define the
interpretations of types in TTD and in TTE as follows:

Interpretation of types
(1) The map [[−]]D : TTD → P(Λ) is defined by:

(i) [[ν]]D = N , [[ν̂]]D = PN , [[µ]]D = HN , [[µ̂]]D = PHN , [[Ω]]D = Λ;
(ii) [[A ∩B]]D = [[A]]D ∩ [[B]]D;

(iii) [[A→ B]]D = [[A]]D D7−→ [[B]]D = {t ∈ WN | ∀u ∈ [[A]]D tu ∈ [[B]]D}.
(2) The map [[−]]E : TTE → P(Λ) is defined by:

(i) [[ν]]E = N , [[ν̂]]E = PN , [[µ]]E = HN [[µ̂]]E = PHN , [[γ]]E = C,
[[Ω]]E = Λ;

(ii) [[A ∩B]]E = [[A]]E ∩ [[B]]E ;
(iii) [[A→ B]]E = [[A]]E E7−→ [[B]]E = {t ∈ Λ | ∀u ∈ [[A]]E tu ∈ [[B]]E}.

The main contribution of the present paper is to show that only two models can
characterise many different sets of terms. On the one hand it seems that we cannot
find elements representing weak head normalisability and closability in the same
model, since the first property requires the lifting of the space of functions and this
does not agree with the second one. On the other hand, there are properties which
appear strongly connected, like each normalisation property with its persistent
version. It is not clear if these properties can be characterised separately, i.e., if
one can build models in which only one of these properties is characterised.

A preliminary version of the present paper (dealing only with the first six sets
of terms) is [41]. An extended abstract of the present paper is [43].

8. Intuitionistic sequent calculus and λGtz-calculus

8.1. Intersection types for λGtz-calculus. In Esṕırito Santo et al. [57], we in-
troduce intersection types for the λGtz-calculus. The set Type of types, ranged over
by A,B,C, . . . , A1, . . ., is defined inductively:

A,B ; ::= X | A→ B | A ∩B

where X ranges over a denumerable set TV ar of type atoms.
The type assignment system λGtz∩ is given in Figure 14.
The following rules are admissible in λGtz∩:

1. If Γ, x : Ai ` t : C then Γ, x : ∩Ai ` t : C.
2. If Γ, x : Ai;D ` k : C then Γ, x : ∩Ai;D ` k : C.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 29

Γ, x : ∩Ai ` x : Ai i = 1, . . . , n, n > 1
(Ax)

Γ, x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` u : Ai ∀i Γ;B ` k : C

Γ;∩Ai → B ` u :: k : C
(→L)

Γ ` t : Ai, ∀i Γ;∩Ai ` k : B
Γ ` tk : B

(Cut)
Γ, x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 14. λGtz∩: type assignment system for λGtz-calculus

Basis expansion and bases intersection are defined in an obvious way. Standard
form of generation lemma holds for λGtz.

Example: In λ-calculus with intersection types, the term λx.xx has the type
(A ∩ (A → B)) → B. The corresponding term in λGtz-calculus is λx.x(x :: ŷ.y).
Although being a normal form this term is not typeable in the simply typed λGtz-
calculus. It is typeable in λGtz∩ in the following way:

(Ax)
x : A ∩ (A→B) ` x : A→B

(Ax)
x : A ∩ (A→B) ` x : A

(Ax)
x : A ∩ (A→B), y : B ` y : B

(Sel)
x : A ∩ (A→B);B ` by.y : B

(→L)
x : A ∩ (A→B);A→B ` (x :: by.y) : B

(Cut)
x : A ∩ (A→B) ` x(x :: by.y) : B

(→R).
` λx.x(x :: by.y) : (A ∩ (A→B))→B

8.2. Subject reduction and strong normalisation. Basic properties of this
system are analysed and the Subject reduction property is proved i.e.,

If Γ ` t : A and t→ t′, then Γ ` t′ : A.

The reduction µ is of different nature, since it reduces contexts instead of terms.
A similar result for this reduction rule is given, i.e.,

If Γ;∩Bi ` x̂.xk : A, then Γ;Bi ` k : A, for some i.

In [81], a slightly modified type assignment system λGtz∩ with respect to the one
given in 8.1 is considered. Subject reduction holds for this system as well.

We use intersection types in [57] to give a characterisation of the strongly nor-
malising terms of an intuitionistic sequent calculus (where LJ easily embeds). The
sequent term calculus presented in this paper integrates smoothly the λ-terms with
generalised application or explicit substitution.

In order to prove that typeability in λGtz∩ implies strong normalisation for the
λGtz∩, we connect it with the well-known system D for the λ-calculus (given in Sec-
tion 2.2) via an appropriate mapping, and then use strong normalisation theorem
for λ-terms typeable in system D.

30 SILVIA GHILEZAN AND SILVIA LIKAVEC

Terms in D are ordinary λ-terms equipped with the following two reduction
relations, in addition to standard β reduction:

(π1) (λx.M)NP → (λx.MP)N (π2) M((λx.P)N)→ (λx.MP)N.

We let π = π1 ∪ π2. We use capital letters here to denote the terms in D to
differentiate them from the terms in λGtz∩.

We define a mapping F from λGtz to λ. The idea is the following. If F (t) =
M , F (ui) = Ni and F (v) = P , then t(u1 :: u2 :: (x)v), say, is mapped to
(λx.P)(MN1N2). Formally, a mapping F : λGtzTerms −→ λTerms is defined si-
multaneously with an auxiliary mapping F ′ : λTerms×λGtzContexts −→ λTerms
as follows:

F (x) = x F ′(N, x̂.t) = (λx.F (t))N
F (λx.t) = λx.F (t) F ′(N, u :: k) = F ′(NF (u), k).
F (tk) = F ′(F (t), k)

We prove the following theorems:
• Soundness of F: If λGtz∩ proves Γ ` t : A, then D proves Γ ` F (t) : A.
• Reduction of SN: For all t ∈ λGtz, if F (t) is βπ-SN, then t is βπσµ-SN.

The main theorem is the following:

Theorem (Typeability ⇒ SN). If a λGtz-term t is typeable in λGtz∩, then t is
βπσµ-SN.

In order to prove that SN implies typeability we prove the following:
• βπσ-normal forms and βπσµ-normal forms of the λGtz-calculus are typeable

in the λGtz∩ system.
• Subject expansion property: If t → t′, t is the redex and t′ is typeable

in λGtz∩, then t is typeable in λGtz∩.
The main theorem is the following:

Theorem (SN ⇒ typeability). All strongly normalising (βσπµ − SN) terms are
typeable in the λGtz∩ system.

Finally, in order to deal with generalised applications and explicit substitutions,
we consider two extensions of the λ-calculus: the ΛJ-calculus, where application
M(N, x.P) is generalised [98]; and the λx-calculus, where substitution M [x := N]
is explicit [128]. Intersection types have been used to characterise the strongly
normalising terms of both ΛJ-calculus [109] and λx-calculus [104]. But in both [109]
and [104] the “natural” typing rules for generalised application or substitution
had to be suplemented with extra rules in order to secure that every strongly
normalising term is typeable. Hence, the “natural” rules failed to capture the
strongly normalising terms. We prove that λGtz and λGtz∩ are useful for resolving
these issues.

Let t be a λGtz-term.
(1) t is a λJ-term if every cut occurring in t is of the form t(u :: x̂.v).
(2) t is a λx-term if every cut occurring in t has one of the forms t(u :: x̂.x) or

t(x̂.v).

COMPUTATIONAL INTERPRETATIONS OF LOGICS 31

We define appropriate type assignment systems λJ∩ and λx∩ for these calculi
and prove the following:

(1) Let t be a λJ-term. t is βπσµ− SN iff t is typeable in λJ∩.
(2) Let t be a λx-term. t is βπσµ− SN iff t is typeable in λx∩.

9. Classical natural deduction and λµ-calculus

9.1. Terms for natural deduction and sequent calculus classical logic. In
Ghilezan [80], the work of Barendregt and Ghilezan [12] is further elaborated and
its results are generalised for classical logic. Two extensionally equivalent type as-
signment systems for the λµ-calculus are considered. The type assignment system
λµN is actually the simply typed λµ-calculus, given in Figure 8. It corresponds
to implicational fragment of classical natural deduction NK (given in Figure 2),
whereas the type assignment system λµL given in Figure 15 corresponds to impli-
cational fragment of classical sequent calculus LK (given in Figure 4). In addition,
a cut free variant of λµL, denoted by λµLcf, is introduced and used to give a short
proof of Cut elimination theorem for classical logic.

(axiom)
Γ, y : A ` y : A,∆

Γ ` u : A,∆ Γ, x : B ` t : C,∆
(→ left)

Γ, y : A→ B ` t[x := yu] : C,∆

Γ, y : A ` t : B,∆
(→ right)

Γ ` λy.t : A→ B,∆

Γ ` t : A,∆, β : A,α : B
(µ)

Γ ` µα.[β]t : B,∆, β : A

Γ ` u : B,∆ Γ, x : B ` t : A,∆
(cut)

Γ ` t[x := u] : A,∆

Figure 15. λµL-calculus

In Figure 15 a term context Γ = {x1 : A1, . . . , xn : An} is a set of variable
declarations such that for every variable xi there is at most one declaration xi : Ai
in Γ and a co-term context ∆ = {α1 : B1, . . . , αk : Bk} is a set of co-variable
declarations such that for every co-variable αl there is at most one declaration
αl : Bl in ∆. In this setup Γ r x = {A1, . . . An} and ∆ r α = {B1, . . . Bk}.

It is shown that the statement A is derivable from assumptions in Γ in NK if
and only if it is derivable from the same assumptions in LK, i.e., for all Γ and A

Γ `NK A,∆⇐⇒ Γ `LK A,∆.

The following result was given by Parigot [117] as an extension of the well-known
proposition-as-types interpretation of intuitionistic logic.

32 SILVIA GHILEZAN AND SILVIA LIKAVEC

Theorem (Curry–Howard correspondence for classical logic). If SK is one of the
logical systems NK, LK or LKcf and if λµS is the corresponding type assignment
system, then

Γ r x `SK A,∆ r α ⇐⇒ ∃t ∈ Λ◦(x) ∪ Λ◦µ(α) Γ `λµS t : A,∆.

where Λ◦(~x) = {t ∈ Λ | Fv(t) ⊆ x}, Λ◦µ(α) = {t ∈ Λ | Fvµ(t) ⊆ α}

It is also proved that

Γ `λµL t : C,∆⇐⇒ Γ `λµN t : C,∆.

Finally, using the type assignment system λµLcf, Cut elimination theorem of
Gentzen [69] for classical implicational sequent calculus is proved, i.e.,

Γ `LK A⇐⇒ Γ `LKcf A.

The type assignment system λµL is a novel system for encoding proofs in clas-
sical sequent logic. The main focus of this paper is on λµ-terms, rather than on
derivations.

9.2. Separability in λµ-calculus. In Herbelin and Ghilezan [94], we investigate
the separability property of λµ-calculus. In the untyped λ-calculus Böhm’s theorem
deals with the separability property of λ-terms [20, 35, 10, 101]. For two different
normal forms there is a context such that one of these terms converges in this
context, whereas the other one diverges in the same context. A consequence of this
theorem is that βη equality is the maximal consistent equality between λ-terms
having normal forms. Hence, if t and u are two λ–terms having different βη normal
forms, meaning that t = u cannot be proved in λ-calculus, and if this calculus is
extended with t = u, then according to Böhm’s theorem every equality of λ-terms
can be proved in the extended calculus. In other words such an extended calculus
is inconsistent.

Two terms are observationally equivalent if, whenever put in the same context,
either they both make it reducible to a normal form or they both make it diverge.
More generally, two terms may be considered as equivalent if, when observed from
outside, they exhibit the same behaviour. Therefore another important consequence
of Böhm’s separability in the λ-calculus setting is that observational equivalence for
normalisable terms coincides with βη-equivalence. The proof of Böhm’s theorem
can be considered as a refutation procedure for observational equivalence. An
overview of the relation between Böhm’s theorem and observational equivalence is
given by Dezani-Ciancaglini and Giovannetti [46].

Regarding computational interpretations of classical logic Böhm’s separability
property has been investigated in Parigot’s λµ-calculus, so far. David and Py [38]
showed that Parigot’s λµ-calculus does not satisfy Böhm’s separability property.
This means that the equality of Parigot’s λµ-calculus is not the maximal consistent
equality between λµ-terms having normal forms.

Saurin [131] studied the Böhm’s separability property in a syntactic modification
of the λµ-calculus by de Groote [39] which is denoted here by Λµ following Saurin.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 33

The syntax of the Λµ-calculus is given by the following:

t ::= x | λx.t | tu | µβ.t| [α]t.

The reduction rules are the same as of the λµ-calculus (see Subsection 4).
Saurin showed that the Λµ-calculus is a strict extension of Parigot’s λµ-calculus

and that it enjoys Böhm’s separability property. Therefore, the equality in Λµ-
calculus is the maximal consistent equality of λµ-terms having normal forms. The
two syntax were up to now considered as almost the same. Obviously this subtle
move in the syntax has significant consequences. In [94] we restored Böhm separa-
bility in λµ by extending the syntax of λµ with a dynamically bound continuation
variable t̂p and the reduction rules with two rules

[t̂p]µt̂p.c → c
µt̂p.[t̂p]t → t.

In this way we obtained λµt̂p, actually its call-by-name variant. It is possible to
establish then a mutual embedding of Λµ and λµt̂p. Embedding of Λµ into the
extended λµ, actually Π : Λµ −→ λµt̂p is given by the following:

Π(x) , x

Π(λx.t) , λx.Π(t)
Π(t s) , Π(t) Π(s)
Π(µα.t) , µα.[t̂p]Π(t)
Π([α]t) , µt̂p.[α]Π(t).

Embedding of the extended λµ into Λµ, actually Σ : λµt̂p −→ Λµ is the following:

Σ(x) , x

Σ(λx.t) , λx.Σ(t)
Σ(t s) , Σ(t) Σ(s)
Σ(µα.[β]t) , µα.([β]Σ(t)) if β and t̂p are distinct
Σ(µα.[t̂p]t) , µα.(Σ(t))
Σ(µt̂p.[α]t) , [α]Σ(t) if α and t̂p are distinct
Σ(µt̂p.[t̂p]t) , Σ(t).

From the desired properties:
• t = u in Λµ implies Π(t) = Π(u) in λµt̂p,
• t = u in λµt̂p implies Σ(t) = Σ(u) in Λµ,

we conclude the separability of the extended λµ-calculus.

Theorem (Separability). λµt̂p, the extended λµ-calculus is observationally com-
plete for normal forms, i.e., for any two normal forms there exists an evaluation
λµt̂p-context C[], such that, in λµt̂p, C[t] = x and C[s] = y for x and y being
arbitrary fresh variables.

Separability in simply typed λµ-calculus is an open question. It was shown
in [136, 134, 53] that separability in simply typed λ-calculus needs different treat-
ment from Böhm’s method for the untyped λ-calculus. There is ongoing research
along the lines of the approach by Došen and Petrić [53].

34 SILVIA GHILEZAN AND SILVIA LIKAVEC

X ∈ TypeConstants
A,B ::= X | AΣ → B

Γ ::= ∅ | Γ, x : AΣ

∆ ::= ∅ | ∆, α : A
Σ,Ξ ::= ⊥ | A · Σ

Γ, x : AΣ `Σ x :A; ∆ Ax

Γ, x : AΣ `Ξ t :B; ∆
Γ `Ξ λx.t : (AΣ → B); ∆

(→i)
Γ `Ξ t : (AΣ → B); ∆ Γ `Σ s :A; ∆

Γ `Ξ t s :B; ∆
(→e)

Γ `Σ c :⊥⊥; ∆, α :A
Γ `Σ µα.c :A; ∆

Γ `A·Σ c :⊥⊥; ∆
Γ `Σ µt̂p.c :A; ∆

Γ `Σ t :A; ∆, α : A
Γ `Σ [α]t :⊥⊥; ∆, α : A

Γ `Σ t :A; ∆
Γ `A·Σ [t̂p]t :⊥⊥; ∆

Figure 16. Simple typing of λµt̂p-calculus

9.3. Simple types for extended λµ-calculus. In Herbelin and Ghilezan [94] we
propose a system of simple types for call-by-name λµt̂p, the λµ-calculus extended
by a dynamically bound continuation variable, which is introduced in the previous
subsection. Like for typing λµ, we have two kinds of sequents, one for each category
of expressions:

Γ `Σ t :A; ∆ (for terms)
Γ `Σ c :⊥⊥; ∆ (for commands).

Like for λµ, we have a context of hypotheses Γ that assigns types to term variables
and a context of conclusions ∆ that assigns types to continuation variables. But
we have also to take care of the µt̂p dynamic binder.

There is an extra data to type the dynamic effects. Each use of µt̂p pushes the
current continuation on a stack of dynamically bound continuations. Each call to
t̂p pops the top continuation from this stack. The extra information needed to type
the dynamic binding is not a single formula but the ordered list Σ of the types of
the continuations present in the stack.

The type system, given in Figure 16 enjoys preservation of types under reduction.

Theorem (Subject reduction).
(i) If Γ `Σ t :A; ∆ and t→ s, then Γ `Σ s :A; ∆.
(ii) If Γ `Σ c :⊥⊥; ∆ and c→ c′, then Γ `Σ c′ :⊥⊥; ∆.

10. Classical sequent calculus and λµµ̃-calculus

10.1. Confluence of call-by-name and call-by-value disciplines. In Likavec
and Lescanne [107], we deal with untyped λµµ̃-calculus and its semantics, with
complete proofs given in [106].

This work investigates some properties of λµµ̃T and λµµ̃Q, the two subcalculi of
untyped λµµ̃-calculus of Curien and Herbelin [34], closed under the call-by-name

COMPUTATIONAL INTERPRETATIONS OF LOGICS 35

and the call-by-value reduction, respectively. The syntax and reduction rules of
λµµ̃ were given in Section 5.

First of all, the proof of confluence for both versions of the λµµ̃-calculus is given,
adopting the method of parallel reductions given by Takahashi [142]. This approach
consists of simultaneously reducing all the redexes existing in a term.

We present the proof for λµµ̃T , the proof for λµµ̃Q being a straightforward
modification of the proof for λµµ̃T . The complete proofs can be found in [106]. We
denote the reduction defined by the three reduction rules for λµµ̃T by →n and its
reflexive, transitive, and closure by congruence by →→ n.

First, we define the notion of parallel reduction ⇒n for λµµ̃T . We prove that
→→ n is reflexive and transitive closure of ⇒n, so in order to prove the confluence of
→→ n, it is enough to prove the diamond property for ⇒n. The diamond property
for ⇒n, follows from the stronger “Star property” for ⇒n that we prove.

The parallel reduction, denoted by ⇒n is defined inductively, as follows:

x⇒n x
(g1n)

v⇒n v
′

λx . t⇒n λx . t
′ (g2n)

c⇒n c
′

µα . c⇒n µα . c
′ (g3n)

α⇒n α
(g4n)

v⇒n v
′, E⇒nE

′

v • E⇒n v
′ • E′

(g5n)
c⇒n c

′

µ̃x . c⇒n µ̃x . c
′ (g6n)

v⇒n v
′, e⇒n e

′

〈v ‖ e〉⇒n〈v′ ‖ e′〉
(g7n)

v1⇒n v
′
1, v2⇒n v

′
2, E⇒nE

′

〈λx . t1 ‖ v2 • E〉⇒n〈v′1[x := v′2] ‖ E′〉
(g8n)

c⇒n c
′, E⇒nE

′

〈µα . c ‖ E〉⇒n c
′[α := E′]

(g9n)
v⇒n v

′, c⇒n c
′

〈v ‖ µ̃x . c〉⇒n c
′[x := v′]

(g10n)
.

It is easy to prove that for every term G:
1. G⇒nG;
2. If G→nG

′ then G⇒nG
′;

3. If G⇒nG
′ then G→→ nG

′;
4. If G⇒nG

′ and H⇒nH
′,

then G[x := H]⇒nG
′[x := H ′] and G[α := H]⇒nG

′[α := H ′].
From 2. and 3. we conclude that →→ n is the reflexive and transitive closure of ⇒n.

Next, we define the termG∗ which is obtained fromG by simultaneously reducing
all the existing redexes of the term G.

(∗1n) x∗ ≡ x (∗2n) (λx . t)∗ ≡ λx . t∗ (∗3n) (µα . c)∗ ≡ µα . c∗
(∗4n) α∗ ≡ α (∗5n) (v • E)∗ ≡ v∗ • E∗ (∗6n) (µ̃x . c)∗ ≡ µ̃x . c∗
(∗7n) (〈v ‖ e〉)∗ ≡ 〈v∗ ‖ e∗〉 if 〈v ‖ e〉 6= 〈λx . t1 ‖ v2 • E〉,

〈v ‖ e〉 6= 〈µα . c ‖ E〉 and 〈v ‖ e〉 6= 〈v ‖ µ̃x . c〉
(∗8n) (〈λx . t1 ‖ v2 • E〉)∗ ≡ 〈v∗1 [x := v∗2] ‖ E∗〉
(∗9n) (〈µα . c ‖ E〉)∗ ≡ c∗[α := E∗]
(∗10n) (〈v ‖ µ̃x . c〉)∗ ≡ c∗[x := v∗]

We prove that if G⇒nG
′ then G′⇒nG

∗. Then it is easy to deduce the diamond
property for ⇒n: if G1 n⇐G⇒nG2 then G1⇒nG

′
n⇐G2 for some G′. Finally,

36 SILVIA GHILEZAN AND SILVIA LIKAVEC

from the previous, it follows that λµµ̃T is confluent, i.e., if G1 n←←G→→ nG2 then
G1→→ nG

′
n←←G2 for some G′.

As a step towards a better understanding of denotational semantics of λµµ̃-
calculus, its untyped call-by-value (λµµ̃Q) and call-by-name (λµµ̃T) versions are
interpreted. Untyped λµµ̃-calculus is Turing-complete, hence a naive set-theoretic
approach would not be enough. Continuation semantics of λµµ̃Q and λµµ̃T is given
using the category of negated domains of [138], and Moggi’s Kleisli category over
predomains for the continuation monad [113]. Soundness theorems are given for
both, call-by-value and call-by-name subcalculi, thus relating operational and deno-
tational semantics. A detailed account on the literature on continuation semantics
is also given. Lack of space forbids us to give a detailed account on the semantics
here.

10.2. Strong normalisation in unrestricted λµµ̃-calculus. In Dougherty et
al. [51], we develop a new intersection type system for the λµµ̃-calculus of Curien
and Herbelin [34]. The system in this work improves on earlier type disciplines for
λµµ̃ (including the current authors’ [48, 49]): in addition to characterising the λµµ̃
expressions that are strongly normalising under free (unrestricted) reduction, the
system enjoys the Subject reduction and the Subject expansion properties.

The set Type of raw types is generated from an infinite set TV ar of type-variables
as follows

A,B ::= TV ar | A→ B | A◦ | A ∩B

where A◦ is the dual type of type A. We consider raw types modulo the equality
generated by saying that (i) intersection is associative and commutative and (ii)
for all raw types A, A◦◦ = A,

A type is either a term-type or a coterm-type or the special constant ⊥. A raw
type is a term-type if it is either a type variable, or of the form (A1 → A2) or
(A1 ∩ · · · ∩ Ak), i > 2 for term-types Ai, or of the form D◦ for a coterm-type D.
A raw type is a coterm-type if it is either a coterm variable, or of the form A◦ for
a term-type A or of the form (D1 ∩ · · · ∩ Dk), i > 2 for coterm-types Di. Note
that every coterm-type is a type of the form A◦, where A is a term-type, or an
intersection of such types.

Each type other than ⊥ is uniquely—up to the equivalences mentioned above—of
one of the forms in the table below. Furthermore, for each type T there is a unique
type which is T ◦. If T is a term-type [resp., coterm-type] then T ◦ is a coterm-type
[resp., term-type].

term-types coterm-types
τ τ
(A1 → A2) (A1 → A2)◦

for n > 2 : (A1 ∩A2 ∩ · · · ∩An) (A1 ∩A2 ∩ · · · ∩An)◦

for n > 2 : (A◦1 ∩A◦2 ∩ · · · ∩A◦n)◦ (A◦1 ∩A◦2 ∩ · · · ∩A◦n).

The characterisation of the two columns as being “term-types” or “coterm-types”
holds under the convention that the Ai displayed are all term-types.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 37

We refer to types of the form (A→ B) and (A1∩ · · · ∩Ak)→ B uniformly using
the notation (

⋂
Ai → B), with the understanding that the

⋂
Ai might refer to a

single non-intersection type.
The type assignment systemM∩is given by the typing rules in Figure 17, where

v is any (co)variable.

(ax)
Σ, v : (T1 ∩ · · · ∩ Tk) ` v : Ti

Σ, x : A ` r : B
(→ r)

Σ ` λx.r : A→ B

Σ ` r : Ai i = 1, . . . , k Σ ` e : B◦
(→ e)

Σ ` r • e : ((A1 ∩ · · · ∩Ak)→ B)◦

Σ, α : A◦ ` c : ⊥
(µ)

Σ ` µα.c : A

Σ, x : A ` c : ⊥
(µ̃)

Σ ` µ̃x.c : A◦

Σ ` r : A Σ ` e : A◦
(cut)

Σ ` 〈r ‖ e〉 : ⊥

Figure 17. The typing system M∩

In the system presented here there is no unrestricted ∩-introduction rule which is
significant for the treatments of Subject reduction and Type soundness. Intersection
types can be generated for redexes by the (µ) or (µ̃) rules only. The rationale
behind the new type system is to accept the introduction of an intersection only
at specific positions and specific times when typing an expression, namely when an
arrow is introduced on the left; then a type intersection is only introduced at the
parameter position. Still, the new system types exactly all the strongly normalising
expressions.

Example: The normal form ‘lx.µα.〈x ‖ x • α〉, which corresponds to the normal
form ‘lx.xx in ‘l-calculus, is not typable in λµµ̃ with simple types. It is typable in
the currently introduced system M∩ by ‘lx.µα.〈x ‖ x • α〉 : A ∩ (A→ B)→ B.

Theorem (Subject expansion). Let t and s be arbitrary terms or coterms and let
v be a variable or covariable. Suppose Σ ` t[v := s] : T and suppose that s is
typable in context Σ. Then there is a type D = (D1 ∩ · · · ∩Dk), k > 1, such that

Σ ` s : Di for each i and Σ, v : D ` t : T.

Theorem (Main result). A λµµ̃ term is strongly normalising if and only if it is
typable in M∩.

It is straightforward to prove that strong normalisation implies typeability using
the fact that normal forms are typeable.

To prove strong normalisation under free reduction for typable expressions is
more challenging. The difficulty using a traditional reducibility (or “candidates”)

38 SILVIA GHILEZAN AND SILVIA LIKAVEC

argument arises from the critical pairs 〈µ‘a.c ‖ µ̃x.d〉. Since neither of the expres-
sions here can be identified as the preferred redex one cannot define candidates by
induction on the structure of types.

The “symmetric candidates” technique in [6, 121] uses a fixed-point technique
to define the candidates and suffices to prove strong normalisation for simply-typed
λµµ̃, but the interaction between intersection types and symmetric candidates is
technically problematic.

In order to prove that typeable expressions are SN we first construct pairs (R,E)
given by two non-empty sets T ⊆ Λr and C ⊆ Λe. The pair (R,E) is stable if for
every r ∈ R and every e ∈ E, the command 〈r ‖ e〉 is SN. A pair (R,E) is saturated
if

• whenever µ‘a.c satisfies ∀e ∈ E, c[α := e] is SN then µ‘a.c ∈ R, and
• whenever µ̃x.c satisfies ∀r ∈ R, c[x := r] is SN then µ̃x.c ∈ E.

A pair (R,E) is simple if no term in R is of the form µ‘a.c and no coterm in E
is of the form µ̃x.c.

We show that if the original pair is stable and simple, then we may always
construct the saturated, stable extension. To achieve this we define the maps:
Φr : 2Λe → 2Λr and Φe : 2Λr → 2Λe by

Φr(Y) = {r | r is of the form µα.c and ∀e ∈ Y, c[α := e] is SN}
∪ {r | r is simple and ∀e ∈ Y, 〈r ‖ e〉 is SN}

Φe(X) = {e | e is of the form µ̃x.c and ∀r ∈ X, c[x := r] is SN}
∪ {e | e is simple and ∀r ∈ X, 〈r ‖ e〉 is SN.}

Since each of Φe and Φr is antimonotone, the maps (Φr ◦ Φe) : Λr → Λr and
(Φe ◦Φr) : Λe → Λe are monotone, so each of these maps has a complete lattice of
fixed points, ordered by set inclusion.

We define different saturated pairs to interpret types depending on whether the
type to be interpreted is (i) an arrow-type or its dual or (ii) an intersection or its
dual.

If R is a simple set of SN terms let R↑ be the least fixed point of (Φr ◦Φe) with
the property that R ⊆ R↑. Analogously, E↑ is the least fixed point of (Φe ◦ Φr)
such that E ⊆ E↑.

For interpreting the types that are intersections or their duals, we use the fact
that the collection of fixed points of (Φr ◦ Φe) (and that of (Φe ◦ Φr)) carries its
own lattice structure under inclusion. We need the following definitions.

• Let Fix(Φr◦Φe) be the set of fixed points of the operator (Φr ◦ Φe). If
R1, . . . , Rk are fixed points of (Φr ◦Φe), let (R1f . . .fRk) denote the meet
of these elements in the lattice Fix(Φr◦Φe).
• Let Fix(Φe◦Φr) be the set of fixed points of the operator (Φe ◦ Φr). Let

(E1 f . . .f Ek) denote the meet of fixed points of (Φe ◦ Φr).
Interpretation of types For each type T we define the set JT K, maintaining

the invariant that when T is a term-type then JT K is a fixed point of (Φr ◦Φe) (set

COMPUTATIONAL INTERPRETATIONS OF LOGICS 39

of terms) and when T is a coterm-type then JT K is a fixed point of (Φe ◦ Φr) (set
of coterms).

• When T is ⊥ then JT K is the set of SN commands.
• When T is a type variable we set R to be the set of term variables, then

construct the pair (R↑,Φe(R↑)). We then take JT K to be R↑ and JT ◦K to
be Φe(R↑).

• Suppose T is (
⋂
Ai → B). Set E to be {r • e | ∀i, r ∈ JAiK and e ∈ JB◦K}

then construct the pair (Φr(E↑), E↑). We then take JT K to be Φr(E↑) and
JT ◦K to be (E↑).

• When T is (A1∩A2 · · ·∩An), n > 2, we take JT K to be (JA1Kf . . .fJAnK)
and then take JT ◦K to be Φe(JT K).

• When T is (A◦1∩A◦2 · · ·∩A◦n)◦, n > 2, we take JT ◦K to be (JA◦1Kf. . .fJA◦nK)
and then take JT K to be Φr(JT ◦K).

The following collects the information we need to prove Type soundness.

(1)
(2) For each type T , JT K is a set of SN (co)terms. J(

⋂
Ai → B)◦K ⊇ {r • e |

∀i, r ∈ JAiK and e ∈ JB◦K}.
(3) (λx.b) ∈ J(

⋂
Ai → B)K if for all r such that ∀i, r ∈ JAiK we have b[x := r] ∈

JBK.
(4) (µ‘a.c) ∈ JAK if for all e ∈ JA◦K we have c[‘a := e] SN. Similarly, (µ̃x.c) ∈

JA◦K if for all r ∈ JAK we have c[x := r] SN.
(5) J(T1 ∩ · · · ∩ Tk)K ⊆ (JTiK ∩ · · · ∩ JTkK).

Theorem (Type soundness). If expression t is typable with type T then t is in JT K.

Since each JT K consists of SN expressions Type soundness implies that all typable
expressions are SN.

General consideration of symmetry led us in [48, 49] to consider intersection and
union types in symmetric λ-calculi. These papers characterised strong normali-
sation for call-by-name and call-by-value restrictions of the λµµ̃-calculus, whereas
the results in this work apply to unrestricted reduction. We might argue that if
a term has type A ∩ B, meaning that it denotes values which inhabit both A and
B, then it can interact with any continuation that can receive an A-value or a
B-value: such a continuation will naturally be expected to have the type A ∪ B.
But any type that can be the type of a variable can be the type of a coterm (via
the µ̃-construction) and any type that can be the type of a covariable can be the
type of a term (via the µ-construction). This would suggest having intersections
and unions for terms and continuations. It is well-known [119, 7] that the presence
of union types causes difficulties for the Subject reduction property; unfortunately
our attempt to recover Subject reduction in [48] was in error, as was pointed out
to us by Hugo Herbelin [91]. Hence, this work only takes into account intersection
types. The use of an explicit involution operator allows us to record the relation-
ship between an intersection (A ∩ B) and its dual type (A ∩ B)◦. The “classical”
nature of the underlying logic is reflected in the “double-negation”.

40 SILVIA GHILEZAN AND SILVIA LIKAVEC

10.3. Dual calculus. Wadler’s Dual calculus was introduced in [147, 148] as a
term calculus which corresponds to classical sequent logic. In Dougherty et al. [52],
we investigate some syntactic properties of Wadler’s Dual calculus and establish
some of the key properties of the underlying reduction.

We give now the syntax and reduction rules of Wadler’s Dual calculus (although
in our slightly altered notation). We distinguish three syntactic categories: terms,
coterms, and statements. Terms yield values, while coterms consume values. A
statement is a cut of a term against a coterm.

If r, q range over the set Λr of terms, e, f range over the set Λe of coterms,
and c ranges over statements, then the syntax of the Dual calculus is given by the
following:

Term: r, q ::= x | 〈r, q〉 | 〈r〉inl | 〈r〉inr | [e]not | µα . c
Coterm: e, f ::= α | [e, f] | fst[e] | snd[e] | not〈r〉 | µ̃x . c
Command: c ::= L r • e M

where x ranges over a set of term variables VarR, 〈r, q〉 is a pair, 〈r〉inl (〈r〉inr) is
an injection on the left (right) of the sum, [e]not is a complement of a coterm, and
µα . c is a covariable abstraction. Next, α ranges over a set of covariables VarL,
[e, f] is a case, fst[e] (snd[e]) is a projection from the left (right) of a product, not〈r〉
is a complement of a term, and µ̃x . c is a variable abstraction. Finally L r • e M
is a cut. The term variables can be bound by µ-abstraction, whereas the coterm
variables can be bound by µ̃-abstraction. The sets of free term and coterm variables,
FvR and FvL, are defined as usual, respecting Barendregt’s convention [10] that no
variable can be both, bound and free, in the expression.

The reduction rules for an unrestricted calculus are given in Figure 18.

(βµ̃) L r • µ̃x . c M → c[x := r]
(βµ) L µα . c • e M → c[α := e]
(β∧) L 〈r, q〉 • fst[e] M → L r • e M
(β∧) L 〈r, q〉 • snd[e] M → L q • e M
(β∨) L 〈r〉inl • [e, f] M → L r • e M
(β∨) L 〈r〉inr • [e, f] M → L r • f M
(β¬) L [e]not • not〈r〉 M → L r • e M

Figure 18. Reduction rules for the Dual calculus

The basic system is not confluent, inheriting the well-known anomaly of classical
cut-elimination. Wadler recovers confluence by restricting to reduction strategies
corresponding to (either of) the call-by-value or call-by-name disciplines.

The two subcalculi DualR and DualL are obtained by giving the priority to (µ̃)
redexes or to (µ) redexes, respectively. DualR is defined by refining the reduction
rule (βµ) as follows

L µα.c • e M→ c[α := e] provided e is a coterm not of the form µ̃x.c′

COMPUTATIONAL INTERPRETATIONS OF LOGICS 41

and DualL is defined similarly by refining the reduction rule (βµ̃) as follows

L r • µ̃x . c M→ c[x := r] provided r is a term not of the form µ‘a.c′.

We show that once the “critical pair” in the reduction system is removed by
giving priority to either the “left” or to the “right” reductions, confluence holds in
both the typed and untyped versions of the term calculus. Although the critical
pair can be disambiguated in two ways, the proof we give dualises to yield conflu-
ence results for each system. The proof is an application of Takahashi’s parallel
reductions technique [142], analogous to the one used in [107] and with details of
the proves given in [106].

A complementary perspective to that of considering the Dual calculus as term-
assignment to logic proofs is that of viewing sequent proofs as typing derivations
for raw expressions. The set Type of types corresponds to the logical connectives;
for the Dual calculus the set of types is given by closing a set of base types X under
conjunction, disjunction, and negation

A,B ::= X | A ∧B | A ∨B | ¬A.

Type bases have two components, the antecedent a set of bindings of the form
Γ = x1 : A1, . . . , xn : An, and the succedent of the form ∆ = α1 : B1, . . . , αk : Bk,
where xi, αj are distinct for all i = 1, . . . , n and j = 1, . . . , k. The judgements of
the type system are given by the following:

Γ ` ∆,
�� ��r : A

�� ��e : A , Γ ` ∆ c : (Γ ` ∆)

where Γ is the antecedent and ∆ is the succedent. The first judgement is the typing
for a term, the second is the typing for a coterm and the third one is the typing for
a statement. The box denotes a distinguished output or input, i.e., a place where
the computation will continue or where it happened before. The type assignment
system for the Dual calculus, introduced by Wadler [147, 148], is given in Figure
10.3.

We prove strong normalisation (SN) for unrestricted reduction of typed terms,
including expansion rules capturing extensionality. The proof is a variation on the
“semantical” method of reducibility, where types are interpreted as pairs of sets of
terms. Our proof technique uses a fixed-point construction similar to that in [6]
but the technique is considerably simplified.

The approach is similar to the one given for [51] so we just present the details that
differ. The pairs are defined analogously, as well as the notion of stable, saturated,
and simple pairs.

We can always expand a pair to be saturated. Also if the original pair is stable
and simple, then we may always construct the saturated, stable extension.

We define the following constructions on pairs, where script letters denote pairs,
and if P is a pair, PR and PL denote its component sets of terms and coterms.

Let P and Q be pairs.
• The pair (P fQ) is given by:

– (P fQ)
R

= {〈r1, r2〉 | r1 ∈ PR, r2 ∈ QR}
– (P fQ)

L
= {fst[e] | e ∈ PL} ∪ {snd[e] | e ∈ QL}.

42 SILVIA GHILEZAN AND SILVIA LIKAVEC

(a
x
R

)
Γ
,x

:A
`

∆
,

� �
� �

x
:A

(a
x
L

)
� �

� �
α

:A
,

Γ
`
α

:A
,∆

� �
� �

e
:A

,
Γ
`

∆
� �

� �
fs

t[
e]

:A
∧
B
,

Γ
`

∆

� �
� �

e
:B

,
Γ
`

∆
(∧
L

)
� �

� �
sn

d[
e]

:A
∧
B
,

Γ
`

∆

Γ
`

∆
,

� �
� �

r
:A

Γ
`

∆
,

� �
� �

q
:B

(∧
R

)
Γ
`

∆
,

� �
� �

〈r
,
q〉

:A
∧
B

� �
� �

e
:A

,
Γ
`

∆
� �

� �
f

:B
,

Γ
`

∆
(∨
L

)
� �

� �
[e
,
f

]:
A
∨
B
,

Γ
`

∆

Γ
`

∆
,

� �
� �

r
:A

Γ
`

∆
,

� �
� �

〈r
〉in

l:
A
∨
B

Γ
`

∆
,

� �
� �

r
:B

(∨
R

)
Γ
`

∆
,

� �
� �

〈r
〉in

r
:A
∨
B

� �
� �

e
:A

,
Γ
`

∆
(¬
R

)
Γ
`

∆
,

� �
� �

[e
]n

ot
:¬
A

Γ
`

∆
,

� �
� �

r
:A

(¬
L

)
� �

� �
no

t〈
r〉

:¬
A
,

Γ
`

∆

c
:

(Γ
`
α

:A
,∆

)
(µ

)
Γ
`

∆
,

� �
� �

µ
α
.c

:A

c
:

(Γ
,x

:A
`

∆
)

(µ̃
)

� �
� �

µ̃
x
.c

:A
,

Γ
`

∆

Γ
`

∆
,

� �
� �

r
:A

� �
� �

e
:A

,
Γ
`

∆
(c
u
t)

L
r
•
e

M
:

(Γ
`

∆
)

F
ig

u
r
e

1
9
.

T
yp

e
sy

st
em

fo
r

th
e

D
ua

l
ca

lc
ul

us

COMPUTATIONAL INTERPRETATIONS OF LOGICS 43

• The pair (P gQ) is given by:
– (P gQ)

R
= {〈r〉inl | r ∈ PR} ∪ {〈r〉inr | r ∈ QR}

– (P gQ)L = {[e1, e2] | e1 ∈ PL. e2 ∈ QL}.
• The pair P◦ is given by:

– (P◦)
R

= {[e]not | e ∈ PL}
– (P◦)

L
= {not〈r〉 | r ∈ PR}.

Each of (PfQ), (PgQ), and P◦ is simple and we show that if P and Q are stable
pairs, then (P fQ), (P gQ), and P◦ are each stable.

The type-indexed family of pairs S = {ST | T ∈ Type} is defined as follows,
which is our notion of reducibility candidates for the Dual calculus:

• When T is a base type, ST is any stable saturated extension of (VarR,VarL).
• SA∧B is any stable saturated extension of (SA f SB).
• SA∨B is any stable saturated extension of (SA g SB).
• S¬A is any stable saturated extension of (SA)◦.

Next we prove that typeable terms and coterms lie in the candidates S , i.e., if
term r is typeable with type A then r is in SAR and if coterm e is typeable with
type A then e is in SAL . Since SAR and SAL consist of SN expressions, it follows that
typeable terms and coterms are SN. If t = c is a typeable statement then it suffices
to observe that, taking ‘a to be any covariable not occurring in c, the term µ‘a.c
is typeable. This proves the strong normalisation of all typeable expressions of the
calculus.

10.4. Symmetric calculus. Another interesting calculus expressing a computa-
tional interpretation of classical logic is the Symmetric Lambda Calculus of Bar-
banera and Berardi [6], which was originally used to extract the constructive con-
tent of classical proofs. In Dougherty et al. [50] we explore the use of intersection
types for symmetric proof calculi. More specifically we characterise termination in
the (propositional version of) the Symmetric Lambda Calculus of Barbanera and
Berardi [6].

The syntax of λsym expressions is given by the following:

t := x | 〈t1, t2〉 | σ1(t), | σ2(t), | λx.c | (t1 ∗ t2).

We depart from [6] in that we treat the operator ∗ as syntactically commutative.
The reduction rules of the calculus are

(λx.b ∗ a)→ b[x := a] (〈t1, t2〉 ∗ σi(u))→ 〈ti, u〉
λx.(b ∗ x)→ b if x not free in b.

The set Type of raw types is generated from an infinite set TV ar of type-variables
as follows

A,B ::= TV ar | A ∧B | A ∨B | A⊥ | A ∩B.

We consider raw types modulo the equations

A⊥⊥ = A (A ∧B)⊥ = A⊥ ∨B⊥ (A ∨B)⊥ = A⊥ ∧B⊥.

44 SILVIA GHILEZAN AND SILVIA LIKAVEC

A type is either an equivalence class modulo these equations or the special type
⊥. Note that by orienting the equations above left-to-right each type has a normal
form, in which the (·)⊥ operator is applied only to type variables or intersections.
It is then easy to see that each type other than ⊥ is uniquely of one of the following
forms (where τ is a type variable):

τ τ⊥ (A1 ∧ · · · ∧An) (A1 ∨ · · · ∨An) (A1 ∩ · · · ∩An) (A1 ∩ · · · ∩An)⊥.

The type assignment system B is given by the typing rules in Figure 20.

(ax)
Σ, x : (T1 ∩ · · · ∩ Tk) ` x : Ti

Σ ` t1 : A1 Σ ` t2 : A2
(∧)

Σ ` 〈t1, t2〉 : A1 ∧A2

Σ ` t : Ai
(∨)

Σ ` σi(t) : A1 ∨A2

Σ, x : A ` c :⊥
(⊥)

Σ ` λx.c : A⊥
Σ ` p : A Σ ` q : A⊥

(cut)
Σ ` (p ∗ q) :⊥

Figure 20. Typing rules of the system B

The symmetry in classical calculi blocks a straightforward adaptation of the tra-
ditional reducibility technique which uses the fact that function types are “higher”
in a natural sense than argument types, permitting semantic definitions to proceed
by induction on types. In this paper we adapt the symmetric candidates technique
to the intersection-types setting. As we can see, this technique applies generally to
all of the symmetric proof-calculi we have investigated, including the λµµ̃-calculus
of Curien and Herbelin [34, 51], and the Dual calculus of Wadler [147, 148].

The key to the symmetric candidates technique is to interpret types in certain
families of saturated sets which are closed under inverse β-reduction. The problem
in the intersection types setting arises since in standard semantics of intersection
types, the interpretation of an intersection type (A ∩ B) is the intersection of the
interpretations of A and B and in general intersections of saturated sets are not
saturated,

A consequence of this fact is that the standard typing rule for intersection-
introduction is not sound. So our type system has an intersection-elimination rule
only. This is not a problem since intersection-introduction is not needed for char-
acterising termination. In the absence of intersection-introduction, terms receive a
type which is an intersection by double-negation elimination.

Theorem (Main result). A λsym term is terminating if and only if it is typable
in B.

The direction “every terminating term is typable” follows the standard pattern
from traditional λ-calculus where the standard intersection-introduction typing rule
is not needed.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 45

The proof that every typable term is terminating is analogous to the one given
for [51] and [52]. We only briefly account for the differences.

We consider pairs {X0, X1} which are stable if for every r ∈ X0 and every e ∈ X1,
the command (r ∗ e) is terminating. They are saturated if for each i,

whenever λx.c satisfies: ∀e ∈ Xi, c[x := e] is terminating, then λx.c ∈ X1−i.

An expression is simple if it is not a ‘l-abstraction; a set X is simple if each term
in X is simple.

We define the map Φ : 2Λ → 2Λ by

Φ(X) = {e | e is of the form λx.c and ∀r ∈ X, c[x := r] is terminating}
∪ {e | e is simple and ∀r ∈ X, (r ∗ e) is terminating}.

If X 6= ∅ then Φ(X) is a set of terminating terms and if X ⊆ SN then all
variables are in Φ(X). Φ is antimonotone, hence (Φ◦Φ) = Φ2 is monotone and has
a complete lattice of fixed points, ordered by set inclusion.

If X is a simple set of terminating terms we denote by X↑ the least fixed point
of Φ2 with the property that X ⊆ X↑. Furthermore, let FixΦ2 be the set of fixed
points of the operator Φ2. If R1, . . . , Rk are fixed points of Φ2, let (R1 f . . .fRk)
denote the meet of these elements in the lattice FixΦ2 .

Interpretation of types For each type T we define the set JT K as follows.

(1) When T is ⊥ then JT K is the set of terminating terms.
(2) When T is a type variable we set R to be the set of term variables, then

construct the pair (R↑,Φ(R↑). We then take JT K to be R↑ and JT⊥K to be
Φ(R↑).

(3) Suppose T is (A1∧A2). Set R to be {〈t1, t2〉 | ti ∈ JAiK, i = 1, 2}. We then
take JT K to be (R↑) and JT⊥K = JA1

⊥ ∨A2
⊥K to be Φ(R↑).

(4) When T is (A1∩A2 · · ·∩An), n > 2, we take JT K to be (JA1Kf . . .fJAnK)
and then take JT⊥K to be Φ(JT K).

Note that the interpretation JA1 ∨A2K of a disjunction-type is determined in part 3
above since any type B1 ∨B2 is the Dual of B1

⊥ ∧B2
⊥.

We prove the following, which is the key for proving the Type soundnes.

(1) JT K is a set of terminating terms.
(2) JA1 ∧A2K ⊇ {〈t1, t2〉 | ti ∈ JAiK, i = 1, 2}.
(3) JA1 ∨A2K ⊇ {σ1(p) | p ∈ JA1K} ∪ {σ2(p) | p ∈ JA2K}.
(4) (λx.c) ∈ JAK if for all e ∈ JA⊥K we have c[x := e] terminates.
(5) J(A1 ∩ · · · ∩Ak)K ⊆ (JA1K ∩ · · · ∩ JAkK).

Since each JT K consists of terminating expressions the following theorem implies
that all typable expressions are terminating.

Theorem (Type soundness). If expression t is typable with type T then t ∈ JT K.

11. Application in programming language theory

11.1. Functional languages.

46 SILVIA GHILEZAN AND SILVIA LIKAVEC

. λ-calculus The basic concept of programming languages is the concept of a func-
tion, more precisely of intensional (or computational) function considered as a
composition of computational steps, i.e., as algorithms (or methods). A universal
model of computational functions is Church’s λ-calculus [27]. λ-calculus as a simple
language is very convenient to describe the semantics of programming languages
(it is even used as a core for the languages Lisp, Algol, Scheme, ML, Haskell, etc).

The λ-calculus exists in basically two main flavours: call-by-name (of which
Haskell implements the call-by-need variant) and call-by-value (as in Scheme, ML,
C, Java, etc). Call-by-name has been extensively studied (see e.g., Barendregt [10],
Krivine [101]) and call-by-value reasonably well too.
. Classical λ-calculus The λµ-calculus is an extension of λ-calculus with an operator
similar to the call-cc operator that can be found in Scheme and ML. It also models
weaker operators, such as break and return in C and Java.

The λµ-calculus is the prototypical formulation of a classical λ-calculus. As λ-
calculus, λµ-calculus exists in call-by-name and call-by-value variants, the latter
being a rather intricate structure to study [60, 129].

The λµµ̃-calculus [34] is an improvement over λµ-calculus. It is an elegant
calculus that exhibits different forms of symmetries. One of them is a symmetry
between call-by-name and call-by-value which allows to significantly reduce the
syntactic complexity of the call-by-value calculus compared to λµ-calculus.
. Call-by-value and call-by-name delimited continuation Historically, delimited con-
trol came with ad hoc operators for composing continuations: Felleisen [59] had a
calculus that included a control operator control a delimiter prompt (denoted by F
and #, respectively); Danvy and Filinski [36] had an operator shift to compose
continuations and an operator reset to delimit them (these were also written S
and < >). Control operators are connected to classical logic, as first investigated
by Griffin [90].

From [64], it is known that shift and reset are equivalent to the combination
of Scheme’s call-cc, Felleisen’s abort and reset, and hence equivalent to C and
reset. From [25], it is known that control and prompt are also equivalent to shift
and reset, in spite that control is semantically more complex to study than C or
shift. The simplicity of the semantics of shift together with its relevance for
some programming applications contributed to set shift as a reference in delimited
control. And this is so in spite (it seems that) it has never been studied until now
as part of a dedicated λ-calculus of delimited control.

As shown by Ariola et al. [4], a fine-grained λµt̂p-calculus of delimited control
of the strength of shift and reset is obtained if one starts from λµ-calculus and
extends it first by a notation tp for the “toplevel” continuation, then by a toplevel
delimiter. A possible interpretation for this toplevel delimiter is as a dynamic
binder of tp, what justifies to interpret the resulting call-by-value calculus, called
as an extension of call-by-value λµ-calculus with a single dynamically bound con-
tinuation variable t̂p, where the hat on tp emphasises the dynamic treatment of the
variable. A typical analogy for the dynamic continuation variable here is exception
handling: each call to t̂p is dynamically bound to the closest surrounding t̂p binder,
in exactly the same way as a raised exception is dynamically bound to the closest

COMPUTATIONAL INTERPRETATIONS OF LOGICS 47

surrounding handler. The expressiveness of this calculus was shown by simulating
the operational semantics of shift and reset and of most standard control op-
erators, such as E and A (abort) of Felleisen’s, call/cc (the implementation of
call-cc in Scheme).

S M , µα.[t̂p](M λx.µt̂p.[α]x)
< M > , µt̂p.[t̂p]M
AM , µ .[t̂p]M
C (λk.M) , µαk.[t̂p](M λx.µ .[αk]x)
call/cc (λk.M) , µαk.[αk](M λx.µ .[αk]x)

< M > ili 〈M〉?

SM , µα.[t̂p](M λx.µt̂p.[α]x)

< M > , µt̂p.[t̂p]M

AM , µ .[t̂p]M

C (λk.M) , µαk.[t̂p](M λx.µ .[αk]x)

call/cc (λk.M) , µαk.[αk](M λx.µ .[αk]x)

Herbelin and Ghilezan [94] proposed an approach to call-by-name delimited con-
trol. They devised a call-by-name variant of λµt̂p, for Ariola et al’s call-by-value
calculus of delimited control [4].

Continuation-passing-style semantics is given by a CPS transformation of the
λµt̂p into λ-calculus.

x∗ , x

(λx.M)∗ , λ(x, k).M∗ k
(M N)∗ , λk.M∗ (N∗, k)
(µα.c)∗ , λkα.c

∗

([α]M)∗ , M∗ kα
(µt̂p.c)

∗
, c∗

([t̂p]M)
∗
, M∗

Figure 21. Call-by-name CPS translation of λµt̂p

We present the behaviour of call-by-name λµt̂p on standard examples that uses
delimited control. We consider the example of list traversal that is used to empha-
sise the differences between Felleisen’s operator F and shift . We extend λµt̂p with
a fixpoint operator, list constructors and a list destructor:

M,N ::= . . . | νx.M | [] |M ::N
| ifM is x::y thenM elseM

48 SILVIA GHILEZAN AND SILVIA LIKAVEC

and we extend call-by-name reduction with the rules

νx.M → M [x := νx.M]
if [] is x::y thenM2 elseM1 → M1

ifM ::N is x::y thenM2 elseM1 → M2[x := M][y := N]
if µα.c is x::y thenM2 elseM1 →

µα.c[α := [α] (if � is x::y thenM2 elseM1)] .

In informal ML syntax, the example is the following
let traverse l = let rec visit l = match l with

| [] -> []
| a::l’ -> visit (shift (fun k -> a :: k l’))

in reset (visit l) in traverse [1;2;3]

Translated into Λµ, it gives

v (n1::n2::n3::[])

where v is νf .(λl.if l is a::l′ then f (µα.a::[α]l′) else []). Translated into λµt̂p, v
is

νf .(λl.if l is a::l′ then f (µα.[t̂p]a::µt̂p.[α]l′) else []).

Let ε be an arbitrary continuation distinct from t̂p. We write li for ni:: . . . ::n3::[].
We list the steps of the reduction of [ε](v l1):

[ε]v l1
→ [ε](λl.if l is a::l′ then v (µα.a::[α]l′) else []) l1
→ [ε]if l1 is a::l′ then v (µα.a::[α]l′) else [])
→ [ε]v (µα.n1::[α]l2)
→→ if (µα.n1::[α]l2) is a::l′ then v (µα.a::[α]l′) else []
→ [ε]µα.n1::[α](if l2 is a::l′ then v (µα.a::[α]l′) else [])
→ n1::[ε](if l2 is a::l′ then v (µα.a::[α]l′) else [])
→ n1::[ε](v (µα.n2::[α]l3))
→→ n1::[ε](µα.n2::[α](v l3))
→→ n1::n2::[ε](v l3)
→→ n1::n2::[ε](µα.n3::[α](v []))
→→ n1::n2::n3::[ε](v [])
→→ n1::n2::n3::[ε][]

Otherwise said, the list traversal program copies its argument and shifts its
continuation to the tail of the list.

11.2. Object-oriented languages. The aim of the following works was to give the
basis for designing a calculus that combines class-based features with object-based
ones. We propose two extensions of the “Core Calculus of Classes and Mixins”
of [22], one with higher-order, composable mixins, the second one with incomplete
objects.

Mixins [24] are subclass definitions parameterised over a superclass and were
introduced as an alternative to some forms of multiple inheritance. A mixin can

COMPUTATIONAL INTERPRETATIONS OF LOGICS 49

be seen as a function that, given one class as an argument, produces a subclass, by
adding and/or overriding certain sets of methods.

The calculus proposed in Bettini et al. [13, 14] extends the core calculus of classes
and mixins of [22] with higher-order mixins. In this extension a mixin can: (i) be
applied to a class to create a fully-fledged subclass; (ii) be composed with another
mixin to obtain yet another mixin with more functionalities. In what we believe is
quite a general framework, we give directions for designing a programming language
equipped with higher-order mixins, although our study is not based on any actual
object-oriented language.

In the calculus proposed in Bettini et al. [18, 17, 16, 15] we extend the core
calculus of classes and mixins of [22] with incomplete objects. In addition to stan-
dard class instantiation, it is also possible to instantiate mixins thus obtaining
incomplete objects.

Incomplete objects can be completed in two ways: (i) via method addition,
(ii) via object composition, that composes an incomplete object with a complete

one that contains all the required methods. When a method is added, it becomes an
effective component of the host object, meaning that the methods of the host object
may invoke it, but also the new added method can use any of its sibling methods.
The type system ensures that all method additions and object compositions are
type safe and that only “complete” methods are invoked on objects. This way the
type information at the mixin level is fully exploited, obtaining a “tamed” and safe
object-based calculus.

The metatheory of both extensions is studied in Likavec [106]. In particular, the
soundness property is proved, to guarantee the absence of run-time ”message-not-
understood” errors.

In addition, in [18] the calculus is endowed with width subtyping on complete ob-
jects, which provides enhanced flexibility while avoiding possible conflicts between
method names.

50 SILVIA GHILEZAN AND SILVIA LIKAVEC

Part 3 – Related work

. Related work on computational interpretation of logic The λµ-calculus of Parigot [117]
embodies a Curry–Howard correspondence for classical natural deduction. It was
introduced in call-by-name style, followed by a call-by-value variant, proposed by
Ong and Stewart [116].

Herbelin [92] proposed the first “sequent” λ-calculus, named λ̄, for which bi-
jective correspondence between normal simply typed terms and cut-free proofs of
the appropriate restriction of the Gentzen’s LJ was obtained. He considered a
λ-calculus with an explicit operator of substitution and substitution propagation
rules. Each cut-elimination step corresponds to β-reduction, a substitution propa-
gation or concatenation. However, this bijection failed to extend to sequent calculus
with cuts.

After that, intuicionistic sequent λ-calculi were proposed by several authors,
Barendregt and Ghilezan [12], Dyckhoff and Pinto [55], Espirito Santo and Pinto [58],
among others.

The λµµ̃-calculus of Curien and Herbelin [34] provides a symmetric computa-
tional interpretation of classical sequent style logic. Expressions in λµµ̃ represent
derivations in the sequent calculus proof system and reduction reflects the process
of cut-elimination. This calculus provides an environment for a more fine-grained
analysis of calculations within languages with control operators. Since its intro-
duction, Curien and Herbelin’s calculus has had a strong influence on the further
understanding between calculi with control operators and classical logic (see for
example [3, 2, 147, 148]).

In the calculus of Urban and Bierman [143, 144] derivations correspond exactly
to cut elimination.

This calculus inspired Lengrand’s λξ in [103] and further led to the development
of X calculus of van Bakel et al. [5], and van Bakel and Lescanne [146]. In this work,
a calculus which interprets directly the implicational sequent logic is proposed as a
language in which many kinds of other calculi can be implemented, from λ-calculus
to λµµ̃ through a calculus of explicit substitution and λµ.

Wadler’s dual calculus [147, 148] corresponds to Gentzen’s classical sequent cal-
culus. Conjunction, disjunction, and negation are primitive, whereas implication is
defined in terms of the other connectives.

One of the most recently proposed systems is λGtz-calculus, developed by Espirito
Santo [56], whose simply typed version corresponds to the sequent calculus for
intuicionistic implicational logic.

Prior to Curien and Herbelin’s λµµ̃ [34] several term-assignment systems for
sequent calculus were proposed as a tool for studying the process of cut-elimination
[122, 12, 143]. In these systems—with the exception of the one in [143]—expressions
do not unambiguously encode sequent derivations.

The Symmetric Lambda Calculus of Barbanera and Berardi [6], although not
based on sequent calculus, belongs in the tradition of exploiting the symmetries
found in classical logic, in their case with the goal of extracting constructive content
from classical proofs.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 51

. Related work on strong normalisation Barbanera and Berardi [6] proved SN for
their calculus using a “symmetric candidates” technique; Urban and Bierman [143]
adapted their technique to prove SN for their sequent-based system. Lengrand [103]
shows how simply-typed λµµ̃ and the calculus of Urban and Bierman [143] are
mutually interpretable, so that the strong normalisation proof of the latter calculus
yields another proof of strong normalisation for simply-typed λµµ̃. Polonovski [121]
presents a proof of SN for λµµ̃ with explicit substitutions using the symmetric
candidates idea of Barbanera and Berardi [6]. Pym and Ritter [125] identify two
forms of disjunction for Parigot’s λµ-calculus [117]; they prove strong normalisation
for λµν-calculus (λµ-calculus extended with such disjunction). David and Nour [37]
give an arithmetical proof of strong normalisation for a symmetric λµ-calculus.

The larger context of related research includes a wealth of work in logic and
programming languages. In the 1980’s and early 1990’s Reynolds explored the
role that intersection types can play in a practical programming language (see for
example the report [127] on the language Forsythe).
. Related work on continuation semantics Continuation-passing-style (cps) trans-
lations were introduced by Fischer and Reynolds in [65] and [126] for the call-by-
value λ-calculus, whereas a call-by-name variant was introduced by Plotkin in [120].
Moggi gave a semantic version of a call-by-value cps translation in his study of no-
tions of computation in [113]. Lafont [102] introduced a cps translation of the
call-by-name λC-calculus [61, 62] to a fragment of λ-calculus that corresponds to
the ¬,∧-fragment of the intuitionistic logic. Hence, continuation semantics can be
seen as a generalization of the double negation rule from logic, in a sense that cps
translation is a transformation on terms which, when observed on types, corre-
sponds to a double negation translation.

As early as 1989 Filinsky [63] explored the notion that the reduction strategies
call-by-value and call-by-name could be dual to each other in the presence of contin-
uations. Filinski defined a symmetric λ-calculus in which values and continuations
comprised distinct syntactic sorts and whose denotational semantics expressed the
call-by-name vs call-by-value duality in a precise categorical sense.

Categorical semantics for both, call-by-name and call-by-value versions of Par-
igot’s λµ-calculus [117] with disjunction types was given by Selinger in [133]. In
this work the notion of control category is formally introduced and formalised as
an extension of cartesian closed category with premonoidal structure. It is showed
that the call-by-name λµ-calculus forms an internal language for control categories,
whereas the call-by-value λµ-calculus forms an internal language for co-control
categories. The opposite of the call-by-name model is shown to be equivalent to
the call-by-value model in the presence of product and disjunction types. Hofmann
and Streicher presented categorical continuation models for the call-by-name λµ-
calculus in [96] and showed the completeness.

Lengrand gave categorical semantics of the typed λµµ̃-calculus and the λξ-
calculus (implicational fragment of the classical sequent calculus LK) in [103].

52 SILVIA GHILEZAN AND SILVIA LIKAVEC

Ong [115] defined a class of categorical models for the call-by-name λµ-calculus
based on fibrations. This model was later extended for two forms of disjunction by
Pym and Ritter in [125].

References

[1] R. M. Amadio and P.-L. Curien, Domains and lambda-calculi, Cambridge University Press,
Cambridge, 1998.

[2] Z. M. Ariola, H. Herbelin, and A. Sabry, A type-theoretic foundation of continuations and

prompts; in: Proc. 9th Internat. Conf. on Functional Programming ICFP ’04, pp 40–53,
2004.

[3] Z. M. Ariola and H. Herbelin, Minimal classical logic and control operators; in: Proc. Annual

International Colloquium on Automata, Languages and Programming ICALP ’03, Lect.
Notes Comput. Sci. 2719, Springer-Verlag, 2003, pp. 871–885.

[4] Z. M. Ariola, H. Herbelin, and A. Sabry, A type-theoretic foundation of delimited continu-

ations, High.-Order Symb. Comput. 2007, to appear.
[5] S. v. Bakel, S. Lengrand, and P. Lescanne, The language X : circuits, computations and

classical logic; in: Proc. 9th Italian Conf. on Theoretical Computer Science ICTCS ’05,

Lect. Notes Comput. Sci. 3701, Springer-Verlag, 2005, pp. 81–96.
[6] F. Barbanera and S. Berardi, A symmetric lambda calculus for classical program extraction,

Inf. Comput. 125(2):103–117, 1996.
[7] F. Barbanera, M. Dezani-Ciancaglini, and U. de’ Liguoro, Intersection and union types:

syntax and semantics, Inf. Comput. 119(2):202–230, 1995.

[8] F. Barbanera, M. Dezani-Ciancaglini, and U. de’Liguoro, Intersection and union types:
Syntax and semantics, Inf. Comput. 119(2):202–230, 1995.

[9] H. P. Barendregt, Lambda calculi with types; in: S. Abramsky, D. Gabbay, and T. Maibaum,

editors, Handbook of Logic in Computer Science, pp. 117–309 Oxford University Press,
Oxford, 1992.

[10] H. P. Barendregt, The Lambda Calculus: its Syntax and Semantics, revised edition, North-

Holland, Amsterdam, 1984.
[11] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini, A filter lambda model and the

completeness of type assignment, J. Symb. Log. 48(4):931–940 (1984), 1983.

[12] H. P. Barendregt and S. Ghilezan, Lambda terms for natural deduction, sequent calculus
and cut-elimination, J. Funct. Program. 10(1):121–134, 2000.

[13] L. Bettini, V. Bono, and S. Likavec, A core calculus of higher-order mixins and classes; in:
Proc. Workshop Types for Proofs and Programs TYPES ’03 (Selected Papers), Lect. Notes

Comput. Sci. 3085, pp. 83–98, Springer-Verlag, 2004.

[14] L. Bettini, V. Bono, and S. Likavec, A Core Calculus of Higher-Order Mixins and Classes;
in: Proc. 19th Annual ACM Symposium on Applied Computing, SAC ’04, pages 1508–1509

ACM Press, 2004.

[15] L. Bettini, V. Bono, and S. Likavec, A core calculus of mixin-based incomplete objects; in:
Proc. 11th International Workshop on Foundations of Object-Oriented Languages, FOOL

’04, pp. 29–41, 2004.

[16] L. Bettini, V. Bono, and S. Likavec, A core calculus of mixins and incomplete objects;
in: Proc. Conf. on Object-Oriented Programming Systems, Languages, and Applications

OOPSLA ’04, pp. 208–209, ACM Press, 2004.

[17] L. Bettini, V. Bono, and S. Likavec, Safe and Flexible Objects; in: Proc. 20th Annual ACM
Symposium on Applied Computing SAC ’05, pp. 1258–1263, ACM Press, 2005.

[18] L. Bettini, V. Bono, and S. Likavec, Safe and Flexible Objects with Subtyping, J. Object
Technology 4(10), 2005, Special Issue on “The 20th ACM SAC - March 2005”.

[19] G. M. Bierman, A computational interpretation of the λµ-calculus; in: Proc. Symp. on
Mathematical Foundations of Computer Science MFCS ’98, Lect. Notes Comput. Sci. 1450,
pp. 336–345 Springer-Verlag, 1998.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 53

[20] C. Böhm, Alcune proprieta delle forme β − η-normali nel λ − k-calcolo, Publ. Inst. Appl.

Calc. 696:1–19, 1968.

[21] C. Böhm and M. Dezani-Ciancaglini, λ-terms as total or partial functions on normal forms,
in: λ-calculus and Computer Science Theory, Lect. Notes Comput. Sci. 37, pp. 96–121,

Springer-Verlag 1975.
[22] V. Bono, A. Patel, and V. Shmatikov, A core calculus of classes and mixins, in: Proc

European Conf. on Object-Oriented Programming ECOOP ’99, Lect. Notes Comput. Sci.

1628, pp. 43–66. Springer-Verlag, 1999.
[23] V. Bono, B. Venneri, and L. Bettini, A typed lambda calculus with intersection types, Theor.

Comput. Sci. 398(1-3):95–113, 2008.

[24] G. Bracha and W. Cook, Mixin-based inheritance, in: Proc. Conf. on Object-Oriented
Programming Systems, Languages, and Applications OOPSLA ’90, pp. 303–311, 1990.

[25] C.-c. Shan, Shift to control, in: Proc. 5th Workshop on Scheme and Functional Program-

ming, pp. 99–107, 2004.
[26] S. Carlier and J. B. Wells, Type inference with expansion variables and intersection types in

system E and an exact correspondence with beta-reduction, in: Proc. 6th Conf. on Principles

and Practice of Declarative Programming PPDP ’04, pp. 132–143, ACM, 2004.
[27] A. Church, A set of postulates for the foundation of logic, Ann. Math. II.33:346–366, 1932.

[28] A. Church, A formulation of the simple theory of types, J. Symb. Log. 5:56–68, 1940.
[29] M. Coppo and M. Dezani-Ciancaglini, A new type-assignment for lambda terms, Archiv

Math. Logik 19:139–156, 1978.

[30] M. Coppo and M. Dezani-Ciancaglini, An extension of the basic functionality theory for the
λ-calculus, Notre Dame J. Formal Logic 21(4):685–693, 1980.

[31] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri, Principal type schemes and λ-calculus

semantics; in: J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Com-
binatory Logic, Lambda Calculus and Formalism, pp. 535–560, Academic Press, London,

1980.

[32] P.-L. Curien, Abstract machines, control, and sequents, in: Applied Semantics, Interna-
tional Summer School, APPSEM 2000, Advanced Lectures, Lect. Notes Comput. Sci. 2395,

pp. 123–136, Springer-Verlag, 2002.

[33] P.-L. Curien, Symmetry and interactivity in programming, Bull. Symb. Log. 9(2):169–180,
2003.

[34] P.-L. Curien and H. Herbelin, The duality of computation; in: Proc. 5th Internat. Conf. on

Functional Programming, ICFP’00, pp. 233–243, Montreal, Canada, 2000; ACM Press.
[35] H. B. Curry, J. R. Hindley, and J. P. Seldin, Combinatory Logic, volume II, North-Holland,

Amsterdam, 1972.
[36] O. Danvy and A. Filinski, A functional abstraction of typed contexts, Technical Report

89/12, DIKU, University of Copenhagen, Copenhagen, Denmark, Aug. 1989.

[37] R. David and K. Nour, Arithmetical proofs of strong normalization results for the symmetric
λµ-calculus; in: Proc. Typed Lambda Calculus and Application, TLCA ’05, Lect. Notes

Comput. Sci. 3461, pp. 162–178, Springer-Verlag, 2005.

[38] R. David and W. Py, Lambda-mu-calculus and Böhm’s theorem, J. Symb. Log. 66(1):407–
413, 2001.

[39] P. de Groote, A CPS-translation of the λµ-calculus, in: Proc. of the Colloquium on Trees in

Algebra and Programming, CAAP ’94, Lect. Notes Comput. Sci. 787, pp. 85–99, Springer-
Verlag, 1994.

[40] P. de Groote, On the relation between the λµ-calculus and the syntactic theory of sequential

control ; in: Proc. Internat. Conf. on Logic Programming and Automated Reasoning, LPAR
’94, Lect. Notes Comput. Sci. 822, pp. 31–43, Springer-Verlag, 1994.

[41] M. Dezani-Ciancaglini and S. Ghilezan, A lambda model characterizing computational be-
haviours of terms, in: Proc. International Workshop on Rewriting in Proof and Computa-

tion RPC ’01, pp. 100–119, 2001.

54 SILVIA GHILEZAN AND SILVIA LIKAVEC

[42] M. Dezani-Ciancaglini and S. Ghilezan, A behavioural lambda model, Schedae Informaticae

Universitas Iagelonica, 12:35–47, 2003.

[43] M. Dezani-Ciancaglini and S. Ghilezan, Two behavioural lambda models; in: Proc. Workshop
Types for Proofs and Programs TYPES ’02, Lect. Notes Comput. Sci. 2646, pp. 127–147,

Springer-Verlag, 2003.
[44] M. Dezani-Ciancaglini, S. Ghilezan, and S. Likavec, Behavioural inverse limit models, Theor.

Comput. Sci. 316(1–3):49–74, 2004.

[45] M. Dezani-Ciancaglini, S. Ghilezan, and B. Venneri, The “relevance” of intersection and
union types, Notre Dame J. Formal Logic, 38(2):246–269, 1997.

[46] M. Dezani-Ciancaglini and E. Giovannetti, From Böhm teorem to observational equivalence:

an informal account ; in: Proc. Böhm theorem: applications to Computer Science Theory –
BOTH ’01, Electr. Notes Theor. Comput. Sci. 50(2), 2001.

[47] M. Dezani-Ciancaglini, F. Honsell, and Y. Motohama, Compositional characterization of

λ-terms using intersection types; in: Proc. Mathematical Foundations of Computer Science
MFCS ’00, Lect. Notes Comput. Sci. 1893, pp. 304–314, Springer-Verlag, 2000.

[48] D. Dougherty, S. Ghilezan, and P. Lescanne, Characterizing strong normalization in a lan-

guage with control operators; in: Proc. 6th Conf. on Principles and Practice of Declarative
Programming PPDP ’04, pp. 155–166, ACM Press, 2004.

[49] D. Dougherty, S. Ghilezan, and P. Lescanne, Intersection and union types in the λµeµ-
calculus; in: Proc. Workshop on Intersection Types and Related Systems ITRS ’04, Electr.

Notes Theor. Comput. Sci. 136:153–172, 2005.

[50] D. Dougherty, S. Ghilezan, and P. Lescanne, A general technique for analyzing termination
in symmetric proof calculi ; in: Proc. 9th International Workshop on Termination WST

’07, 2007.

[51] D. Dougherty, S. Ghilezan, and P. Lescanne, Characterizing strong normalization in the
Curien-Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage; Theor.

Comput. Sci. 398:114–128, 2008.

[52] D. Dougherty, S. Ghilezan, P. Lescanne, and S. Likavec, Strong normalization of the dual
classical sequent calculus; in: Proc. 12th Internat. Conf. on Logic for Programming, Arti-

ficial Intelligence, and Reasoning LPAR ’05, Lect. Notes Comput. Sci. 3835, pp. 169–183

Springer-Verlag, 2005.
[53] K. Došen and Z. Petrić, The typed Böhm teorem; in: Proc. Böhm theorem: applications

to Computer Science Theory – BOTH ’01, Electr. Notes Theor. Comput. Sci. 50(2), p.13,
2001.

[54] J. Dunfield and F. Pfenning, Type assignment for intersections and unions in call-by-value

languages; in: Proc. 6th Internat. Conf. on Foundations of Software Science and Computa-
tion Structures FOSSACS ’03, Lect. Notes Comput. Sci. 2620, pp. 250–266, Springer-Verlag,

2003.

[55] R. Dyckhoff and L. Pinto, Cut-elimination and a permutation-free sequent calculus for
intuitionistic logic, Studia Logica 60(1):107–118, 1998.

[56] J. Esṕırito Santo, Completing Herbelin’s programme; in: Proc. Conf. on Typed Lambda

Calculus and Applications TLCA ’07, Lect. Notes Comput. Sci. 4583, pp. 118–132, Springer-
Verlag, 2007.

[57] J. Esṕırito Santo, S. Ghilezan, and J. Ivetić, Characterising strongly normalising intuitionis-

tic sequent terms, in: Proc. Workshop Types for Proofs and Programs TYPES ’07 (Selected
Papers), Lect. Notes Comput. Sci. 4941, pp. 85-99 Springer-Verlag, 2007.

[58] J. Esṕırito Santo and L. Pinto, Permutative conversions in intuitionistic multiary sequent
calculi with cuts; in: Proc. Conf. on Typed Lambda Calculus and Applications TLCA ’03,

Lect. Notes Comput. Sci.2071, pp. 286–300, , Springer-Verlag, 2003.

[59] M. Felleisen, The theory and practice of first-class prompts, in: Proc. 15th ACM Symp. on
Principles of Programming Languages POPL ’88, pp. 180–190. ACM, 1988.

[60] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, Reasoning with continuations,
in: Proc. 1st Symposium on Logic in Computer Science LICS ’86, pp. 131–141, 1986.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 55

[61] M. Felleisen, D. P. Friedman, E. Kohlbecker, and B. F. Duba, A syntactic theory of sequential

control, Theor. Comput. Sci. 52(3):205–237, 1987.

[62] M. Felleisen and R. Hieb, The revised report on the syntactic theories of sequential control
and state, Theor. Comput. Sci., 103(2):235–271, 1992,

[63] A. Filinski, Declarative continuations and categorical duality, Master’s thesis, DIKU, Com-
puter Science Department, University of Copenhagen, 1989, DIKU Rapport 89/11.

[64] A. Filinski, Representing monads, in: Proc. 21st ACM Symp. on Principles of Programming

Languages, POPL’94, pp. 446–457 ACM, 1994.
[65] M. Fischer, Lambda calculus schemata, in: Proc. ACM Conf. on Proving Assertions Ab out

Programs ’72, pp. 104–109 ACM Press, 1972.

[66] G. Frege, Begriffsschrift, a formula language, modeled upon that of arithmetic, for pure
thought, Halle, 1879; reprinted in Jan van Heijenoort, editor, From Frege to Gödel, A

Sourcebook in Mathematical Logic, 1879–1931, Harvard University Press, 1967.

[67] J. H. Gallier, Typing untyped λ-terms, or reducibility strikes again!, Ann. Pure Appl. Logic
91:231–270, 1998.

[68] J. H. Gallier, Constructive logics part i: A tutorial on proof systems and typed lambda-

calculi, Theor. Comput. Sci. 110(2):249–339, 1993.
[69] G. Gentzen, Unterschungen über das logische Schliessen, Math Z. 39 (1935), 176–210; in:

M. Szabo, editor, Collected papers of Gerhard Gentzen, pp. 68–131, North-Holland, 1969.
[70] S. Ghilezan, Inhabitation in intersection and union type assignment systems, J. Log. Com-

put. 3(6):671–685, 1993.

[71] S. Ghilezan, Application of typed lambda calculi in the untyped lambda calculus, in: Proc.
Logical Foundations of Computer Science LFCS ’04, Lect. Notes Comput. Sci. 813, pp. 129–

139, 1994.

[72] S. Ghilezan, Generalized finitness of developments in typed lambda calculi, J. Autom. Lang.
Comb., 1(4):247–258, 1996.

[73] S. Ghilezan, Strong normalization and typability with intersection types, Notre Dame J.

Formal Logic 37(1):44–52, 1996.
[74] S. Ghilezan, Cut elimination in the simply typed lambda calculus, in: Proc. 1st Panhellenic

Logic Symposium PLS ’97, pp. 21–24, 1997.

[75] S. Ghilezan, Natural deduction and sequent typed lambda calculus, Novi Sad J. Math. 29:209–
220, 1999.

[76] S. Ghilezan, Topologies in lambda calculus, in: Proc. 2nd Panhellenic Logic Symposium

PLS ’99, pp. 102–106, 1999.
[77] S. Ghilezan, Intersection types and topologies and lambda calculus, in: ICALP Satellite

Workshops, pp. 303–304, 2000.
[78] S. Ghilezan, Full intersection types and topologies in lambda calculus, J. Comput. Sys. Sci.

62(1):1–14, 2001.

[79] S. Ghilezan, Types and confluence in lambda calculus, in: Proc. 3rd Panhellenic Logic
Symposium PLS ’01, 2001.

[80] S. Ghilezan, Terms for natural deduction, sequent calculus and cut elimination in classical

logic; in: Reflections on Type Theory, Lambda Calculus, and the Mind – Essays Dedicated
to Henk Barendregt on the Occasion of his 60th Birthday, 2007.

[81] S. Ghilezan and J. Ivetić, Intersection types for λgtz calculus, Publ. Inst. Math., Nouv. Sér.

82(96):85–91, 2007.
[82] S. Ghilezan and V. Kuncak, Confluence of untyped lambda calculus via simple types, in:

Proc. Italian Conf. on Theoretical Computer Science ICTCS ’01, Lect. Notes Comput. Sci.

2202, pp. 38–49, , Springer-Verlag, 2001.
[83] S. Ghilezan and V. Kunčak, Reducibility method in simply typed lambda calculus, Novi Sad

J. Math. 31:27–32, 2001.
[84] S. Ghilezan, V. Kunčak, and S. Likavec, Reducibility method for termination properties

of typed lambda terms, in: Proc. 5th International Workshop on Termination WST ’01,
pp. 14–16, 2001.

56 SILVIA GHILEZAN AND SILVIA LIKAVEC

[85] S. Ghilezan and P. Lescanne, Classical proofs, typed processes and intersection types, in:

Proc. Workshop Types for Proofs and Programs TYPES ’03 (Selected Papers), Lect. Notes

Comput. Sci. 3085, pp. 226–241, Springer-Verlag, 2004.
[86] S. Ghilezan and S. Likavec, Reducibility: A Ubiquitous Method in Lambda Calculus with

Intersection Types, in: Proc. Workshop on Intersection Types and Related Systems ITRS
’02, Electr. Notes Theor. Comput. Sci. 70, 2003.

[87] S. Ghilezan and S. Likavec, Extensions of the reducibility method, in: Proc. 4th Panhellenic

Logic Symposium PLS 04, pp. 107–112, 2004.
[88] J.-Y. Girard, Une extension de l’interprétation de Gödel à l’analyse, et son application à

l’elimination des coupures dans l’analyse et la théorie des types, in: Proc. 2nd Scandinavian

Logic Symposium, pp. 63–92. North-Holland, Amsterdam, 1971.
[89] J.-Y. Girard, A new constrcutive logic: classical logic, Math. Struct. Comput. Sci. 1(3):255–

296, 1991.

[90] T. Griffin, A formulae-as-types notion of control, in: Proc. 19th Annual ACM Symp. on
Principles Of Programming Languages, POPL ’90, pp. 47–58, ACM Press, 1990.

[91] H. Herbelin, Private communication.

[92] H. Herbelin, A lambda calculus structure isomorphic to Gentzen-style sequent calculus struc-
ture, in: Proc. Conf. on Computer Science Logic, CSL ’94, Lect. Notes Comput. Sci. 933,

pp. 61–75, Springer-Verlag, 1995.
[93] H. Herbelin, Séquents qu’on calcule : de l’interprétation du calcul des séquents comme

calcul de λ-termes et comme calcul de stratégies gagnantes, Thèse, Université Paris 7 1995.

[94] H. Herbelin and S. Ghilezan, An approach to call-by-name delimited continuations, in: Proc.
35th Annual ACM Symp. on Principles of Programming Languages POPL ’08, pp. 383–394,

SIGPLAN Notices 43, ACM Press, 2008.

[95] J. R. Hindley, Coppo–Dezani types do not correspond to propositional logic, Theor. Comput.
Sci. 28(1-2):235–236, 1984.

[96] M. Hofmann and T. Streicher, Completeness of continuation models for λµ-calculus, Inf.

Comput. 179(2):332–355, 2002.
[97] W. A. Howard, The formulas-as-types notion of construction, in: J. P. Seldin and J. R. Hind-

ley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formal-

ism, pp. 479–490, Academic Press, 1980.
[98] F. Joachimski and R. Matthes, Standardization and confluence for ΛJ , in: Proc. Rewrit-

ing Techniques and Applications RTA ’00, Lect. Notes Comput. Sci. 1833, pp. 141–155,

Springer-Verlag, 2000.
[99] A. J. Kfoury and J. B. Wells, Principality and type inference for intersection types using

expansion variables, Theor. Comput. Sci. 311(1-3):1–70, 2004.
[100] G. Koletsos, Church-Rosser theorem for typed functionals, J. Symb. Log. 50:782–790, 1985.

[101] J.-L. Krivine, Lambda-calcul types et modèles, Masson, Paris, 1990.

[102] Y. Lafont, Negation versus implication, Draft, 1991.
[103] S. Lengrand, Call-by-value, call-by-name, and strong normalization for the classical sequent

calculus, Electr. Notes Theor. Comput. Sci. 86, Elsevier, 2003.

[104] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel, Inter-
section types for explicit substitutions, Inf. Comput. 189(1):17–42, 2004.

[105] S. Likavec, Reducibility method for λ calculus with intersection types, Master’s thesis, Uni-

versity of Novi Sad, Serbia, 2005.
[106] S. Likavec, Types for object oriented and functional programming languages, PhD thesis,

Università di Torino, Italy and ENS Lyon, France, 2005.

[107] S. Likavec and P. Lescanne, On untyped Curien-Herbelin calculus, in: Proc. 1st Workshop
on Classical Logic and Computation CLaC ’06, 2006.

[108] L. Liquori and S. Ronchi Della Rocca, Intersection-types à la church, Inf. Comput.
205(9):1371–1386, 2007.

[109] R. Matthes, Characterizing strongly normalizing terms of a calculus with generalized appli-
cations via intersection types, in: ICALP Satellite Workshops, pp. 339–354, 2000.

COMPUTATIONAL INTERPRETATIONS OF LOGICS 57

[110] G. Mints, Normal forms for sequent derivations, in: P. Odifreddi, editor, Kreiseliana. About

and Around Georg Kreisel, pp. 469–492. A. K. Peters, Wellesley, 1996.

[111] J. C. Mitchell, Type systems for programming languages, in: J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B, pp. 415–431, Elsevier, Amsterdam, 1990.

[112] J. C. Mitchell, Foundation for Programmimg Languages, MIT Press, Boston, 1996.
[113] E. Moggi, Notions of computations and monads, Inf. Comput. 93(1), 1991.

[114] C. R. Murthy, Classical proofs as programs: How, what, and why, in: Constructivity in

Computer Science, Lect. Notes Comput. Sci. 613, pp. 71–88, Springer-Verlag, 1991.
[115] C.-H. L. Ong, A semantic view of classical proofs: type-theoretic, categorical, denotational

characterizations, in: Proc. 11th IEEE Annual Symposium on Logic in Computer Science

LICS ’97, pp. 230–241. IEEE Computer Society Press, 1997.
[116] C.-H. L. Ong and C. A. Stewart, A Curry–Howard foundation for functional computation

with control, in: Proc. 24th ACM Symp. on Principles of Programming Languages POPL

’97, pp. 215–227, 1997.
[117] M. Parigot, An algorithmic interpretation of classical natural deduction, in: Proc. Internat.

Conf. on Logic Programming and Automated Reasoning, LPAR ’92, Lect. Notes Comput.

Sci. 624, pp. 190–201, Springer-Verlag, 1992.
[118] M. Parigot, Proofs of strong normalisation for second order classical natural deduction, J.

Symb. Log. 62(4):1461–1479, 1997.
[119] B. C. Pierce, Programming with intersection types, union types, and polymorphism, Tech-

nical Report CMU-CS-91-106, Carnegie Mellon University, Feb, 1991.

[120] G. D. Plotkin, Call-by-name, call-by-value and the λ-calculus, Theor. Comput. Sci. 1:125–
159, 1975.

[121] E. Polonovski, Strong normalization of λµµ̃-calculus with explicit substitutions, in: Proc.

7th Internat. Conf. on Foundations of Software Science and Computation Structures, FOS-
SACS ’04, Lect. Notes Comput. Sci. 2987, pp. 423–437, Springer-Verlag, 2004.

[122] G. Pottinger, Normalization as homomorphic image of cut-elimination, Ann. Math. Log.

12:323–357, 1977.
[123] G. Pottinger, A type assignment for the strongly normalizable λ-terms, in: J. P. Seldin and

J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus

and Formalism, pp. 561–577, Academic Press, London, 1980.
[124] D. Prawitz, Natural Deduction, Almqvist and Wiksell, 1965.

[125] D. Pym and E. Ritter, On the semantics of classical disjunction, J. Pure Appl. Algebra

159:315–338, 2001.
[126] J. C. Reynolds, Definitional interpreters for higher-order programming languages, in: Proc.

ACM Annual Conference, pp. 717–740, ACM Press, 1972.
[127] J. C. Reynolds, Design of the programming language Forsythe, Report CMU-CS-96-146,

Carnegie Mellon University, Pittsburgh, Pennsylvania, 1996.

[128] K. Rose, Explicit substitutions: Tutorial and survey, Technical Report LS-96-3, BRICS,
1996.

[129] A. Sabry and M. Felleisen, Reasoning about programs in continuation-passing style, Lisp

and Symbolic Computation 6(3-4):289–360, 1993.
[130] P. Sallé, Une extension de la théorie des types en lambda-calcul, in: Proc. 5th Internat.

Conf. on Automata, Languages and Programming ICALP ’79, Lect. Notes Comput. Sci.

62, pp. 398–410, Springer-Verlag, 1978.
[131] A. Saurin, Separation with streams in the λµ-calculus, in: Proc. 20th Annual IEEE Symp.

on Logic in Computer Science LICS ’05, pp. 356–365 IEEE Computer Society Press, 2005.

[132] D. S. Scott, Continuous lattices, in: Toposes, Algebraic Geometry and Logic, Lect. Notes
Math. 274, pp. 97–136, Springer-Verlag, 1972.

[133] P. Selinger, Control categories and duality: On the categorical semantics of the lambda-mu
calculus, Math. Struct. Comput. Sci. 11(2):207–260, 2001.

58 SILVIA GHILEZAN AND SILVIA LIKAVEC

[134] A. K. Simpson, Categorical completeness results for simply typed lambda calculus, in: Proc.

Conf. on Typed Lambda Calculus and Applications TLCA ’95, Lect. Notes Comput. Sci.

902, pp. 414–427, Springer-Verlag, 1995.
[135] M. H. Sørensen and P. Urzyczyn, Lectures on the Curry–Howard isomorphism, Studies in

Logic and the Foundations of Mathematics, 149. Elsevier, 2006.
[136] R. Statman, Completeness, invariance and λ-definability, J. Symb. Log. 47(1):17–26, 1982.

[137] R. Statman, Logical relations and the typed λ-calculus, Inf. Control 65:85–97, 1985.

[138] T. Streicher and B. Reus, Classical logic, continutation semantics and abstract machines,
J. Funct. Program. 8(6):543–572, 1998.

[139] G. J. Sussman and G. L. S. Jr, Scheme: A interpreter for extended lambda calculus, High.-

Order Symb. Comput. 11(4):405–439, 1998.
[140] W. W. Tait, Intensional interpretations of functionals of finite type I, J. Symb. Log. 32:198–

212, 1967.

[141] W. W. Tait, A realizability interpretation of the theory of species, in: Logic Colloquium,
Lect. Notes Math. 453, pp. 240–251, Springer-Verlag, 1975.

[142] M. Takahashi, Parallel reduction in λ-calculus, Inf. Comput. 118:120–127, 1995.

[143] C. Urban and G. M. Bierman, Strong normalisation of cut-elimination in classical logic, in:
Proc. Conf. on Typed Lambda Calculus and Applications, TLCA ’99, Lect. Notes Comput.

Sci. 1581, pp. 365–380 Springer-Verlag, 1999.
[144] C. Urban and G. M. Bierman, Strong normalisation of cut-elimination in classical logic,

Fund. Inf. 45(1-2):123–155, 2001.

[145] S. van Bakel, Intersection type assignment systems, Theor. Comput. Sci. 38(2):246–269,
1997.

[146] S. van Bakel and P. Lescanne, Computation with classical sequents, Math. Struct. Comput.

Sci. 18(3):555–609, 2008.
[147] P. Wadler, Call-by-value is dual to call-by-name, in: Proc. 8th Internat. Conf. on Functional

Programming ICFP ’03, pp. 189–201, 2003.

[148] P. Wadler, Call-by-value is dual to call-by-name, reloaded ; in: Proc. Conf. on Rewriting
Technics and Applications RTA ’05, Lect. Notes Comput. Sci. 3467, pp. 185–203, 2005.

