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ABSTRACT

The authors introduce new measures of semantic similarity and relatedness for ontological concepts, based 
on the properties associated to them. They consider two concepts similar if, for some properties they have in 
common, they also have the same values assigned to these properties. On the other hand, the authors consider 
two concepts related if they have the same values assigned to different properties. These measures are used in 
the propagation of user interest values in ontology-based user models to other similar or related concepts in 
the domain. The authors tested their algorithm in event recommendation domain and in recipe domain and 
showed that property-based propagation based on similarity outperforms the standard edge-based propaga-
tion. Adding relatedness as a criterion for propagation improves diversity without sacrificing accuracy. In 
addition, assigning a certain relevance to each property improves the accuracy of recommendation. Finally, 
the property-based spreading activation is effective for cross-domain recommendation.
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1 INTRODUCTION

Semantic similarity and semantic relatedness are two important concepts, which find their ap-
plication in many areas, from Natural Language Processing (NLP) and Information Retrieval to 
Semantic Web. Semantic similarity usually accounts for common features in concept definitions, 
whereas semantic relatedness takes into account any functional or lexical relation between con-
cepts as well (Hirst & St-Onge, 1998). Usually, semantic similarity considers only subsumption 
relation (mammal-cat), whereas semantic relatedness considers other types of relations, such as 
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hyponymy/hypernymy, meronomy/holonymy, etc., as well as any other kind of functional rela-
tionship or frequent association (cat-milk). Hence, semantic similarity can be seen as a special 
case of semantic relatedness (Resnik, 1995) and is much more difficult to compute.

In this work we look at the similarity and relatedness of concepts in domain ontologies, 
where concepts are distinguished by their position in a taxonomy derived from the ontology 
and by the properties associated to them. Ontologies (Gruber, 1993; Guarino & Poli, 1995) are 
widely adopted to represent and model domain knowledge in web applications, and lot of atten-
tion is paid to the development of new ontology languages and associated reasoning mechanisms. 
Ontological representation of domain objects allows for representing both similarities and dif-
ferences among domain objects as well as generic objects and very specific ones, allowing to 
define uniform classification criteria. Ontologies also include relations among objects and make 
it possible to derive implicit information from explicitly represented knowledge.

Drawing inspiration from Tversky’s work on Features of Similarity (Tversky, 1977), our 
working hypothesis on similarity and relatedness among ontological objects, where objects 
include concepts and their instances, is the following: two objects are similar if they both are 
defined having the same properties with the same values and two objects are related if they 
are defined having the same values for different properties. For example, in the event domain, 
Cooking_course and Dinner are similar concepts since both are defined having the same value 
Restaurant for the property has_venue_type. On the other hand, Football_game has the value 
Sport for the property has_main_argument, whereas Stadium has the same value Sport for a dif-
ferent property is_venue_for. The same happens for instances. For example, the two movies Hair 
and Amadeus are similar since they have the same value Forman for the property has_director, 
whereas the movies Desperately_Seeking_Susan and MTV_Video_Music_Awards are related 
since they have the same value Madonna for the properties has_main_actor and has_singer, 
respectively. Hence, the related objects are somehow connected, even when they are not similar.

We apply this semantic similarity and relatedness measure to the propagation of user interest 
values in ontology-based user models. A user model (Kobsa et al., 2001) is a knowledge structure 
which maintains users’ features (such as demographic features) and users’ attitudes (such as 
interest and knowledge) in the main domain objects. In an ontology-based user model, the user 
interest values are assigned to domain concepts and items as an overlay over a domain ontol-
ogy (Brusilovsky, 2007). In these kinds of user models it is possible to exploit the ontological 
structure in order to propagate user values over ontology objects, starting from a small number 
of initial objects to other similar and related objects, and to incrementally update the user model 
(Cena et al., 2012; IJntema et al., 2010; Sieg et al., 2007).

This propagation of user interests can be seen as a special case of spreading activation 
theory (Salton and Buckley, 1988), since starting from a user interest in one domain object, it 
is possible to propagate this interest to other somehow similar or related objects. For example, 
knowing that a user is interested in the pop singer Madonna, we can reasonably infer user inter-
est also in Pop_music and Music in general (both more general concepts), in Sting (a similar 
instance) but also in the movie Desperately_Seeking_Susan where Madonna plays the main 
role (a related instance). This is particularly useful to solve the cold start problem (Salton and 
McGill, 1984), which happens at the beginning of the interaction when a system does not have 
enough information about users.

Using relatedness in addition to similarity when determining to which domain objects to 
propagate the initial user interest makes it possible to provide the users with the results that can 
be very different from each other (and would be neglected by approaches that rely exclusively 
on semantic similarity), hence helping to solve the diversity problem in recommendation. The 
diversity problem (O’Sullivan et al., 2004) occurs when recommendation results, although similar 
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to the initial object, are also very similar to each other, thus lacking diversity and not providing 
the user with satisfying alternatives. In this sense, relatedness complements similarity, since it 
brings more diversity into recommendation process and provides the user with more serendipitous 
recommendations. However, providing recommendations that are very different from the initial 
user interest can decrease the accuracy of recommendation results.

The motivation for the present research stems from the following goals:

1.  To improve the accuracy of recommendation results obtained by propagation of user interests 
in ontology-based user models;

2.  To improve the diversity of recommendation results obtained by propagation of user interests 
in ontology-based user models, without decreasing the accuracy too much.

In order to reach these goals, we propose to extend the user interests propagation method 
presented in (Cena et al., 2012) with (i) the relevance of properties to improve accuracy and 
(ii) the relatedness among the domain objects, in addition to similarity, to improve diversity.

We tested our method in two domains, namely event recommendation and recipes recommen-
dation, in order to verify the following hypotheses (H4 was not tested in the second evaluation):

H1. Property-based user interest propagation outperforms the classic edge-based user interest 
propagation described in the state of the art (Cena et al., 2011, 2013; Middleton et al., 2004; 
Sieg et al., 2007;);

H2. Assigning a certain weight or relevance to each property brings a significative improvement 
to the accuracy of recommendation derived from the propagation;

H3. Property-based similarity offers good results w.r.t. diversity. In addition, considering re-
latedness in propagation yields a good increment to recommendation diversity, paying a 
relatively low cost in accuracy;

H4. Property-based user interest propagation is particularly effective when propagating user 
interest values across different sub-domains to provide cross-domain recommendation.

Note that our approach using only similarity among objects was tested in a different do-
main (gastronomy) in (Cena et al., 2012). Hence, with respect to (Cena et al., 2012), the main 
contributions of this work are the following:

1.  In addition to property restrictions on classes, cardinality restrictions are taken into account;
2.  Relatedness among objects is fully exploited to improve diversity, as opposed to the approach 

in (Cena et al., 2012) where relatedness was only briefly mentioned;
3.  A novel approach for calculating the relevance of properties was introduced, to improve the 

recommendation accuracy;
4.  The approach for user interest propagation was tested in two additional domains (events 

recommendation and recipes).

The rest of the paper is organised as follows. In Section 2, we turn to ontologies for knowl-
edge representation and give a brief description of the treatment of properties in OWL. In Section 
3 we provide the details of how to calculate the similarity and relatedness between objects in 
the domain ontology, followed by the description of how to detect the relevance of properties 
in Section 4. In Section 5 we describe our user modelling approach and the specific process of 
propagation of user interests in an ontology, based on properties of domain objects. In Section 
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6 we report the evaluation results for the domain of event recommendation and for the domain 
of recipes recommendation. We present the most relevant related work in the field in Section 7. 
Finally, we conclude with some directions for future work in Section 8.

2. BACKGROUND: OWL ONTOLOGIES FOR 

KNOWLEDGE REPRESENTATION

In many different areas, ontologies proved to be indispensable tools for representing domain 
knowledge semantically (Antoniou & van Harmelen, 2008; Allemang & Hendler, 2008), since the 
powerful formalisms which they are based on enable explicit specification of domain elements 
and their properties, hierarchical organization of domain elements, as well as precise description 
of the relationships between them and usage of rigorous reasoning mechanisms. An ontology 
can be seen as a formal, explicit specification of a shared conceptualization (Gruber, 1993). 
One standard formalism for representing ontologies is OWL (http://www.w3.org/TR/owl-ref).

2.1. Properties in OWL

In ontologies expressed in OWL the features of domain elements are expressed using properties. 
There are two kinds of properties in OWL:

1.  Object properties describing relations among individuals and
2.  Data type properties providing relations among individuals and data type values.

Object properties and datatype properties are defined as instances of the built-in OWL classes 
owl:ObjectProperty 

owl:DatatypeProperty, 

To define the characteristics of a property the property axiom is used, most commonly defin-
ing its domain and range. rdfs:domain links a property to a class description, whereas rdfs:range 
links a property to either a class description or a data range. For example:
<owl:ObjectProperty rdf:ID=”has_location”>  

 <rdfs:domain rdf:resource=”#Event”/>  

 <rdfs:range rdf:resource=”#Location”/>  

</owl:ObjectProperty> 

Equivalent properties are defined with owl:equivalentProperty.
Apart from explicitly defining properties for the classes, properties can be used to define 

classes with property restrictions, as we will see in the following section.

2.2. Defining Classes with Property Restrictions

Properties in OWL are used for defining classes with property restrictions. This is done by means 
of local anonymous classes, grouping together all the individuals which satisfy certain restric-
tions on certain properties. In OWL, two kinds of property restrictions can be distinguished:

1.  Value constraints concerning constraints on the range of the property when applied to a 
particular class description and

2.  Cardinality constraints, imposing constraints on the number of values a property can take, 
in the context of a particular class description.
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Value constraints can be defined in the following three ways:

1.  owl:allValuesFrom defines a class for which all the values of the given property are either 
members of the specified class or data values within the specified data range. Not having 
any values for the given property is possible. For example:

<owl:Restriction>  

 <owl:onProperty rdf:resource=”#has_main_actor” />  

 <owl:allValuesFrom rdf:resource=”#Actor” />  

</owl:Restriction> 

 defines an anonymous OWL class of all the individuals for which the has_main_actor 
property only has values of the class Actor. Note that the property does not always have the 
values of this class; rather it is true for individuals belonging to the class extension of the 
anonymous restriction class.

2.  owl:someValuesFrom defines a class for which at least one of the values of the given property 
is either a member of the specified class or a data value within the specified data range. At 
least one value for the given property must exist. Other values for the given property might 
exist. For example:

<owl:Restriction>  

 <owl:onProperty rdf:resource=”#has_main_actor” />  

 <owl:someValuesFrom rdf:resource=”#Singer” />  

</owl:Restriction> 

 defines an anonymous OWL class of all the individuals which have at least one Singer as 
the value of the property has_main_actor.

3.  owl:hasValue defines a class for which the specified property has at least one value se-
mantically equal to the specified value, which can be either an individual or a data value. 
“Semantically equal” datatypes are the ones which have the lexical representation of the 
literals mapped to the same value. “Semantically equal” individuals either have the same 
URI reference or are defined as being the same individuals with owl:sameAs. For example:

<owl:Restriction>  

 <owl:onProperty rdf:resource=”#has_main_actor” />  

 <owl:hasValue rdf:resource=”#Madonna” />  

</owl:Restriction> 

On the other hand, cardinality constraints can be defined in the following three ways:

1.  owl:maxCardinality defines a class which has at most max semantically distinct values for 
the specified property (where max is the value of the cardinality constraint). For example:

<owl:Restriction>  

<owl:onProperty rdf:resource=”#has_number_of_workshops” />  

<owl:maxCardinality rdf:datatype=”&xsd;nonNegativeInteger”>5 </
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owl:maxCardinality>  

</owl:Restriction> 

 describes an anonymous OWL class of individuals that have at most five workshops (for 
example conferences affiliated with 1 − 4 workshops).

2.  owl:minCardinality is defined analogously to owl:maxCardinality, and it defines a class 
which has at least min semantically distinct values for the specified property (where min is 
the value of the cardinality constraint).

3.  owl:cardinality is defined analogously to owl:maxCardinality or owl:minCardinality, defin-
ing the class which has exactly m semantically distinct values (where m is the value of the 
cardinality constraint). It is actually a redundant concept, since it can be defined by using 
the combination of owl:maxCardinality and owl:minCardinality.

So we have seen how to define properties for domain concepts and how to define class 
restrictions using properties in order to describe the concepts in the ontology. We can consider 
each of the concepts in our ontology to have certain properties defined for it. These properties 
further describe the concepts in the ontology and can be used to calculate their mutual similarity.

2.3. Instances and their Properties

Instances in the ontology are defined using individual axioms describing their class member-
ships, individual identities and property values. Instances basically inherit their properties from 
the classes they are instances of. They are related to the classes they belong to directly with the 
rdfs:type relation. Therefore, in OWL instances have a specific value associated to each property. 
For example:
<Concert rdf:ID=”Mozart_for_all”>  

 <has_concert_genre rdf:resource=”#classical”/>  

 <has_composer rdf:resource=”#Mozart”/>  

 <has_director rdf:resource=”#Simon_Rattle”/>  

 <has_location rdf:resource=”#Torino”/>  

 <has_venue rdf:resource=”#”Auditorium”/>  

</Concert> 

3. PROPERTY-BASED SIMILARITY AND 

RELATEDNESS OF DOMAIN OBJECTS

We begin this section with an example which should help illustrate our idea. In an ontology 
describing events, certain concepts can have these properties defined: has_venue, has_main_ar-
gument, has_price.

Consider the following events (instances) from this ontology: Picasso_Exhibition, Exhibi-
tion_from_Botticelli_to_Matisse and Human_Body_Exhibition. All of them have Art as the 
main argument, the first two have Gallery as their venue, whereas the third one has Stadium as 
its venue. Picasso_Exhibition costs 10 euros, Exhibition_from_Botticelli_to_Matisse costs 7 
euros and Human_Body_Exhibition costs 12 euros. If we simply count the properties and their 
corresponding values which certain events have in common, we see that Picasso_Exhibition is 
more similar to Exhibition_from_Botticelli_to_Matisse than to Human_Body_Exhibition, since 
Picasso_Exhibition and Exhibition_from_Botticelli_to_Matisse have two properties in common 
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with the same values, whereas Picasso_Exhibition and Human_Body_Exhibition have only one 
property in common with the same value. But, it can happen that for a certain property, two 
values are given. For example, for Human_Body_Exhibition, the property has tag has three 
values: Nature, Body and Science.

When calculating the property-based similarity of two domain objects 1O  and 2O  we want 
to account for their common and distinctive features. This is possible by using Tversky’s feature-
based model of similarity (Tversky, 1977), where similarity between objects is a function of 
both kinds of features of the objects in question:

α ψ ψ
β ψ ψ γ ψ ψ α ψ ψ

∩
=

+ + ∩
1 2

1 2
1 2 2 1 1 2

( ( ) ( ))( , ) ( ( )\ ( )) ( ( )\ ( )) ( ( ) ( ))T

O O
sim O O

O O O O O O
 (1)

In the above formula ψ ( )O  is the function describing all the relevant features of the object 
O , and α β γ ∈�, , are constants which permit different treatment of the various components. 
When α =1 common features of the two compared objects are given maximal importance and 
for β γ=  non-directional similarity measure is obtained. We will setα β γ= = . We will be 
using the following notation:

• Common features of 1O and 2O : ψ ψ= ∩1 2 1 2( , ) ( ) ( )cf O O O O ,
• Distinctive features of 1O : ψ ψ=1 1 2( ) ( )\ ( )df O O O  and
• Distinctive features of 2O : ψ ψ=2 2 1( ) ( )\ ( )df O O O .

With this notation, taking α β γ= = =1 , the formula (1) becomes:

=
+ +

1 2
1 2

1 2 1 2

( , )( , ) ( ) ( ) ( , )T

cf O O
sim O O

df O df O cf O O
 (2)

In order to calculate these values for domain objects 1O and 2O , we need to calculate for 
each property p, how much it contributes to common features of 1O and 2O , distinctive features 

of 1O  and distinctive features of 2O , respectdively. We denote these values by 
p

cf , 1
p

df  and
2
p

df , and calculate them depending on how different properties are defined for 1O  and 2O . We 
consider equal the properties defined with owl:EquivalentProperty.

3.1. Similarity among Classes Defined as Restrictions

When the classes are defined as property restrictions, it is obvious that the values for the property 
used to define them are limited. Depending on the size of the set of classes which can provide 
possible values for the given property, the effective values for common and distinctive features 
would differ. For example, in the case of restrictions defined with owl:allValuesFrom, all the 
values of the given property are members of the specified class (hence, also of its subclasses), 
in the case of restrictions defined with owl:someValuesFrom at least one of the values of the 
given property is a member of the specified class but other values for the given property might 
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exist and in the case of restrictions defined with owl:hasValue the specified property has at least 
one value semantically equal to the specified value.

In the detailed technical description below, we first consider three kinds of value restriction 
declarations:

• owl:allValuesFrom;
• owl:someValuesFrom;
• owl:hasValue.

Depending on how the restrictions on properties are defined for 1O  and 2O , we distinguish 
the following six cases:

1.  The property p is defined with owl:allValuesFrom for both 1O  and 2O . Let the property p 
be defined for, 1O  with

<owl:allValuesFrom rdf:resource=”# 1A ”>

and for 2O  with
<owl:allValuesFrom rdf:resource=”# 2A ”>.

Let 1a  (resp. 2a ) be the number of subclasses of 1A  (resp. 2A ). If 1A  and 2A  are equal 
classes or declared equivalent with owl:equivalentClass or 1A  is a subclass of 2A  (the case 

when 2A  is a subclass of 1A  is analogous), then =
+1

1
1p

cf
a

. Otherwise, =
+

1

1

1
1p

df
a

 and 

=
+

2

2

1
1p

df
a

.

2.  The property p is defined with owl:someValuesFrom for both 1O  and 2O . Let the property 
p be defined for 1O  with

<owl:someValuesFrom rdf:resource=”# 1B ”>

and for 2O  with
<owl:someValuesFrom rdf:resource=”# 2B ”>.

Let 1b  (resp. 2b ) be the number of subclasses of 1B  (resp. 2B ) and w be the number of 
classes in the whole domain. If 1B  and 2B  are equal classes or declared equivalent with 
owl:equivalentClass or 1B  is a subclass of 2B  (the case when 2B  is a subclass of 1B  is analo-

gous), then =
+1

1
( 1)p

cf
b w

. Otherwise, =
+

1

1

1
( 1)p

df
b w

 and =
+

2

2

1
( 1)p

df
b w

.

3.  The property p is defined with owl:hasValue for both 1O  and 2O . Let the property p be 
defined for 1O  with

<owl:hasValue rdf:resource=”# 1V ”>
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and for 2O  with
<owl:hasValue rdf:resource=”# 2V ”>.

If 1V  and 2V  are the same values or declared equivalent with owl:sameAs, then =1
p

cf . 

Otherwise, =1 1
p

df and =2 1
p

df .

4.  If the property p is defined for 1O  with

<owl:hasValue rdf:resource=”# 3V ”>

and for 2O  with
<owl:allValuesFrom rdf:resource=”# 3A ”>,

3V 3A =1
p

cf 3a 3A =1 1
p

df =
+

2

3

1
1p

df
a

5.  If the property p is defined for 1O  with

<owl:hasValue rdf:resource=”# 4V ”>

and for 2O  with
<owl:someValuesFrom rdf:resource=”# 3B ”>,

4V 3B =1
p

cf 3b 3B   =1 1
p

df   =
+

2

3

1
( 1)p

df
b w

6.  If the property p is defined for 1O  with

<owl:allValuesFrom rdf:resource=”# 4A ”>

and for 2O  with
<owl:someValuesFrom rdf:resource=”# 4B ”>,

4a 4b 4A 4B   =
+ +4 4

1
( 1)( 1)p

cf
a b w

 =
+

1

4

1
1p

df
a

  =
+

2

4

1
( 1)p

df
b w

Further, we consider three kinds of cardinality restriction declarations:

• owl:minCardinality;
• owl:maxCardinality; 
• owl:cardinality. 

We can distinguish the following cases:

1.  If the property p is defined with owl:maxCardinality for both 1O  and 2O , and it has value 

m in 1O  and value n in 2O , where ≤m n , then =
1

p
cf

m
, =1 0

p
df  and = −2

p
df n m . The 

case when ≥m n  is analogous.
2.  If the property p is defined with owl:minCardinality for both 1O  and 2O , the values for 

this restriction would not contribute to common and distinctive features, since each of these 
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restrictions can have infinitely many values. It only contributes to the similarity calculation 
if it is declared together with owl:maxCardinality restriction, which is then the following 
case.

3.  If the property p is defined with owl:cardinality for both 1O  and 2O , and it has value m in 

1O  and value n in 2O , then if =m n , then =1
p

cf . Otherwise, if <m n , then =1 0
p

df  

and = −2
p

df n m . The case when >m n  is analogous.

In the above, the subclass relation should be taken into account, so that for each class we 
account for the property definitions inherited from parent classes.

For classes declared equivalent with owl:equivalentClass we assume their similarity based 
on properties is equal to 1.

3.2. Similarity among Instances

Next, we compare instances of classes by simply comparing the property-value pairs for each 
instance. If the property p has h’ different values in 1O  and h” different values in 2O , and k is 

the number of times 1O  and 2O  have the same value for p, then =
2

' "p

k
cf

h h
, 

−
=1

'
'p

h k
df

h
 

and 
−

=2
"
"p

h k
df

h
.

3.3. Similarity among Classes Defined as Restrictions and Instances

Finally, we look at the procedure for calculating similarity between a class 1O  and an instance 

2O . We distinguish the following cases:

1.  The property p is defined with owl:allValuesFrom for 1O  and has h different values in 2O . 
Let the property p be defined for 1O  with

<owl:allValuesFrom rdf:resource=”# 1A ”>.

If the values in 2O  are not instances of 1A , then =1 2( , ) 0sim O O . Othervise, if 1a  is the 

number of subclasses of 1A , then =
+1 1p

h
cf

a
 and 

+ −
=

+
1 1

1

1
1p

a h
df

a
.

2.  The property p is defined with owl:someValuesFrom for 1O  and has k different values in

2O . Let the property p be defined for 1O  with

<owl:someValuesFrom rdf:resource=”# 1B ”>.

If the values in 2O  are not instances of 1B , then =1 2( , ) 0sim O O . Othervise, if 1b  is the 

number of subclasses of 1B , then =
+1( 1)p

k
cf

b w
 and 

+ −
=

+
1 1

1

1
( 1)p

b k
df

b w
.
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3.  The property p is defined with owl:hasValue for 1O  and has d different values in 2O . Let 
the property p be defined for 1O  with

<owl:hasValue rdf:resource=”# 1V ”>.

If 1V  is not among the d values in 2O , then =1 2( , ) 0sim O O . Othervise, =
1

p
cf

d
 and 

−
=1

1
p

d
df

d
.

Repeating the above process for each property defined for 1O  and 2O  we obtain all com-
mon and distinctive features of 1O  and 2O :

=

=∑1 2
1

( , )
i

k

p

i

cf O O cf  

=

=∑ 1
1

1
( )

i

k

p

i

df O df  

=

=∑ 2
2

1
( )

i

k

p

i

df O df  

where k is the number of properties defined for 1O  and 2O . Finally, we calculate the similarity 
between two objects 1O  and 2O  using the formula (2):

=
+ +

1 2
1 2

1 2 1 2

( , )( , ) ( ) ( ) ( , )T

cf O O
sim O O

df O df O cf O O
 

This method for property-based similarity of objects was first introduced in (Cena et al., 
2012), but only for value restrictions. It was further developed to include cardinality restrictions 
and applied to categorization of shapes in (Likavec, 2013).

3.4. Property-based Relatedness of Domain Objects

At the beginning of this section we dealt with similarity among domain objects, which can be 
used to find the objects similar to each other, i.e. the objects which have the same values for 
certain properties. Another concept we want to introduce is that of relatedness which makes it 
possible to find the objects which are in a certain way related to each other, but not necessarily 
similar. Our hypothesis is that, in order to calculate the property-based relatedness of domain 
objects, we can apply similar reasoning as for calculating similarity, but considering the val-
ues that are the same, for different properties. For example, if for a certain event the property 
has_main_actor has value Madonna and for another event the property has_director has value 
Madonna, these two events might not be similar but are definitely related to each other and 
might be of interest for users.
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Hence, the question arises: how to determine the properties which would be used in calcu-
lating relatedness of objects? In some domains, it is certainly possible to use all the properties, 
knowing that if they have common values, this would be enough to relate the corresponding 
objects which have these properties. In more complex realistic domains, it might make sense to 
calculate relatedness only on properties related or connected in a certain way, since considering 
completely unrelated properties would lead to relating very different objects. To do so, it can be 
necessary to group the properties using some criteria, and then calculate the relatedness using 
the properties belonging to the same group.

There are various approaches to this grouping of properties. One possibility is to organise 
the properties into sub-ontologies and then consider properties that have the same ancestor at the 
certain level of generality. For example, in the events domain, one option would be to have the 
property has_performer which has as sub properties has_main actor, has_singer, has_goalkeeper 
etc. Then, the related events would all have the same values for the properties which have has 
performer as the ancestor. Similarly, the properties which are somehow related can be grouped 
together by ontology designers. Another directive would be to not consider the inverse proper-
ties in the same group. Another possibility is to group all the properties with the same domain.

In what follows, we would assume that 1 ,..., s
G G are the groups of related properties. These 

groups can have overlapping properties, i.e. it is possible to find one property in more than one 
group. Note that we might end up having only one group, i.e. all the properties from the domain, 
if we decide not to impose any categorization.

When calculating relatedness of two domain objects 1O  and 2O  for a given group of prop-
erties

i
G , we exclude the pairs where one property has the same values for 1O  and 2O , since 

this case has already been accounted for to calculate their similarity. Then we apply the same 
algorithm used for similarity calculation taking into account all the properties from the group 

i
G . In this way, we find all the common and distinctive features w.r.t. the properties of the group 

i
G rather than w.r.t. a single property. The process is analogous for all other groups 1 ,..., s

G G  if 
present.

Let us denote with 1 2( , )
i
G

rel O O  the value of semantic realatedness of objects 1O  and 2O  

w.r.t. the group =, 1,...,
i
G i s . Then the semantic relatedness of 1O  and 2O  is calculated as a 

sum of all the corresponding relatedness measures:

=

=∑1 2 1 2
1

( , ) ( , )
i

s

G

i

rel O O rel O O . 

3.5. Complexity for the Computation of Similarity/Relatedness Measures

We will show how to determine the complexity of similarity measure computation for two in-
stances 1O  and 2O , the other cases being similar. We will assume that s is the maximum num-
ber of properties defined for an object and n is the maximum number of values for a certain 
property. When calculating the similarity between two instances, we need to calculate common 
features for these two instances, as well as distinctive features for both of them.

Let us consider first the property 
i
p  which two instances 1O  and 2O  have in common. We 

will denote by 1 . [ ]O p i  the property 
i
p  in 1O  and by 2. [ ]O p i  the property 

i
p  in 2O . In order 
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to calculate common features for 
i
p  we need to find the cardinality of intersection of the sets 

which contain the values for 
i
p  for both objects, whereas to calculate the distinct features for 

both we need to find the cardinalities of corresponding set differences. This is illustrated with 
the following code snippet:where V’ is the set of all the values for p in 1O  and V” is the set of 
all the values for p in 2O . We can distinguish three cases:

• The values in V’ and V” are sorted. Then the complexity of calculation of 1 2( , )
p

cf O O  (i.e. 
of the intersection of the two sets) is Θ +( '. ". )V size V size . If n is the maximum number 
of values for a certain property we can conclude that this complexity is ( )O n . The calcula-
tion of 1

1 2( , )
p

df O O  and 2
1 2( , )

p
df O O  has the same complexity.

• The values in V’ and V” are not sorted and we sort them first. Then the complexity is 
( log( ))O n n  for 1 2( , )

p
cf O O , 1

1 2( , )
p

df O O  and 2
1 2( , )

p
df O O .

• The values in V’ and V” are not sorted and we do the above calculation directly. Then the 
complexity is 2( )O n  for 1 2( , )

p
cf O O , 1

1 2( , )
p

df O O  and 2
1 2( , )

p
df O O .

Next, we have to repeat this process for each property p that objects 1O  and 2O  have in 
common. The complexity of finding all the common properties for these two objects isΘ( )s , 
where s is the maximum number of properties defined for an object.

Hence, computing the similarity between these two objects calculates 1 2( , )
p

cf O O , 
1

1 2( , )
p

df O O  and 2
1 2( , )

p
df O O  for all the properties these objects have in common as can be 

seen below (where we assume that the values in V’ and V’’ are sorted, the other two cases being 
analogous):where P’ is the set of all the properties defined for 1O , P’’ is the set of all the prop-
erties defined for 2O  and common is the set of properties 1O  and 2O have in common. Hence 
the final complexity when V’ and V” are sorted is + =( ) ( )O s sn O sn . In case V’ and V” are 
not sorted but we sort them, it is ( log )O sn n  and in case they are not sorted and we calculate 
the common and distinctive features directly, it is 2( )O sn .

Note that normally the values for s and n would not reach high values. It is hard to immagine 
that even one of them would go over 100 since they are the number of properties defined in the 
ontology and the maximum number of values for a certain property.

When calculating relatedness, we group the related properties and then repeat the same 
process as for calculating similarity, with these groups of properties.

Algorithm 1. Calculate CF for property p
1: function calculateCF (O1, O2, propId);
2: V’ = getValues(O1, O1.p[propId]);

3: V” = getValues(O2, O2.p[propId]);

4: k = intersection(V’, V”).size;

5: CF = k2 / V’.size * V”.size;

6: return CF;
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4. RELEVANCE OF PROPERTIES

Not all the features have the same importance in defining a concept in a domain, and this differ-
ent relevance should be taken into account in the similarity computation.

The relevance of properties can be declared a priori by domain experts, as we did in our 
previous work (Cena et al., 2012). This solution is effective, but it may not be very feasible for 
a huge domain. Thus, in this work we wanted an automatic method to determine the relevance 
of properties. We started from the assumption that the relevance of a property can be considered 
as the capacity of the property to determine the similarity between two entities. For example, it 
can be argued that for the concept Book the property has_editor is probably less relevant than 
the property has_author, since two books of the same author would be considered more similar 
than two books of the same editor. Therefore, the relevance factor for has_author should be 
higher then the one for has_editor.

This intuition suggests the following procedure to automatically learn the relevance of 
properties in our ontology (see Algorithm 3).

The algorithm takes as input a collection of items and the domain ontology. It returns a rel-
evance factor in the range [0 − 1] for each property, representing its relevance. First, it computes 
the items similarity by using our similarity measure described in Section 3. Then, it calculates 
the relevance factor for each property as the square of the average similarity between items with 
the same value for that property. For example:
sim(Evita_musical, Evita_movie) = 0.7

sim(Desperately_Seeking_Susan, Evita_movie) = 0.6

sim(Matador, Evita_movie) = 0.5.

All these domain objects have the property has_main_actor with the same value (either pairs 
with value Madonna or pairs with value Antonio_Banderas.) Hence, the average similarity among 
the domain objects which have the property has_actor defined for them is 0.7+0.6+0.5 = 0.6. So 
the relevance factor for the property has_actor is = =2_ 0.6 0.36

has actor
R .

Algorithm 2. Calculate similarity of instances
1: function calculateSimilarity(O1, O2)
2: P’ = getProperties(O1);

3: P” = getProperties(O2);

4: common = intersection(P’, P”); # complexity Θ(s)
5: den = 0;

6: num=0;

7: for all propId in common do
8: CF[propId] = calculateCF(O1, O2, propId); # complexity O(n)

9: DF1[propId] = calculateDF1(O1, O2, propId); # complexity 

O(n)

10: DF2[propId] = calculateDF2(O1, O2, propId); # complexity 

O(n) 11: num += CF[propId];

12: den += CF[propId] + DF1[propId] + DF2[propId]; # complexity

O(3n) = O(n)

13: end for
14: sim = num / den; # complexity O(sn)

15: return sim;
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The square value of the average similarity proved useful in the preliminary tests by assign-
ing a nonlinear bonus to the highest results. Since it is a statistical technique, we should take 
into consideration only the properties for which a good number of pairs share the same value. 
When this is not true, any inference about the relevance is too risky and the property should be 
assigned a neutral relevance factor. For this reason in the prototype we assign to the properties 
with counter[p] < n (with n set empirically to 5) a relevance factor equal to 0.25, which we 
consider as neutral value, since it is equivalent to the relevance value of a property which has 
the same value for items that have an average similarity of 0.5 out of 1.

For example, in the events dataset we used for the evaluation (Section 6), the pairs of events 
which share the same value for the property has_food_type have the average similarity of 0.84, 
and thus, this property will have a relevance factor of = =2_ _ 0.84 0.7

has food type
R . Con-

versely, the pairs which share the same value for the property has_price have the average simi-
larity of 0.7, resulting in relevance factor of =_ 0.49

has price
R . Intuitively, this means that, 

according to a certain sample of users, two events are more similar if they offer the same kind 
of food than if they are in the same price range.

We then consider a relevance factor p
R  for each property p in our Formula 2 for calculat-

ing the mutual similarity between domain objects 1O  and 2O  in order to weight it accordingly 
during the propagation process. Thus, the Formula 2 becomes:

=
+ +

1 2
1 2

1 2 1 2

( , )( , ) ( ) ( ) ( , )
r

r

T r r r

cf O O
sim O O

df O df O cf O O
 

where

Algorithm 3. Learn property relevance
1: function learnPropertyRelevance(items, ontology)
2: for all i,j in items do
3: properties = getProperties(i, j, ontology);

4: for all p in properties do
5: if haveSameValue(p, i, j) then
6: counter[p]++; # increment property p counter

7: sumSim[p]= sumSim[p] + similarity[i][j]); # add the 

similarity to sumSim

8: end if
9: end for
10: end for
11: for all p in properties do
12: relevances[p]= (sumSim[p] / counter[p])^2 ; # compute the

relevance

13: end for
14: return relevances;
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=

=∑1 2
1

( , )
i

k

r

i p

i

cf O O R cf  

=

=∑ 1
1

1
( )

i

k

r

i p

i

df O R df  

=

=∑ 2
2

1
( )

i

k

r

i p

i

df O R df . 

Another approach to calculate the relevance of properties would be to use different techniques 
for similarity calculation such as item to item collaborative filtering approach (CF) (Sarwar et 
al., 2001). In CF the similarity between two items is calculated as cosine similarity between 
user ratings for these two items, whereas in our case it depends on the properties defined for the 
objects in the ontology. We chose not to use a collaborative filtering approach since in a cold 
start phase similarity derived from user ratings would not be feasible: the sparsity of ratings 
would make it impossible to compute the similarity for the majority of pairs of items. As the 
number of ratings grows and therefore the similarity between items becomes more accurate, the 
similarity derived from user ratings could be used in combination with our approach to improve 
the calculation of relevance factors.

5. PROPAGATION OF USER INTERESTS

For propagating user interests in the user models we adopt a slight modification of the approach 
presented in (Cena et al., 2012). The propagation of user interests in the domain ontology al-
lows to infer the missing information about the user preferences, starting from the initial set of 
interest values.

We first give details of how we model users, followed by the key steps of our approach and 
the details of the propagation process.

5.1. User Model

One requirement of our approach is the representation of the domain by means of OWL ontolo-
gies, with explicit specification of the concept properties. The user model contains the values of 
user interest for the objects in the ontology. Thus, the user model is defined as an overlay over 
such an ontology (the so called ontology-based user model (Brusilovsky, 1996)). In this case, 
the ontological user profile is an instance of the domain ontology, with an interest value associ-
ated to each concept or instance. Usually, each node N of the domain ontology is a pair <N, 
I(N)>, where I(N) is the interest value for the object N. In our case, for each object N we have 
instead a quadruplet < >, ( ), ( ), ( )sim rel

S R R
N I N I N I N  where:

• ( )
S
I N  is the sensed interest, derived from the direct feedback for the object N,

• ( )sim

R
I N  is the total interest received from similar objects,

• ( )rel

R
I N  is the total interest received from related objects.
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This solution allows for a great flexibility, since the system can implement different policies 
to combine the three interest values together according to context and user needs. For example, it 
can choose to use a combination of sensed interest and propagated interest from similar objects 
when it is needed to maximize the accuracy of the suggestions, whereas it may prefer to include 
also the propagated interest received from related objects in order to yield higher diversity. 
Section 6 will give more details on the peculiarity of the different combinations of interests. In 
most cases, a solution which combines all these three factors seems to be the most effective.

At the beginning of the interaction the user model is empty and the interest values are inserted 
as soon as the system obtains some feedback from users. The users can provide their interests 
in domain objects by rating them or this interest could be automatically inferred by the systems 
based on users behavior, recording the user actions such as browsing, clicking, etc. However, 
how the user interests are gathered by the system is out of the scope of this paper.

5.2. Propagation Process

We summarize here the key steps of our approach which we then explain in more detail below:

1.  Precompute the similarity and relatedness among all the objects in the ontology (see Sec-
tions 3 and 4).

2.  Register the user feedback for the objects in the ontology (Section 5).
3.  For each object N receiving feedback from user U:

 ◦ Calculate the sensed interest value for N and store it in the user model of U. Sensed 
interest depends on the direct user feedback for the object and the level of the object in 
the conceptual hierarchy derived from the ontology.

 ◦ Calculate the propagated interest value propagated from N to all the objects similar 
and related to it, and update their total interest received from similar objects and total 
interest received from related objects in the user model of U. Propagated interest values 
depend on the original sensed interest of N and on the similarity/relatedness between 
N and the object receiving the propagated value.

 ◦ For each subsequent user feedback, propagate the difference between the newly obtained 
sensed interest value for N and the old one.

The total interest value for object N for a certain user is computed by the combination of 
three values: the sensed interest value ( )

S
I N , the total interest received from similar objects 

( )sim

R
I N  and the total interest received from related objects ( )rel

R
I N . We explain below how 

to compute all the above interest values.

5.2.1. Sensed Interest Value

When a user provides a feedback for a certain object in the domain, we first calculate the sensed 
interest for that object, which captures the object’s reaction or sensitivity to the user feedback. 
Sensed interest for the object N depends on its position in the conceptual hierarchy derived from 
the domain ontology and the feedback provided by the user and is calculated as follows:

= +
l( )( ) ( ( ) ( ))maxS

N
I N sig F N f N  (3)



Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18   International Journal on Semantic Web and Information Systems, 11(4), 1-40, October-December 2015

where

• l( )N  is the level of the object receiving the feedback,
• max is the level of the deepest object in the conceptual hierarchy,

• sig(x) is a variant of the sigmoid function given by −

−
= − =

+ +
2 1( ) 11 1

x

x x

e
sig x

e e
,

• F(N) is the sum of the previous feedback values obtained from the user for the given object N,
• f(N) is the current (new) feedback obtained from the user for the object N.

The sig(x) function was introduced to modulate the subsequent feedback values received 
by an object as a result of multiple actions on the same object (e.g. clicking, tagging, sharing). 
Notice that the position of the concept in the conceptual hierarchy reflects the different levels 
of generalization present in the hierarchy (Resnik, 1999): the concepts lower down in the con-
ceptual hierarchy represent more specific notions, and as such signal more precise interests 
than the concepts represented by upper classes in the conceptual hierarchy, which express more 
general notions.

5.2.2 Propagated Interest Value

The sensed interest value is further used for the subsequent propagation phase, in which the 
interest is propagated to similar and related objects. We use the properties of each domain ob-
ject to calculate its similarity (Section 3) and relatedness (Section 3) with other domain objects. 
Since similarity and relatedness between objects depend only on the given ontology and the 
properties defined for its objects, they are precomputed and subsequently updated only when 
the ontology is modified. This propagation does not have any particular direction (as opposed to 
the one described in Cena et al., 2013 and allows the propagation of the user interests to various 
(sometimes quite distant) objects in the ontology.

We distinguish the initial user feedback and the subsequent ones. For the initial user feed-
back, we compute the initial propagated interest value ,0( , )sim

P
I N M  from the node N which 

received the feedback to the similar node M, using the hyperbolic tangent function as follows:

−
=

+

2 ( , )
,0

2 ( , )
1( , ) ( )1

sim N M

sim

P Ssim N M

e
I N M I N

e
 (4)

and similarly the initial propagated interest value ,0( , )rel

P
I N P  from the object N which received 

the feedback to the related object P:

−
=

+

2 ( , )
,0

2 ( , )
1( , ) ( )1

rel N P

rel

P Srel N P

e
I N P I N

e
 (5)

where

• ( )
S
I N  is the sensed interest of the object N receiving the feedback;
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• ( , )sim N M  is the similarity between the object N receiving the feedback and the object 
M receiving the propagated interest (see Section 3);

• ( , )rel N M  is the relatedness between the object N receiving the feedback and the object 
P receiving the propagated interest (see Section 3).

Only with the initial user feedback for a certain domain object, all the sensed interest is used 
in the propagation process. With each subsequent i-th user feedback, the sensed interest used 
to update the user model is obtained as a difference between the newly obtained sensed interest 
value for the given object and the old one that was already propagated:

( )−∆ = − = + −
l1 ( )( ) ( ) ( ) ( ( ) ( )) ( ( ))max

i i i

S S S

N
I N I N I N sig F N f N sig F N  (6)

Therefore, for each subsequent i-th feedback for the object N (after the initial one), the 
propagated interest ∆ , ( , )sim i

P
I N M  to the similar node M and the propagated interest ∆ , ( , )rel i

P
I N P  

to the related node P is calculated as:

−
∆ = ∆

+

2 ( , )
,

2 ( , )
1( , ) ( )1

sim N M

sim i i

P Ssim N M

e
I N M I N

e
 (7)

−
∆ = ∆

+

2 ( , )
,

2 ( , )
1( , ) ( )1

rel N P

rel i i

P Srel N P

e
I N P I N

e
 (8)

The amount of interest propagated for the i-th feedback is lower than the amount of interest 
propagated for any previous feedback. This balances the system since no repeated or redundant 
information is propagated.

Since for the initial feedback, there is no previous feedback, we obtain ∆ =0( ) ( )
S S
I N I N , 

= ∆,0 ,0( , ) ( , )sim sim

P P
I N M I N M  and = ∆,0 ,0( , ) ( , )rel rel

P P
I N P I N P .

Hence, we can always use the values ∆ , ( , )sim j

P
I N M  and ∆ , ( , )rel j

P
I N P  when updating 

the user model with propagated interest.
So the total propagated interest value from the object N to a similar object M is the sum of 

all the propagated interest values from N to M:

=

= ∆∑ ,

1
( , ) ( , )

N
d

sim sim i

P P

i

I N M I N M  (9)

where 
N
d  is the number of propagations from N to M. Similarly, the total propagated interest 

value from the object N to a related object P is the sum of all the propagated interest values from 
N to P:
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=

= ∆∑ ,

1
( , ) ( , )

N
b

rel rel i

P P

i

I N P I N P  (10)

where 
N
b  is the number of propagations from N to M. Note that 

N
d  and 

N
b depend on N, i.e. 

each node N has a different number of propagations based on the user feedback.

5.2.3. Total Received Interest Value

Finally, we can calculate the total interest received from similar objects for the object O as the 
sum of all the propagated interest values from similar nodes:

=

=∑ ,

1
( ) ( , )

n

sim sim j

R P j

j

I O I N O .  (11)

Analogously, we can calculate the total interest received from related objects for the object 
O as the sum of all the propagated interest values from related nodes:

=

=∑ ,

1
( ) ( , )

m

rel rel j

R P j

j

I O I M O  (12)

where 1 ,..., n
N N  are the objects similar to O and 1 ,..., m

M M  are the objects related to O.
Total interest value For each object O we have three different interest values:

• Its sensed interest ( )
S
I O ;

• The total interest received from similar objects ( )sim

R
I O ;

• The total interest received from related objects ( )rel

R
I O .

These three values can be combined to obtain the total interest value for each object, which 
can include only the interest values received from similar objects or only from related objects 
or both.

It should be noted that, since the system can trivially recompute the amount of feedback 
propagated from object N to every other object with formulas (9) and (10), this approach sup-
ports dynamic ontology maintenance (Beydoun et al., 2011). In other words, it is possible to 
modify the ontology, for example enriching it by adding a certain property, and then update the 
interest values for all the domain objects as if the system had always used the modified ontology.

6. EVALUATION

We evaluated our approach using two datasets. The first evaluation is in the domain of event 
recommendation, whereas the second one concerns the domain of recipes.
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6.1. Events

The first evaluation uses the event ontology for which the basic event hierarchy is depicted 
in Figure 1. For better clarity Figure 1 presents only the taxonomy with the classes hierarchy, 
mitting all the properties of classes. The whole ontology consists of 77 classes (among which 
17 classes represent events, whereas other classes represent concepts such as SportType or 
VenueType), 129 instances (out of which 44 instances of events) and 23 properties (15 object 
properties and 8 data properties). We considered three kinds of events in the event domain: 
cultural events (cinema, concert, exhibition, theater, book presentation), gastronomical events 
(cooking course, lunch, dinner, degustation, aperitivo, food fair) and sport events (race, match, 
show, open day). This event ontology is not trying to categorise events into a deep event hierarchy, 
rather it describes each event with its properties. Hence, the similarity and relatedness of events 
based on properties does not depend only on the position of the item in the ontology graph but 
exclusively on properties which were used to define subclasses as restrictions. (“Aperitivo” is a 
traditional way to get together among Italians. In the late afternoon they go for a drink and get 
served some light food with it. After that they are ready to go for dinner, but sometimes a good 
aperitivo can substitute a dinner.)

Some of the properties which were defined for the events are: has_venue (specific places 
where events take place, such as a gallery or a music hall), has_price, has_physical_location 
(sites of the city of Torino and its surroundings where events take place), has_main_theme, 
has_main_protagonist, has_tags, etc. Moreover, some events have additional properties, such as 
type_of_tournament for sport events or has_director for movies. We believe that this ontology 
encompasses a great variety of events, covering many different areas. Since it contains both, the 
hierarchy of classes (some of which defined as property restrictions), as well as explicitly defined 
properties of domain objects, it was a good starting point for calculating semantic similarity 
and relatedness of domain objects and subsequently evaluating both accuracy and diversity of 
recommendation. Moreover, since this ontology includes three different sub-domains (cultural 
events, gastronomic events and sport events), it also allows us to test the performance of our 
approach also in a cross domain scenario (Fernández-Tobìas et al., 2012).

6.1.1. Hypotheses

We wanted to verify that:

H1: property-based user interest propagation using similarity provides better recommendation 
accuracy than the classic edge-based propagation presented in our previous work (Cena et 
al., 2013) and in other state of the art approaches (Middleton et al., 2004, Sieg et al., 2007);

H2: assigning a certain weight or relevance (as described in Section 4) to each property brings 
a significative improvement to the accuracy of recommendations;

H3: property-based similarity offers good results w.r.t. diversity. In addition, considering relat-
edness in user interest propagation (as described in Section 3) yields a good increment to 
recommendations diversity, paying a relatively low cost in accuracy;

H4: property-based user interest propagation is particularly effective in improving accuracy 
when propagating user interest values across different sub-domains to provide cross-domain 
recommendation.

In this evaluation we compare accuracy and diversity of five approaches for user interest 
propagation, namely:
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1.  Edge-based user interest propagation (as in (Cena et al., 2013)), labelled E. We used the 
conceptual distance described in (Cena et al., 2013) and propagated to all items with the 
distance ≤ 1. We selected this threshold since it maximizes the accuracy according to the 
preliminary tests.

2.  Property-based user interest propagation using similarity only, labelled P;
3.  Property-based user interest propagation using both similarity and relatedness, labelled PR;
4.  Property-based user interest propagation using similarity and assigning relevance to proper-

ties, labelled PW;
5.  Property-based user interest propagation using similarity and relatedness and assigning 

relevance to properties, labelled PWR.

6.1.2. Evaluation Setting and Measures

In order to collect users’ preferences, we designed a web questionnaire in which users anony-
mously filled in their preferences (on a scale from 1 to 10) for 44 heterogeneous events, including 
concerts, art exhibitions, soccer games, food festivals and many others. The ratings collected 
from the users were recorded in a database.

6.1.3. Measures

We measure the accuracy in predicting the correct user preferences by using two metrics: Spear-
man’s rank correlation coefficient ρ and Mean Absolute Error (MAE). Spearman’s rank correlation 
ρ provides a non-parametric measure of statistical dependence between two ordinal variables and 
gives an estimate of their relationship using a monotonic function. In the absence of repeated data 
values, a perfect Spearman correlation of ρ = +1 or ρ = −1 is obtained when each of the variables 

Figure 1. Event taxonomy
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is a perfectly monotonic function of the other, either direct or inverse. Tied values are assigned 
a rank equal to the average of their position in the descending order of values. Conventionally, 
ρ ≥ 0.5 points to a “fair direct correlation”. The Mean Absolute Error (MAE) is a classic metric 
used to express the distance between predicted and effective outcome. In our case it is computed 
as the average difference between the user ratings of an item and the estimated one.

The performance of the five algorithms was compared by means of the chi-squared test 
to make evident any statistically significant difference. As common practice, we consider two 
approaches significantly different if the chi-squared test yields a null hypothesis p > 0.05. The 
most interesting findings are summarized in Table 1.

We measure the recommendation diversity by counting the different numbers of categories 
recommended to users.

6.1.4. Subjects

The initial sample included 247 subjects, 19-33 years old, recruited according to an availability 
sampling strategy7 among the students of various courses (such as Business Intelligence, HTML, 
Web of Things Design) at the University of Torino, Italy, as well as among authors’ acquain-
tances. Even though the best way for having a representative sample is random sampling, these 
strategies are time consuming and not always financially justifiable. Therefore, much research 
in social science is based on samples obtained through non-random selection, such as the avail-
ability sampling, i.e. a sampling of convenience, based on subjects available to the researcher, 
often used when the population source is not completely defined.

We restricted the initial sample to 231 subjects (10164 ratings) by eliminating all the subjects 
who assigned the same vote to more than 80% of the items, since this was a strong indicator of 
a random preference assignment. The dataset used is available from the authors upon request 
for academic purposes.

To verify the hypotheses H1 and H2, we assessed the performance of the five approaches, 
splitting the feedback set into training set and test set. The training set was used as input for user 
interest propagation, whereas the test set was compared with the suggested items. We performed 
different tests, changing the percentage of feedback values in the training set from 10% to 70%. 
We ran each test 10 times and in each run we selected randomly which feedback values to be 
inserted in the training set. Finally, we computed the average Spearman correlation coefficient 
ρ and MAE.

6.1.5. Accuracy Test

Figure 2 shows the average Spearman’s rank correlation ρ for increasing percentage of feedback 
values in the training set. In all the cases PW obtains the highest accuracy, followed by PWR and 
then by P, PR and E. In particular, both P and PW performed significantly better than the baseline 
edge-based user interest propagation in each test, according to the chi-squared test (see Table 1 for 
the values of ρ for the different tests). Actually, the difference is so big that PW accuracy in the 
10% case is still higher than E accuracy when taking as training set 70% of the feedback values.

As expected, PWR yields a slightly lower accuracy than PW, but the difference between 
these two approaches is never statistically significant. In a similar way, PR performs slightly 
worse than P, but the difference between these approaches is significant only for the 70% case. 
Hence, we can conclude that, even if the relatedness appears to reduce the accuracy, its effect is in 
most cases negligible, while at the same time contributing to better diversity (see Diversity test).

Table 1 shows the percentage of users with ρ ≥ 0.5 and ρ < 0 obtained by the five algorithms 
in the different tests. PW provides the best results in all tests, yielding both the highest number 
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of users with ρ ≥ 0.5 and the minimal number of users with ρ < 0. Not only PW is the most ef-
fective tool for suggesting lists with a good correlation with users’ preferences but it is also the 
least prone to yielding misleading lists.

The histogram in Figure 3 shows the MAE values for the five algorithms for different per-
centage of feedback values in the training set. To compute MAE, we normalised the total interest 
values to a [0-10] interval, so that they could be compared with user ratings that vary between 0 
and 10. When using MAE as evaluation metric, the best algorithm turns out to be PWR: thus it 
appears that the relatedness allows for a better estimate of user ratings, even if it is less effective 
in predicting their order in the list of preferences. As before, the disparity between the algorithms 
grows with the number of feedback values in the training set: the difference between E and PWR 
is only 0.37 when taking as input 10% of the ratings, but grows to 1.83 when using 70% of them.

Table 1. Summary of the main results of the evaluation (in parenthesis the 95% confidence 
interval). In bold the best result of each test (less is better for ρ<0, more is better for ρ ≥ 0.5)

Percentage of users with ρ ≥ 0.5

Test E P PR PW PWR

10% 3.0% (1.2-6.1) 6.5% (3.7-10.5) 6.1% (3.4-10.0) 6.9% (4.0-11.0) 6.9% (4.0-11.0)

20% 6.1% (3.4-10.0) 10.4% (6.8-15.1) 9.1% (5.7-13.6) 13.8% (9.7-19.0) 9.5% (6.1-14.1)

30% 10.8% (7.1-15.6) 13.0% (8.9-18.0) 11.3% (7.5-16.1) 18.2% (13.4-23.8) 14.7% (10.4-20.0)

50% 12.1% (8.2-17.0) 16.0% (11.5-21.4) 13.9% (9.7-19.0) 23.8% (18.5-29.8) 18.2% (13.4-23.8)

70% 14.3% (10.0-19.5) 30.3% (24.5-36.7) 23.4% (18.1-29.4) 39.0% (32.6-45.6) 33.8% (27.7-40.3)

Percentage of users with ρ < 0

Test E P PR PW PWR

10% 33.8% (27.7-40.3) 32.9% (26.9-39.4) 33.3% (27.3-39.8) 29.9% (24.0-36.2) 32.5% (26.5-38.9)

20% 29.9% (24.0-36.2) 26.4% (20.8-32.6) 26.8% (21.2-33.1) 19.9% (15.0-25.7) 23.4% (18.1-29.4)

30% 31.2% (25.3-37.6) 23.4% (18.1-29.4) 25.1% (19.7-31.2) 19.0% (14.2-24.7) 21.6% (16.5-27.5)

50% 28.1% (22.4-34.4) 21.2% (16.1-27.1) 21.2% (16.1-27.1) 19.0% (14.2-24.7) 22.9% (17.7-28.9)

70% 29.0% (23.2-35.3) 21.6% (16.5-27.5) 23.8% (18.5-29.8) 16.5% (11.9-21.9) 19.0% (14.2-24.7)

Chi-square test (in bold the not significant result)

10% 20% 30% 50% 70%

E vs P 2.1 · 10-3 2.9 · 10-5 6.4 · 10-5 5.8 · 10-7 1.4 · 10-7

E vs PW 0.0123 5.5 · 10-9 2.2 · 10-12 2.3 · 10-8 2.2 · 10-26

E vs 

PWR

0.129 3.4 · 10-6 3 · 10-7 3.5 · 10-9 1.8 · 10-12

P vs PR 0.902 0.9 0.748 0.75 0.04

P vs PW 0.134 1.8 · 10-3 0.0329 0.0446 2.1 · 10-5

PW vs 

PWR

0.359 0.079 0.37 0.08 0.255
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6.1.6. Diversity Test

It is well known that testing accuracy is by itself not enough. Indeed, suggestions that are only 
slight variations of the same item may be useless for the user. Hence, it is important to check 
also if the results offer some diversity.

To verify the hypothesis H3, we tested the diversity yielded by the five approaches by gen-
erating, for each item in our domain, the list of the most similar n items (testing different values 
for n) and then assigning them to fifteen categories, corresponding to the third level classes of 
the domain taxonomy showed in Figure 1. We estimate the diversity of each algorithm as the 

Figure 2. Average ρ for different percentages of feedback values in the training set

Figure 3. Average MAE for different percentages of feedback values in the training set
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average number of categories represented by the first n similar instances. Naturally, we consid-
ered only items that could be reached by means of the propagation process, thus in some cases 
the list of the most similar items may actually include less then n items (e.g., when n = 20 and 
a certain item has only 15 similar items).

Figure 4 shows, for each algorithm, the average number of categories (vertical axis) rep-
resented in the set of the first n most similar objects for each domain object (hori zontal axis). 
A higher number of categories, in particular for the first 5-10 similar items, points to a greater 
diversity in the recommendations.

The PR algorithm obtains the highest diversity for n < 7, followed by PWR, PW, P and E. For 
n ≥ 7 the best algorithm is PWR, followed by PR, PW, P and E. For example, when suggesting 
5 items PR yields on average 0.19 categories more than PWR, 0.53 more than PW, 0.55 more 
than P and 1.25 more than E. When suggesting 15 items, PWR yields on average 0.21 categories 
more than PR, 0.83 more than PW, 0.95 more then P and 3.63 more than E.

The Wilcoxon test shows that property-based approaches are significantly different from 
edge-based approach (p < 0.01). Better performance of PWR and PR is explained by the presence 
of property-based relatedness, which was explicitly designed to increment diversity by considering 
similar values of different properties, thus highlighting implicit relationships between different 
classes. In fact, PWR and PR are significantly different from PW and P (p<0.02). However, also 
P and PW have significantly higher diversity than E. In fact, even the simplest property-based 
user interest propagation (P) has an advantage of 0.8 categories over the baseline edge-based user 
interest propagation when considering a list of 5 items, lead which grows up to 3.51 categories 
for a list of 20 elements. It thus appears that an additional advantage of using property-based 
user interest propagation provides a significant increment in the diversity of the results, which 
in turn can still be further enhanced by using property-based relatedness.

6.1.7. Cross Domain Test

The recent years experienced the emergence of a variety of cross-domain recommender systems 
(Fernández-Tobìas et al., 2012), whose aim is to exploit user preferences about certain domains 

Figure 4. Diversity: average number of categories represenetd by the first n similar instances 
for each item
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in order to suggest items in different domains, often reusing ratings collected by a variety of 
applications (for instance combining the preferences from the musical and the movie domain). 
In this section we will show that the techniques illustrated in this paper can be significantly ef-
fective also in cross-domain recommendation.

The events ontology spans over three main subdomains: 48% of the events belong to the 
cultural domain, 32% to the gastronomy-related domain and 20% to the sport domain. To verify 
the hypothesis H4 and thus to test our approach in a cross-domain scenario, we selected as input 
the items in one subdomain and tried to infer user interests in the other two subdomains. This 
choice of subdomains is motivated by the ontology design itself, since these three subdomains 
represent different contexts for event recommendation. This definition of domain diversity is based 
on a specific domain and its subdomains, but it can be extended to different domains where the 
domain objects in all the domains have the same properties with the appropriate values defined. 
For example, we could combine the movies domain and the books domain and try to infer users’ 
interests in one domain based on their feedback in the other one, since it could be expected that 
these two domains would have equal or related properties. As Figure 5 shows, the difference 
in accuracy between the edge-based user interest propagation (E) and various property-based 
interest propagation techniques (P, PW, PR and PWR) is even bigger when propagating user 
preferences across different domains.

6.1.8. Discussion

The evaluation shows that the property-based approaches, while they need a richer ontology to 
start with, perform much better than the baseline edge-based approaches, as far as accuracy and 
diversity are concerned (the chi-squared test yielded 0.1 ≤ p ≤ 2 · 10-26). Assigning relevance to 
properties leads also to a significant improvement in accuracy (for 20% of the feedback values 
or more, 0.03 ≤ p ≤ 2 · 10-5).

The algorithm which includes the property-based relatedness yields a significant increment 
to the diversity of the results (p < 0.048 for PR and p < 0.035 for PWR), paying a relatively low 
price in accuracy. Moreover, the cross domain test highlighted that property-based approaches 
perform much better in a cross-domain scenario than edge-based ones (p ≤ 2 · 10-5).

PW appears to be the best solution for maximizing accuracy, whereas PR and PRW are 
respectively the best choices for maximizing diversity for short list (n < 7) and medium or long 
list of suggested items. Since the difference in accuracy between PWR and PW is not statistically 
significant (p > 0.8), we believe that PWR may be the best choice in the majority of realistic 
situations.

6.2. Recipes

The second evaluation uses the slightly modified Wikitaaable dataset (wikitaaable) used in 
Cordier et al. (2014). This dataset contains 1666 recipes with properties such as can be eaten 
as or has_ingredient or suitable_for_diet, providing a good setting to test certain aspects of our 
approach. We only slightly modified it in the following: in the original ontology all the recipes 
were instances of Recipe, whereas we wanted to use the hierarchical structure of the ontology 
(also to be able to test the edge-based approach), hence we used the recipes as instances of vari-
ous Dish_Type’s. In the original ontology dish_type is a property. In Figure 6, we show the basic 
taxonomy of recipes from Wikitaaable, but only including the top categories and the ones from 
which we used the instances to test our approach. The properties are again omitted for clarity.

The main dish types are: BakedGoodDish, BeverageDish, CrepeDish, MousseDish, Pan-
cakeDish, PreserveDish, RollDish, SaladDish, SaltedDish, SauceDish, SoupAndStuffDish, 
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SpecialDietDish, SweetDish, WaffleDish. The recipes we used for our testing did not belong to 
all recipe groups, since the complexity of the test would be too high and we would rise random 
answers from the users.

6.2.1. Hypotheses

In this evaluation we could only verify the first three hypothesis, namely:

H1: property-based user interest propagation using similarity provides better recommendation 
accuracy than the classic edge-based propagation;

H2: assigning a certain weight or relevance (see Section 4) to each property brings an improve-
ment to the accuracy of recommendations;

H3: even the simple property-based similarity yields a good increment to recommendations 
diversity.

In this test we could not test the propagation which takes relatedness into account, due to 
the definition of properties in the ontology and their relative values. Also, we could not test 
the cross-domain recommendation since the data set contained only the recipes. Hence, in this 
evaluation we compare accuracy of three approaches for user interest propagation, namely:

1.  Edge-based user interest propagation (as in Cena et al., 2013) using again the conceptual 
distance, labelled E;

2.  Property-based user interest propagation using similarity only, labelled P;
3.  Property-based user interest propagation using similarity and assigning relevance to proper-

ties, labelled PW.

Figure 5. Average ρ when propagating preferences from a single domain
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6.2.2. Evaluation Setting and Measures

In order to collect users preferences, we designed another web questionnaire in which users 
anonymously filled in their preferences (on a scale from 1 to 10) for 33 different recipes from 
the dataset.

6.2.3. Measures

The metrics used are the same as in the previous test.

6.2.4. Subjects

The subjects were recruited in the same way as the previous evaluation, with 189 initial sub-
jects restricted to 139 subjects (4587 ratings) by eliminating the subjects who did not provide 
the complete questionnaires. The dataset used is available from the authors upon request for 
academic purposes.

6.2.5. Accuracy Test

To verify the hypotheses H1 and H2, we assessed the performance of the three approaches in 
the way analogous to the one described for the events domain.

Figure 7 shows the average Spearman’s rank correlation ρ for increasing percentage of feed-
back values in the training set. Again, in all the cases PW obtains the highest accuracy, followed 

Figure 6. Recipe taxonomy
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by P and E. As before, PW obtains the highest percentage of users for ρ ≥ 0.5 and the lowest 
percentage of user for ρ < 0. The difference between PW and E is significant for percentages of 
feedback values greater than 30% (p = 0.023).

The histogram in Figure 8 shows the MAE values for the three algorithms for different 
percentage of feedback values in the training set, calculated as in the previous evaluation. When 
using MAE as evaluation metric, both P and PW perform better than the E approach, although 
in this case it seems that relevance of properties does not play such an important role as in the 
previous evaluation. This might be happening due to the fact that the property has ingredient usu-
ally has many values and therefore its relevance drops. Again, the disparity between algorithms 
grows with the percentage of feedback in the training set.

6.2.6. Diversity Test

To verify the hypothesis H3, we tested the diversity yielded by the three approaches analogously 
as in the previous diversity test, where we used the following nine categories: Meat, Seafood, 
Soup, Sauce, Rice, Vegetable, Pasta, Bread, Sweet (where we treated Mousse, Pancake, Cake 
and Cookie as Sweet).

Figure 9 shows, for each algorithm, the average number of categories (vertical axis) rep-
resented in the set of the first n most similar objects for each domain object (horizontal axis).

We can see that for a low number of suggested items (n < 5), P and PW behave comparably, 
but already show better performance than algorithm E. For n ≥ 5 it is clear that the best perform-
ing algorithm is PW, followed by P and E. For example, when suggesting 15 items, PW yields 
on average 3.9 categories, P yields 2.6 and E yields 1.4.

Also, PW behaves better than P and E w.r.t. diversity in this test, which means that the rel-
evance assignment brings improvements in diversity calculation. This might be due to the fact 
that this technique assigned higher relevance to the certain properties, such as suitable for diet, 
which link items in different categories. The differences between the three methods are statisti-
cally significant, p = 0.0007 with Friedman test for k > 2 correlated samples. PW is different from 
both P (p = 0.01 with the Wilcoxon test) and E (p = 0.005). Hence, even without relatedness, 

Figure 7. Average ρ for different percentages of feedback values in the training set
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the propagation of interests based on property-based similarity offers satisfying results w.r.t. 
diversity of elements recommended to users.

6.2.7. Discussion

The second evaluation confirms that the property-based approaches outperform the baseline 
edge-based approaches, as far as accuracy and diversity are concerned. Using the Wikitaaable 
ontology did not allow us to perform the propagation using relatedness in addition to similarity, 
since the dataset did not contain the same values for different properties, apart from suitable for 
diet and not suitable for diet which are the properties with opposite meaning, hence could not 

Figure 8. Average MAE for different percentages of feedback values in the training set

Figure 9. Diversity: average number of categories represented by the first n similar instances 
for each item
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be used in relatedness calculation. But even with only property-based similarity, accuracy and 
diversity results are satisfying.

7. RELATED WORK

As could have been seen in the paper, our usage of ontologies is threefold:

• We represent the information in the user model using the domain ontology,
• We exploit the ontological structure to calculate similarity and relatedness among concepts,
• We use the ontological structure to propagate user interest values to similar and related objects.

Hence, in this section we describe the work in three areas of research. We first present some 
works that use ontologies to represent user models, followed by some relevant approaches in 
the literature for computing similarity among concepts, by some approaches for calculation of 
relatedness among concepts and finally, concluding with the approaches that propagate values 
over an ontology.

7.1. Ontological User Model

Our approach is built upon an ontology-based user model: we use an ontology to model the 
domain and we define the user model as an overlay over the domain ontology (Brusilovsky, 
2007), annotating each concept with the value of user interest. Notice that we use the term 
“ontology-based user model” differently from other works, such as Heckmann et al. (2005), 
where it indicates an ad hoc ontology created to represent the user features in the user model 
(e.g. age, gender, profession, interest, knowledge). Other works in the literature using a similar 
ontology-based user model are the following ones.

Sieg et al. (2007) use ontological user profiles to improve personalized Web search. The 
user profiles are instances of a reference domain ontology, and they are incrementally updated 
based on the user interaction with the system.

In Middleton et al. (2004) the user feedback on research papers is collected and mapped 
onto the domain ontology representing the main concepts.

Razmerita et al. (2003) present OntobUM, an ontology-based user modeling for knowledge 
management systems. The domain ontology is annotated according to user interest in each concept.

Kalfoglou et al. (2001) represent user information associating a binary value of preference 
to each ontology concept, representing research themes. They then make use of ontological 
inference rules to propagate user preferences throughout the ontology and also across other 
different ontologies. The goal is, starting from a user query about a concept, to present the user 
with some related concepts.

Gauch et al. (2003) build an ontology-based user profiles starting from the Web pages the 
user visited. They compute similarity among such Web pages and the concepts in a domain 
ontology. Then, they annotate each concepts with this computed similarity value and add to the 
user model all the concepts with a value greater than zero.

Hatala and Wakkary (2005) present the museum guide ec(h)o, where the user interests are 
represented as a set of annotated concepts from the ontology of natural history. The concepts 
are annotated according to the strength of user interest, which is calculated based on the user 
activities in the physical museum place. The latest activities weigh more than past ones. Only 
concepts with value of interest greater than a certain threshold are present in the user model.
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7.2. Semantic Similarity

In addition to Tversky’s feature-based model of similarity (Tversky, 1977) presented in this paper 
in Section 3, semantic similarity can be calculated in other two general modes: considering the 
information content or exploiting the ontology graph structure.

Resnik’s notion of semantic similarity Resnik (1999) is based on information content in an 
is-a taxonomy, given by the negative logarithm of the probability of occurrence of the class in 
a text corpus. The information content of the closest class subsuming both compared concepts 
provides the shared information for both and gives the measure of their similarity.

Rada et al. (1989) use the ontology graph structure, exploiting the distance between nodes 
(i.e., the number of edges or the number of nodes between the two nodes) to calculate nodes 
similarity.

These three basic measures of similarity (feature-based, information content-based and 
distance-based) gave rise to many combined approaches. For example, Jiang and Conrath (1997) 
improve the distance based approach with the information content one. The strength of a link 
connecting two nodes is the difference between information content values of these two nodes. 
The weight of a link, in addition to link strength, accounts for local and average densities, depth 
of the parent node in the hierarchy and link type. Then the distance between two nodes is calcu-
lated as the shortest path linking the two nodes, using weighted links to traverse the paths and 
is used to calculate the similarity.

The semantic similarity introduced by Pirrò and Euzenat (2010) combines the feature-based 
model of similarity with the information theoretical one, where Tversky’s function describing 
the saliency of the features is substituted by the information content of the concepts.

Lin (1998) introduces an information-theoretic definition of similarity based on a set of as-
sumptions about similarity, calculated as the ratio between the amount of information that two 
concepts have in common and the amount of information needed to fully describe them. Lin’s 
similarity measure is not tied to a particular knowledge representation and can be applied to any 
probabilistic model application.

Di Noia et al. (2012) use Linked Open Data (LOD) to develop a content-based movie 
recommender system in which they adapt a vector space model (VSM) approach to compute 
similarities between RDF resources. Similarly to us, they assume that two movies are similar if 
they have features in common. They represent the whole RDF graph as a 3-dimensional matrix 
where each slice refers to an ontology property and for each property the similarity between two 
movies is calculated using their cosine similarity. They also assign relevance factors to proper-
ties, either using a Genetic Algorithm or Collaborative-Filtering results derived from Amazon.

Hau et al. (2005) introduce a new semantic similarity measure for OWL objects based on the 
information theoretic measure of Lin (1998). They define the semantic similarity similarly to us, 
as a ratio between the shared and total information content of the two objects. The information 
content is defined using the objects’ description sets which contain all the statements (triples) 
describing the given objects and their information content is based on their “inferencibility”, i.e. 
the number of new RDF statements that can be generated by applying a certain set of inference 
rules to the predicate. They use their measure to determine the similarity of semantic services 
annotated with OWL ontologies.

In Ehrig et al. (2005) a new measure for similarity of ontological concepts is introduced. 
Their framework, based on abstract ontology model, consists of three layers for measuring simi-
larity between entities: Data, Ontology and Context. In the Data layer the similarity of concepts 
is measured accounting for the data values of simple or complex data types. In the Ontology 
layer semantic relations between concepts are considered and edge-based similarity is used. 
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Finally, the Context layer accounts for the ways concepts are used in some external contexts 
(similar concepts are used in similar contexts). These three layers are further enhanced with 
specific domain knowledge. The overall similarity is computed as a combination of these three 
individual similarity measures.

The similarity measure proposed by Bach and Dieng-Kuntz (2005) can be used to compare 
entities in two OWL DL ontologies. It is obtained as a combination of component similarity 
(based on the information extracted from the entity descriptions) and graph similarity.

Smyth (2007) takes into account individual features of concepts and each feature has its 
own similarity function defined for it. Similarly to us, they also introduce the weights which help 
distinguish the importance of individual features when calculating similarity.

Among many state-of-the-art similarity measures, we chose Tversky’s feature-based model 
of similarity (Tversky, 1977) since we wanted to account for properties of domain objects in the 
similarity computation and Tversky’s measure allows to include common as well as distinctive 
features of objects. In addition, Tversky’s measure can be smoothly extended to calculate the 
relatedness among domain objects.

7.3. Semantic Relatedness

Karanastasi and Christodoulakis (2007) propose OntoNL Semantic Relatedness Measure used 
to calculate semantic relatedness between domain ontology concepts. Their relatedness measure 
combines three relatedness measures: relatedness based on properties (

prop
rel ), relatedness 

based on conceptual distance (
CD

rel ) and relatedness based on related senses (
RS

rel ). When 
calculating 

prop
rel , if the source concept is related to the target concept via an object property, 

their =1
prop

rel . Otherwise, they count the properties and the inverse properties the two 
classes have in common. We, on the other hand, count the properties with the same values which 
the classes have in common. 

CD
rel  takes into account specificity factors based on the distance 

between the concepts and on the number of the object properties they have, in addition to edge 
distance between concepts. Finally, 

RS
rel counts the nouns and synonyms extracted from the 

descriptions of the concepts in the ontology that the concepts have in common.
Hirst and St-Onge (1998) consider Upward, Downward and Horizontal links and give 8 

patterns for defining semantically correct paths. They give direction to each of the following 
relations: hypernymy, meronymy, hyponymy, holonymy, synonymy and antonymy. They then 
compute the semantic relatedness between concepts using the length of the shortest path between 
them considering all relations and patterns and the number of direction changes in the path. In 
their approach, each edge carries the same information content, i.e. has the same weight, pre-
senting a problem.

Mazuel and Sabouret (2008) present a semantic relatedness measure on ontologies which 
considers object properties among concepts. The concepts can be connected following different 
kinds of relations. They first filter out the “semantically incorrect paths” using rules from Hirst 
and St-Onge (1998) and then assign a weight to each path depending on its type (is-a, part-of 
etc.), its context in the ontology and its position in the path. They use an information-theoretic 
approach to weight the hierarchical edges in the path, and a formula based on a “strength” of 
a given relation for non-hierarchical edges. In their work relatedness between two concepts is 
defined using the minimal weight of a semantically correct path between them and the maximal 
value of the distance introduced by Jiang and Conrath (1997).
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Gracia and Mena (2008) use the Web as knowledge source. Their semantic relatedness is 
based on the information about frequencies of term use, obtained from search engines. They 
generalize Normalized Google Distance (Cilibrasi and Vitanyi, 2007) to account for many dif-
ferent search engines. They propose the relatedness measure between words and extend it to 
ontology terms. Relatedness of ontology terms is based on their relatedness as synonyms and on 
the relatedness of their semantic descriptions, more precisely of their semantic contexts which 
characterize their meaning in the ontology (direct superclass for a class, domain classes for a 
property and the class the instance belongs to).

Witherell et al. (2009) propose to measure meronomic relatedness between concepts in an 
ontology, as a more generic measure of relatedness, which measures how much one concept 
is “part of” another. They introduce a weighted edge measure, in which each edge is assigned 
a weight based on the concept probability. The corpus for measuring concept probabilities is 
formed using multisets of concepts.

With respect to the relatedness measures above, we chose to exploit our method to calculate 
relatedness (Section 3) since it complements well the calculation of similarity (Section 3) and 
can be successfully used to propagate user interests in the ontology, thus enabling its evaluation 
to a certain extent. Our approach brings us one step closer to building the semantic relatedness 
measure applicable to wide range of real, complex ontologies. Since semantic relatedness can 
be used in the similar contexts as semantic similarity, it has a potential for application in various 
domains, such as word sense disambiguation (e.g. two synonym words would have different 
words related to them, based on their context of usage) or ontology matching (two corresponding 
concepts would be related to the same concepts).

7.4. Ontology-based Propagation

A few approaches exist that make use of propagation of values among ontology classes and 
instances.

Sieg et al. (2007, 2010) and Middleton et al. (2004) propagate the interest values in the 
ontology exploiting only is-a relationships in a fashion similar to Cena et al. (2011, 2013). They 
consider an ontology simply as a hierarchy of topics, where the topics can be used to classify 
items being recommended. Instead, in our current approach we make a complete use of the 
ontology (taxonomical structure, properties, instances) and of different forms of propagation.

In more details, Sieg et al. (2007, 2010) consider the ontology as as a semantic network and 
interest values are propagated using a spreading activation technique (Salton and Buckley, 1988). 
How much is propagated to each next classes depends on the weight of the relation. This value 
propagation takes place only in one direction (bottom-up, from instances to classes), whereas 
we perform a multi-directional propagation. In addition, they do not take into consideration the 
level of the node in the ontology where the propagation happens.

In Middleton et al. (2004), the is-a hierarchy is exploited to infer additional topics of interest 
(superclass topics starting from specific topics browsed by a user) for producing more complete 
profiles. The propagation of interest values in the taxonomy is based on is-a similarity. As op-
posed to us, their propagation is static and one-directional (bottom-up, from specific to generic 
concepts): given the interest value for a specific class, 50% of this value is spread to its super class.

Finally, Thiagarajan et al. (2008) represent user profiles as bags-of-words (BOW) where a 
weight is assigned to each term describing user interests. Then, they consider ontological rela-
tionships between the terms in BOW to propagate the values using graph spreading activation 
techniques. They use the ontology to find related terms.
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7.5. Recommender Systems based on Linked Open Data

The resources in the Web of Data (Bizer et al. (2009)) are expressed as LOD, Linked Open Data, 
i.e., described as RDF statements and by properties. In this sense, there is a certain similarity with 
our approach where the similarity and relatedness of domain concepts is also based on properties. 
A new generation of recommender systems is being developed taking advantage of this publicly 
available knowledge where the datasets are mapped onto their corresponding URIs which permit 
the extraction of the available properties for each resource in the dataset. A good selection of in-
novative linked open data-enabled recommender systems can be found in Di Noia et al. (2014).

W.r.t. similarity calculation, the approaches most similar to ours are: Peska and Vojtas 
(2014), where the grouping of equivalent features corresponds to our relatedness, Ampazis and 
Emmanouilidis (2014), where they exploit Tanimoto similarity, a variation of Tversky’s feature 
similarity, and Heitmann and Hayes (2014), where constrained spreading activation is used.

8. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for user interest propagation in an ontology, consider-
ing property-based similarity and relatedness of concepts and relevance of properties, in order 
to improve accuracy and diversity of the recommendation. We tested our algorithm using two 
datasets: one in the domain of event recommendation, the other in the domain of recipes, in 
order to assess the accuracy of recommendations derived from our property-based propagation 
(with similarity and relatedness as criterions for propagation) with respect to recommendations 
obtained by a state-of-the-art edge-based propagation. We also validated how adding relatedness 
to property-based propagation improves diversity in the results. Finally, we showed how our 
approach can be useful also for cross-domain recommendations (Fernández-Tobìas et al., 2012), 
i.e. for recommending items coming from different domains.

A prerequisite of our approach is a rich ontology with explicitly defined properties for classes. 
A simple taxonomy is not enough. Also, the calculation of similarity and relatedness for classes 
can be complex, but usually most of the user feedback in recommender systems is provided for 
instances, for which the calculation is pretty straightforward.

An important aspect in our approach is how to determine the importance of a property in 
order to weigh it in the propagation. In this paper, we inferred the relevance of a property as its 
capacity to determine the similarity between two entities for a set of users. However, we must 
notice that the importance of a property can change from users to users. For example, in a food 
domain, for one user the cost of food could be more important while for another user the calo-
ries would be important. Thus, as future work, we plan on automatic detection of the property 
importance for each specific user. To do so, we could find the most important properties for each 
user by making the intersection of the properties of the classes the user likes the most or by ex-
ploiting some machine learning approaches for automatic detection, such as the M5P algorithm.

Moreover, we want to combine property-based propagation with edge-based propagation of 
user interests presented in Cena et al. (2013) and to validate the whole approach and compare it 
with traditional spreading activation techniques.

Also, we would like to propagate the user interest also to the range of the property (class and 
the superclasses) of the object the user likes. For example, if the user likes the specific film The 
Ring, which has an object-property has genre with the class Horror as range, we will propagate 
the user interest also to the class Horror and to its superclasses (Action_Movie and Movie).
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As far as values for certain properties are concerned, it would be interesting to see how 
the similarity and relatedness of objects would change in the presence of hierarchical structure 
among these values.

Moreover, since we only consider object type properties in this work, dealing with data type 
properties, such as literals, might be an interesting area for future investigation. In the case, it 
would be necessary to determine when two literal values can be considered equal. For example, 
for string values, exact match could not be enough, since, for example, “New York”, “City of 
New York” and “NY” should be equivalent.

Finally, we are currently experimenting our approach with Linked Open Data (LOD), thus 
using public LOD datasets in order to propagate user interest.
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