CHEMMEDCHEMA

Supporting Information

Synthesis and Biological Evaluation of \mathbf{N}^{2}-Substituted 2,4-Diamino-6-cyclohexylmethoxy-5-nitrosopyrimidines and Related 5-Cyano-NNO-azoxy Derivatives as CyclinDependent Kinase 2 (CDK2) Inhibitors
Daniela Cortese, ${ }^{[a]}$ Konstantin Chegaev, ${ }^{[a]}$ Stefano Guglielmo, ${ }^{[a]}$ Lan Z. Wang, ${ }^{[b]}$ Bernard T. Golding, ${ }^{[c]}$ Céline Cano, ${ }^{[c]}$ and Roberta Fruttero*[a]

cmdc_201600108_sm_miscellaneous_information.pdf

Table of contents

Supporting Experimental Procedures S2-S18

Supporting References S19

Chemistry

Materials and methods. Chemicals were obtained from reputable suppliers used without any further purification. Anhydrous solvents were obtained from Acroseal ${ }^{T M}$ or SureSeal ${ }^{T M}$ and stored under nitrogen. Synthetic-purity solvents dichloromethane (DCM), acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, methanol (MeOH), diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), diisopropyl ether ($i-\mathrm{Pr}_{2} \mathrm{O}$), dimethylformamide (DMF) and 40-60 petroleum ether (PE) were used. Deuterated solvent for NMR analysis were purchased from Sigma-Aldrich. Thin layer chromatography was performed using plates precoated with $\mathrm{Si}_{254} \mathrm{NH}_{2} \mathrm{~F}_{254 \mathrm{~s}}$ or RP-18 $\mathrm{F}_{254 \mathrm{~s}}$ and visualized using ultraviolet light. Purifications were carried out using a Biotage SP4 automated purification system with UV monitoring at 290 nm and collection at 254 nm . Grace Resolv pre-packed flash cartridges were used for normal phase separations. Microwave-assisted synthesis was performed in sealed Biotage microwave vials, using the Biotage Initiator Sixty microwave system. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded at 500 MHz and 125 MHz , respectively, using a Bruker Advance III 500 spectrometer or at 300 MHz and 75 MHz , respectively on a Bruker Advance 300 spectrometer. $\mathrm{CDCl}_{3}, \mathrm{MeOH}-d_{4}$ or DMSO- d_{6} were used as solvents. Chemical shift values (δ) are reported in parts per million (ppm) and are referenced against TMS (tetramethylsilane); multiplicities are indicated by $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quarted, $m=$ multiplet or combination thereof; the prefix $b r=$ broad was used for broadened peaks. Liquid Chromatography-Mass Spectrometry (LC-MS) was carried out on a Waters Acquity UPLC system, with PDA and ELSD employing both positive and negative ionization modes. When a 2 min gradient was used, the sample was eluted on Acquity UPLC BEH C18, 1.7 $\mu \mathrm{m}, 2.1 \times 50$ mm , with a flow rate of $0.6 \mathrm{~mL} / \mathrm{min}$ using $5-95 \% 0.1 \% \mathrm{HCOOH}$ in MeCN . High resolution mass spectra were measured using a Finnigan MAT 95 XP or Finnigan MAT 900 XLT by the EPSRC National Mass Spectrometry Service, University of Wales, Swansea, Singleton Park. Melting points were determined using a Stuart Scientific SMP3 apparatus. Fourier Transform Infrared (FTIR) spectra were recorded on a Bio-Rad FTS 3000MX diamond ATR apparatus. Ultraviolet (UV) absorption data were obtained using a U-2001 Hitachi Spectrophotometer with the sample dissolved in ethanol. Compounds submitted for biological evaluation were obtained with a purity higher than 95%. Purity was determined using a Waters XTerra RP18, $5 \mu \mathrm{~m}(4.6 \times 150 \mathrm{~mm})$ column eluted at $1 \mathrm{~mL} / \mathrm{min}$ under both basic (0.1% aq. ammonia and MeCN) and acidic (0.1% aq. HCOOH and MeCN) conditions with a gradient of $5-100 \%$ over 15 min .

5-Methyl-2-(propan-2-yl)cyclohexyl nitrite (Menthyl nitrite) was prepared following the reported procedure ${ }^{[1]}$ with slight modifications. Product was obtained from L-menthol using
NaNO_{2} in a water/THF mixture and a solution of 4 M HCl . The spectroscopic data are consistent with those reported. ${ }^{[2]} R_{f} 0.85$ (PE); IR $v_{\text {max }} / \mathrm{cm}^{-1}$: 2966, 2936, 2881, 1642; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 0.74\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.89-$ $0.91\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{H} 4)\right), 0.92\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right), 1.14-1.24\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH}_{2}(\mathrm{H} 3)\right.$ and 1 $\times \mathrm{CH}_{2}(\mathrm{H} 6), 1.42-1.49(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}(\mathrm{H} 2)), 1-59-1.75\left(4 \mathrm{H}, 1 \times \mathrm{CH}(\mathrm{H} 5), 1 \times \mathrm{CH}_{2}(\mathrm{H} 4), 1 \times \mathrm{CH}_{2}(\mathrm{H} 3)\right.$ and $\left.1 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.95-2.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}(\mathrm{H} 6), 5.33(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=11.2\right.$ and $4.5 \mathrm{~Hz}, \mathrm{CHO}) ;{ }^{13} \mathrm{C}-$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}): 15.75,20.42,21.81,22.99,25.60,30.95,33.45,41.37$, 46.01, 80.09; MS (CI) m/z (\%): 139 ([M-HONO+H+ ${ }^{+}$).

6-(Cyclohexylmethoxy)-2-[(cyclohexylmethyl)sulfanyl]pyrimidin-4-amine (5). To 6-amino-2-thioxo-2,3-dihydropyrimidin-4(1H)-one $4(1.00 \mathrm{~g}, 6.20 \mathrm{mmol})$ contained in a dry microwave vial was added anhydrous DMF (10 mL). Potassium carbonate ($5.13 \mathrm{~g}, 37.2 \mathrm{mmol}$) and (bromomethyl)cyclohexane ($2.16 \mathrm{~mL}, 2.74 \mathrm{~g}, 15.5 \mathrm{mmol}$) were added, the mixture was degassed with N_{2} and then heated at $140{ }^{\circ} \mathrm{C}$ by microwave irradiation for 16 min . The solvent was removed under reduced pressure and the residue was taken up in water. The product was extracted with DCM $(3 \times 15 \mathrm{~mL})$. The organic phases were combined, washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from 10/90 to 20/80 acetone/PE) to give the title compound as a white solid ($1.65 \mathrm{~g}, 79 \%$). $R_{f} 0.45$ (20/80 Acetone/PE); m.p. 111-112 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ ($\mathrm{EtOH} / \mathrm{nm}$): 253.0, 224.0; IR $v_{\max } / \mathrm{cm}^{-1}: 3392,3293,2915,2842 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ $\delta(\mathrm{ppm}):$: 0.90-1.28 $\left(10 \mathrm{H}, \mathrm{m}, 5 \mathrm{H} \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\left.5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.48-1.89\left(12 \mathrm{H}, \mathrm{m}, 6 \mathrm{H} \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $6 \times$ $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 2.90\left(2 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.00\left(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 5.37(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), $6.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 25.15,25.57,25.91,25.98,29.15$, 32.09, 36.60, 36.82, 37.58, 70.21, 81.59, 165.12, 168.72, 169.29; MS (ES ${ }^{+}$) m/z $336.4[\mathrm{M}+\mathrm{H}]^{+}$. 6-(Cyclohexylmethoxy)-2-[(cyclohexylmethyl)sulfonyl]pyrimidin-4-amine (6). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)thio)pyrimidin-4-amine 5 ($660 \mathrm{mg}, 1.97 \mathrm{mmol}$) in DCM (15 mL) 3-chloroperbenzoic acid ($1.70 \mathrm{~g}, 9.85 \mathrm{mmol}$) was added portionwise. The reaction mixture was stirred at room temperature for 17 h . The solvent was removed under reduced pressure and the residue was partitioned between water $(20 \mathrm{~mL})$ and EtOAc $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were washed with saturated aq. NaHCO_{3}, brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product was purified by flash chromatography (gradient from 10/90 to 20/80 acetone/PE) to give the title compound as a white powder ($404 \mathrm{mg}, 56 \%$). $R_{f} 0.28$ (20/80 Acetone/PE); m.p. $139-140^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 245.0,215.8$; IR $v_{\max } / \mathrm{cm}^{-1}: 3494,3412$, 2923, 2851, 1364 (S=O), 1136 (S=O); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 0.93-1.31$ (10H,
$\mathrm{m}, 5 \mathrm{H} \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $\left.5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.51-1.93\left(12 \mathrm{H}, \mathrm{m}, 6 \mathrm{H} \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\left.6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 3.34(2 \mathrm{H}, \mathrm{d}, J=$ $6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{~S}$), 4.04 ($2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 5.81 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), $7.34\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$); ${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}): 25.15,25.25,25.40,25.90,29.03,31.17,32.27,36.76$, 55.83, 71.45, 86.87, 164.66, 166.07, 169.48; MS (ES+) m/z $368\left[{ }^{+}+\mathrm{H}\right]^{+}$.

2-\{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}propan-1-ol (7a). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($250 \mathrm{mg}, 0.68 \mathrm{mmol}$) contained in a dry microwave vial was added diglyme (3 mL). Ethanolamine ($144 \mu \mathrm{~L}, 146 \mathrm{mg}$, 2.38 mmol) was added, the mixture was degassed with N_{2} and then heated to $170^{\circ} \mathrm{C}$ by microwave irradiation for 3 h . The solvent was removed under reduced pressure and the residue was partitioned between water (20 mL) and EtOAc ($3 \times 15 \mathrm{~mL}$). The organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product was purified by flash chromatography (gradient from $0 / 100$ to $5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid (118 mg , 65 \%). $R_{f} 0.17$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $74-75^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$: 268.6, 238,2, 208.4; IR $v_{\max } / \mathrm{cm}^{-1}: 3428,3322,3274,2918,2851,1552 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 0.90-$ 1.27 (5H, m, $\mathrm{C}_{6} \mathrm{H}_{11}$), 1.59-1.75 (6H, m, $\mathrm{C}_{6} \mathrm{H}_{11}$), 3.21-3.27 (2H, m, CH ${ }_{2} \mathrm{NH}$), 3.43-3.48 (2H, m, $\mathrm{CH}_{2} \mathrm{OH}$), $3.90\left(2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.63$ ($1 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz} \mathrm{OH}$), 5.01 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), 6.02 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 6.15 ($1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 25.25$, 26.03, 29.30, 36.98, 43.37, 60.37, 69.64, 75.85, 162.04, 165.79, 170.01; MS (ES+) m/z 267 $[\mathrm{M}+\mathrm{H}]^{+}$.
(2S)-2-\{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}propan-1-ol (7b). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$) contained in a dry microwave vial was added dry THF (2.5 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(253 \mathrm{mg}, 0.41$ mmol) was added followed by (S)-(+)-2-amino-1-propanol ($223 \mu \mathrm{~L}, 215 \mathrm{mg}, 2.86 \mathrm{mmol}$), the mixture was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 30 min . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a sticky white solid (60 mg , 26 \%). $R_{f} 0.21\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 268.6, 238.6, 208.2; IR $v_{\text {max }} / \mathrm{cm}^{-1}: 3334,3217,2921,2849,1566 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.96-$ $1.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.20\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.86 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.13-1.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.66-1.81(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 3.56\left(1 \mathrm{H}, \mathrm{dd}, J=10.69\right.$ and $\left.7.78 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.72(1 \mathrm{H}, \mathrm{dd}, J=10.70$ and 2.79 Hz , $\mathrm{CH}_{2} \mathrm{OH}$), 3.91-3.99 (2H, m, CH2O), 4.04-4.11 (1H, m, CH), 4.47 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), $4.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $5.63 \mathrm{~Hz}, \mathrm{NH}$), 5.19 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 17.92,25.96,26.65$, $29.97,37.63,50.02,69.91,71.52,78.00,162.56,164.92,171.52$; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 281[\mathrm{M}+\mathrm{H}]^{+}$.
(2R)-2-\{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}propan-1-ol (7c). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$) contained in a dry microwave vial was added dry THF (2.5 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(253 \mathrm{mg}, 0.41$ mmol) was added followed by (R)-(-)-2-amino-1-propanol ($223 \mu \mathrm{~L}, 215 \mathrm{mg}, 2.86 \mathrm{mmol}$), the mixture was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 30 min . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a sticky white solid ($33 \mathrm{mg}, 14 \%$). $R_{f} 0.21\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 269.0, 238.8, 208.2; IR $\mathrm{vmax}_{\mathrm{m}} / \mathrm{cm}^{-1}$: 3334, 3213, 2921, 2850, 1568; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.94-$ $1.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.86 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11-1.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.63-1.83(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J=10.7\right.$ and $\left.7.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.71\left(1 \mathrm{H}, \mathrm{dd}, J=10.7\right.$ and $2.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$), 3.89-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), 4.02-4.11 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$), $4.53\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.88(1 \mathrm{H}, \mathrm{d}, J=5.77 \mathrm{~Hz}$, NH), 5.18 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 17.57,25.80,26.49,29.83$, 37.47, 49.31, 68.16, 71.34, 77.45, 162.10, 165.01, 171.24; MS (ES+) m/z $281[\mathrm{M}+\mathrm{H}]^{+}$.
(2R)-2-\{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}butan-1-ol (7d). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$) contained in a dry microwave vial dry THF (2.5 mL) was added. $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(169 \mathrm{mg}, 0.27$ mmol) was added followed by (R)-(-)-2-amino-1-butanol ($180 \mu \mathrm{~L}, 170 \mathrm{mg}, 1.91 \mathrm{mmol}$), the mixture was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ in the oil bath for 24 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography ($2 / 98 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid ($90 \mathrm{mg}, 59 \%$). $R_{f} 0.24\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $79-80^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 0.84(3 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$), 0.90-1.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}$), 1.31-1.47 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.50-1.80 (7H, m, $6 \times$ $\mathrm{C}_{6} \mathrm{H}_{11}$ and $1 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.26-3.46 (2H, m, $\mathrm{CH}_{2} \mathrm{OH}$), 3.62-3.80 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{3}$), 3.80-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $4.59(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}), 5.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), $5.88(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{NH}), 5.99$ (2H, s, NH2); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.67,23.90,25.33,26.09,29.37,37.03$, 53.45, 63.18, 69.70, 75.81, 161.99, 165.75, 170.00; MS (ES+) m/z 295.5 [M+H] ${ }^{+}$.

2-\{[4-amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}-3-methylbutan-1-ol (7e). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($300 \mathrm{mg}, 0.82 \mathrm{mmol}$) contained in a dry microwave vial was added diglyme (3 mL). 2-amino-3-methyl-1-butanol (315 $\mu \mathrm{L}, 295 \mathrm{mg}, 2.86 \mathrm{mmol}$) was added, the solution was degassed with N_{2} and then heated to 170 ${ }^{\circ} \mathrm{C}$ by microwave irradiation for 12 h . The solvent was removed under reduced pressure and the residue was partitioned between water (20 mL) and EtOAc $(3 \times 15 \mathrm{~mL})$. The organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The crude product was purified by flash
chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid ($131 \mathrm{mg}, 52 \%$). $R_{f} 0.2\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $110-111{ }^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$: 269.4, 239.0, 208.2; IR vmax $/ \mathrm{cm}^{-1}$: 3441, 3341, 3238, 2922, 2850, 1572; ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO-d d_{6}) (ppm): $0.85\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right) 0.90-1.02(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.09-1.29\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.59-1.77\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.84-1.94\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right)$ 3.39$3.46\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.69-3.76\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{OH}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J=10.2\right.$ and $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right)$, $3.94\left(1 \mathrm{H}\right.$, br.s., $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.47(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{OH}), 5.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), $5.77(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9$ Hz, NH), 5.95 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm})$: 18.47, 19.52, 25.26, 26.04, 28.53, 29.30, 36.97, 56.80, 61.48, 69.62, 75.76, 162.25, 165.71, 169.93; MS (ES+) m/z 309 $[\mathrm{M}+\mathrm{H}]^{+}$.
3-\{[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]amino\}propan-1-ol (7f). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($250 \mathrm{mg}, 0.68 \mathrm{mmol}$) contained in a dry microwave vial was added dry THF (2.5 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(211 \mathrm{mg}, 0.34$ mmol) was added followed by 3 -amino-1-propanol ($201 \mu \mathrm{~L}$, $179 \mathrm{mg}, 2.38 \mathrm{mmol}$), the solution was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 30 min . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid ($77 \mathrm{mg}, 40 \%$). $R_{f} 0.18\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $108-109^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$: 269.0, 238.4, 208.0; IR $v_{\max } / \mathrm{cm}^{-1}: 3439,3334,3249,3207,3095,2918,2849,1574 ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 0.93-1.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.11-1.32\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.62-1.86(8 \mathrm{H}$, $\mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $\left.2 \times \mathrm{CH}_{2} \mathrm{OH}\right), 3.50-3.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.60-3.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.93$ ($2 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$), 4.47 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), 4.90 ($1 \mathrm{H}, \mathrm{t}, J=6.5 \mathrm{~Hz}, \mathrm{NH}$) 5.17 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 25.89,26.60,29.92,33.52,37.11,37.56,58.34,71.47$, 77.37, 162.94, 165.07, 171.58; MS (ES ${ }^{+}$m/z 281 [M+H] ${ }^{+}$.
N^{2}-(2-Aminocyclohexyl)-6-(cyclohexylmethoxy)pyrimidine-2,4-diamine (7g). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($400 \mathrm{mg}, 1.09 \mathrm{mmol})$ contained in a dry microwave vial was added dry THF (3 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(68 \mathrm{mg}, 0.11$ mmol) was added followed by (\pm)-trans-1,2-diaminocyclohexane ($436 \mathrm{mg}, 3.81 \mathrm{mmol}$) and the solution was degassed with N_{2} then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 6.5 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $5 / 95$ to $30 / 70 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid (203 mg , 58%). $R_{f} 0.23$ ($10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $90-91^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}$): 266.8, 209.0; IR $v_{\mathrm{max}} / \mathrm{cm}^{-1}: 3483,3432,3354,2922,2851,1569$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- d_{6})
$\delta(\mathrm{ppm}): 0.85-1.26\left(9 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\left.4 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.53-1.75\left(10 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times$ $\mathrm{C}_{6} \mathrm{H}_{11}$), 2.57-2.65 (1H, m, CHNH2), 3.39-3.51 (1H, m, CHNH), 3.81-3.90 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), 3.91$4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.19\left(2 \mathrm{H}\right.$, br. s., $\left.\mathrm{NH}_{2}\right), 5.02\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}\right.$ arom.), $6.02\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.22(1 \mathrm{H}$, $\mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{NH}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 24.52,24.80,25.24,25.76,26.03$, 29.33, 31.87, 36.95, 53.65, 55.56, 69.71, 75.91, 162.04, 165.75, 169.94; MS (ES ${ }^{+}$) m/z 320 [$\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl
\{2-[(4-amino-6-(cyclohexylmethoxy)pyrimidin-2-yl)amino]cyclohexyl\} carbamate (10). To N^{2}-(2-aminocyclohexyl)-6-(cyclohexylmethoxy)pyrimidine-2,4-diamine 7 g $(230 \mathrm{mg}, 0.721 \mathrm{mmol})$ in dry THF (3 mL) was added di-tert-butyl dicarbonate ((Boc) $\left.)_{2} \mathrm{O}\right)(173 \mathrm{mg}$, $0.793 \mathrm{mmol})$ at room temperature. After 2 h the reaction was complete and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography (gradient from $0 / 100$ to $5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid (200 mg , 66 \%). $R_{f} 0.24$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $86-87^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$: 269.6, 238.6, 209.0; IR $v_{\max } / \mathrm{cm}^{-1}$: 3343, 3238, 2922, 2851, 1697, 1571; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO-d $\mathrm{d}_{6} \delta(\mathrm{ppm}): 0.88-$ $1.27\left(9 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\left.4 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.55-2.03\left(10 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $\left.4 \times \mathrm{C}_{6} \mathrm{H}_{11}\right), 3.14-3.26$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}$), 3.40-3.56 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}$), 3.79-3.99 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $5.00(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), 5.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{NH}$), 6.02 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$), $6.66\left(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}, \mathrm{NH}\right.$); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125$ MHz, DMSO-d $d_{6} \delta(\mathrm{ppm}): 24.50,25.21,26.03,28.16,29.30,31.87,36.91,54.18,54.49,69.73$, $75.88,77.53,155.88,161.85,165.77,169.87$; MS (ES ${ }^{+}$) m/z $420[\mathrm{M}+\mathrm{H}]^{+}$.
2-\{1-[4-Amino-6-(cyclohexylmethoxy)pyrimidin-2-yl]piperidin-4-yl\}ethan-1-ol (7h). To 6-(cyclohexylmethoxy)-2-((cyclohexylmethyl)sulfonyl)pyrimidin-4-amine 6 ($200 \mathrm{mg}, 0.54 \mathrm{mmol}$) contained in a dry microwave vial was added dry THF (2 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(169 \mathrm{mg}, 0.27$ mmol) was added followed by 4-piperydinethanol ($246 \mathrm{mg}, 1.91 \mathrm{mmol}$), the solution was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 7 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $1 / 99$ to $2 / 98 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid (90 mg , 49 \%). $R_{f} 0.25$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $89-90^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , DMSO-d6) $\delta(\mathrm{ppm}$): 0.84-1.30 (9H, m, $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{CH}_{2}$ piperidine), 1.31-1.41 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right), 1.53-1.76$ ($7 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $1 \times \mathrm{CH}$ piperidine), 2.60-2.76 (2H, m, CH2N), 3.40-3.50 (2H, m, $\mathrm{CH}_{2} \mathrm{OH}$), $3.91\left(2 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.36(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.7 \mathrm{~Hz}, \mathrm{OH}), 4.47-4.61(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{~N}), 5.00(1 \mathrm{H}$, s, CH arom.), $6.06\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})$: 25.37, 26.07, 29.42, 31.86, 32.57, 38.61, 40.05, 43.58, 58.24, 69.68, 75.48, 160.94, 165.79, 169.94; MS (ES+) m/z 335 $[\mathrm{M}+\mathrm{H}]^{+}$. contained in a dry microwave vial was added dry THF (2 mL). $\mathrm{Yb}\left(\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)_{3}(169 \mathrm{mg}, 0.27$ mmol) was added followed by pyrrolidine ($159 \mu \mathrm{~L}, 138 \mathrm{mg}, 1.91 \mathrm{mmol}$), the solution was degassed with N_{2} and then heated to $120^{\circ} \mathrm{C}$ by microwave irradiation for 2 h . The solvent was removed under reduced pressure and the crude product was purified by flash chromatography (gradient from $1 / 99$ to $2 / 98 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a white solid (120 mg , 80%). $R_{f} 0.3$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $140-141^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta(\mathrm{ppm})$: 0.90-1.27 (5H, m, $\left.\mathrm{C}_{6} \mathrm{H}_{11}\right), 1.61-1.73\left(6 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right)$, 1.81-1.85 (4H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ pyrrolidine), 3.34$3.39\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{~N}\right.$ pyrrolidine), $3.94\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$), 5.02 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$ arom.), 6.02 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm})$: 24.99, 25.34, 26.07, 29.41, 37.14, 46.04, 69.52, 75.28, 160.00, 165.74, 169.71; MS (ES ${ }^{+}$m/z 277 [M+H] ${ }^{+}$.

General procedure for synthesis of nitroso derivatives 8. The corresponding 6-(cyclohexylmethoxy)- N^{2}-pyrimidine-2,4-diamine 7 was dissolved in DMSO and the appropriate alkyl nitrite (2.5 eq.) was added at r.t. The reaction mixture was stirred for 24 h when 200 mL of $\mathrm{H}_{2} \mathrm{O}$ were added and product was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$. The organic fractions were combined, washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product purified by flash chromatography.

2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]ethan-1-ol

(8a).
Prepared starting from 7a ($44 \mathrm{mg}, 0.165 \mathrm{mmol}$), using isopentyl nitrite ($56 \mu \mathrm{~L}, 49 \mathrm{mg}, 0.413$ mmol). The crude product was purified by flash chromatography (gradient from 1/99 to 20/80 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($43 \mathrm{mg}, 88 \%$). $R_{f} 0.2$ ($5 / 95$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $146-148^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm})$: 339.2, 237.6; IR $v_{\max } / \mathrm{cm}^{-1}: 3236,3144$, 2923, 2852, 1569. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=$ $2 / 1$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 0.99-1.32\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and 5 $\times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.61-1.91 (12H, m, $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 3.35-3.40 (2H, m, CH2NH conformer 1), 3.41-3.46 (2H, m, CH2NH conformer 2), 3.49-3.57 (4H, $\mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), $4.29\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1), $4.35\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 2), 4.70-4.76 (2H, m, $1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), $7.89\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2$), 8.16(1 \mathrm{H}, \mathrm{t}, J=5.9 \mathrm{~Hz}$, NH conformer 2), 8.19 ($1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}$ conformer 1), 8.26 ($1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}$, NH conformer 1), $9.93\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2), $10.28\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 1); ${ }^{13} \mathrm{C}-$

NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}):$ conformer 1: 25.14, 25.95, 29.14, 36.69, 43.69, 59.32, 71.47, 139.54, 150.57, 161.49, 169.94; conformer 2: 25.24, 25.95, 29.20, 36.91, 43.88, 59.70, 71.55, 139.67, 150.57, 161.93, 170.71; MS (ES ${ }^{+}$) m/z $296[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]+296.1717$, found 296.1717 .
(2S)-2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]propan-1-ol
(8b).
Prepared starting from 7b ($55 \mathrm{mg}, 0.196 \mathrm{mmol}$), using menthyl nitrite ($127 \mathrm{mg}, 0.687 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($40 \mathrm{mg}, 66 \%$). $R_{f} 0.3$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $72-74^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 339.4,238.0$; IR $v_{\max } / \mathrm{cm}^{-1}: 3249,2923,2851$, 1558. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3,{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}):$ 1.01-1.34 $\left(16 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $3 \times \mathrm{CH}_{3}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $3 \times \mathrm{CH}_{3}$ conformer 2), 1.53-2.02 $\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), $2.84\left(2 \mathrm{H}\right.$, br. s, $1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), 3.60-3.68 $\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH}_{2} \mathrm{OH}\right.$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2$)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}, J=11.0\right.$ and $3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$ conformer 1), $3.85\left(1 \mathrm{H}, \mathrm{dd}, J=10.7\right.$ and $3.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$ conformer 2$) 4.21-4.28(1 \mathrm{H}, \mathrm{m}, \mathrm{CHNH}$ conformer 1), 4.30-4.37 ($4 \mathrm{H}, \mathrm{m}, 2 \mathrm{xCH}_{2} \mathrm{O}$ conformer $1,1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2 and $1 \times \mathrm{CHNH}$ conformer 2), $4.41\left(1 \mathrm{H}, \mathrm{dd}, J=10.4\right.$ and $6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2$), 5.59$ (1 H, br. s, NH_{2} conformer 1), $5.81\left(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}\right.$, NH conformer 1), $6.00\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 2), $6.54(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}$ conformer 2), $10.29\left(1 \mathrm{H}\right.$, br. s, NH_{2} conformer 2$), 10.61$ (1 H , br. s, NH_{2} conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$: conformer $1: 17.33,25.79,26.53,29.88,37.23,49.55,67.23,73.07$, 140.20, 150.81, 162.23, 171.12; conformer 2: 17.33, 25.86, 26.50, 29.98, 37.45, 49.44, 66.36, $73.28,140.07,151.08,162.28,171.80 ; \mathrm{MS}\left(E S^{+}\right) \mathrm{m} / \mathrm{z} 310[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]+310.1874$, found 310.1876 .
(2R)-2-[(4-Amino-6-cyclohexylmethoxy-5-nitrosopyrimidin-2-yl)amino]propan-1-ol
(8c).
Prepared starting from 7 c ($46 \mathrm{mg}, 0.164 \mathrm{mmol}$), using menthyl nitrite ($106 \mathrm{mg}, 0.575 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($30 \mathrm{mg}, 60 \%$). $R_{f} 0.3$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $94-96{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 339.6,237.8$; IR $v_{\max } / \mathrm{cm}^{-1}: 3235,2920$, 2848, 1563. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.00-1.35\left(16 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $3 \times \mathrm{CH}_{3}$ conformer 1, 5 $\times \mathrm{C}_{6} \mathrm{H}_{11}$ and $3 \times \mathrm{CH}_{3}$ conformer 2), 1.65-2.02 $\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), $2.58(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{OH}$ conformer 2$), 2.78(1 \mathrm{H}, \mathrm{br}$. s, OH conformer 1) 3.61-3.68 (2H, $\mathrm{m}, 1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), $3.77(1 \mathrm{H}$, dd, $J=10.9$ and 3.6 Hz , $\mathrm{CH}_{2} \mathrm{OH}$ conformer 1), $3.84\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.9\right.$ and $3.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}$ conformer 2) 4.20-4.28(1H,
m, $\mathrm{C} H \mathrm{NH}$ conformer 1), 4.31-4.37 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}$ conformer $1,1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2 and 1 $\times \mathrm{CHNH}$ conformer 2$), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J=10.4\right.$ and $6.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2) $5.58(1 \mathrm{H}, \mathrm{br} . \mathrm{s}$, NH_{2} conformer 1), $5.80(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{NH}$ conformer 1$), 5.85\left(1 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 2), $6.36(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 10.28\left(1 \mathrm{H}, \mathrm{br} . \mathrm{d}, J=4.7 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2), 10.61 (1 H , br. s, NH_{2} conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm): conformer 1: 17.34, 25.79, $26.53,29.88,37.23,49.54,67.25,73.07,140.18,150.75,162.21,171.12$; conformer $2: 17.34$, 25.87, 26.50, 29.98, 37.46, 49.42, 66.44, 73.29, 140.15, 151.02, 162.31, 171.86; MS (ES ${ }^{+}$) m/z $310[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 310.1874$, found 310.1875.
(2R)-2-\{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]amino\}butan-1-ol (8d). Prepared starting from 7d ($70 \mathrm{mg}, 0.238 \mathrm{mmol}$), using isopentyl nitrite ($80 \mu \mathrm{~L}, 70 \mathrm{mg}, 0.595$ mmol). The crude product was purified by flash chromatography ($2 / 98 \mathrm{MeOH}^{\text {in } \mathrm{CH}_{2} \mathrm{Cl}_{2} \text {) to give }}$ the title compound as a purple solid ($58 \mathrm{mg}, 75 \%$). $R_{f} 0.27\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $84-86{ }^{\circ} \mathrm{C}$. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=2 / 1$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 0.78-0.92\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right.$ conformer 1 and $3 \times \mathrm{CH}_{3}$ conformer 2), 0.94-1.34 (10H, m, $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.36-1.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}$ conformer 1) 1.54-1.92 ($14 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$ conformer 2), 3.38-3.49 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.86-4.07 (2H, m, $1 \times \mathrm{CHNH}$ conformer 1 and $1 \times \mathrm{CHNH}$ conformer 2$), 4.24-4.42\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.66-4.78 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{OH}$ conformer $1,1 \times \mathrm{OH}$ conformer 2$), 7.81$ (1 H , br. d, $J=4.0 \mathrm{~Hz}, \mathrm{NH}_{2}$, conformer 2), $8.00(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NH}$, conformer 2), 8.06-8.18 $\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{NH}\right.$, conformer $1,1 \times \mathrm{NH}_{2}$, conformer 1) $9.96\left(1 \mathrm{H}\right.$, br. d, $J=4.0 \mathrm{~Hz}, \mathrm{NH}_{2}$, conformer 2), 10.27 (1 H , br. d, $J=4.0 \mathrm{~Hz} \mathrm{NH}$, conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}):$ conformer 1: 10.50, 23.53, 25.20, 26.00, 29.19, 36.74, 54.60, 62.60, 71.58, 139.56, 150.75, 161.63, 169.89; conformer 2: 10.67, 23.86, 25.30, 26.00, 29.19, 36.92, 55.26, 62.97, 71.58, 139.66, 150.66, 162.10, 170.59; MS (ES ${ }^{+}$) m/z $324[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 324.2030, found 324.2044.

2-\{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]amino\}-3-methylbutan-1-ol (8e). Prepared starting from $7 \mathrm{e}(70 \mathrm{mg}, 0.227 \mathrm{mmol})$, using menthyl nitrite ($147 \mathrm{mg}, 0.795$ mmol). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($43 \mathrm{mg}, 56 \%$). $R_{f} 0.3$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $176-177{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 340.4,238.4 ; \mathrm{IR}^{\mathrm{Vmax}} / \mathrm{cm}^{-1}: 3242,2922$, 2851, 1561. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 0.83-0.92\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{3}\right.$ conformer 1 and $6 \times \mathrm{CH}_{3}$ conformer 2), 1.00-1.32 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.62-1.95
$\left(14 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $1 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $1 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ conformer 2), 3.43-3.58 $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right.$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2$)$, 3.87-3.93 ($1 \mathrm{H}, \mathrm{m}$, CHNH conformer 1), 3.95-4.02 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{NH}$ conformer 2), $4.25-4.35\left(3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2$), 4.39\left(1 \mathrm{H}, \mathrm{dd}, J=10.6\right.$ and $6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.57-4.63 (2H, m, $1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2$), 7.76(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}$, NH_{2} conformer 2), $8.01\left(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{NH}\right.$ conformer 2), 8.08-8.13 $\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{NH}_{2}\right.$ conformer 1 and $1 \times \mathrm{NH}$ conformer 1$), 9.96\left(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2$), 10.25(1 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}$, NH_{2} conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}):$ conformer 1: 18.76, 19.30, 25.13, 25.94, 28.63, 29.13, 36.70, 58.32, 60.91, 71.48, 139.51, 150.63, 161.82, 169.80; conformer 2 : 18.45, 19.52, 25.21, 25.91, 29.04, 29.24, 36.82, 58.78, 61.08, 71.48, 139.60, 150.56, 162.25, 170.45; MS (ES ${ }^{+}$) m/z $338[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 338.2187$, found 338.2187.

3-\{[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]amino\}propan-1-ol
Prepared starting from 7 f ($130 \mathrm{mg}, 0.464 \mathrm{mmol}$), using menthyl nitrite ($301 \mathrm{mg}, 1.625 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from 0/100 to 5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($80 \mathrm{mg}, 56 \%$). R 0.2 ($5 / 95$ $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $168-169{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 339.2,238.2 ; \mathrm{IR} \nu_{\max } / \mathrm{cm}^{-1}: 3301,2921$, 2846, 1580. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=2 / 1$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 1.00-1.32\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.62-1.91 ($16 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and 2 $\times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ conformer 2), 3.33-3.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}$ conformer 1), 3.40-3.50 (6H, m, $2 \times$ $\mathrm{CH}_{2} \mathrm{OH}$ conformer $1,2 \times \mathrm{CH}_{2} \mathrm{OH}$ and $2 \times \mathrm{CH}_{2} \mathrm{NH}$ conformer 2), $4.28\left(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1), $4.36\left(2 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 2$), 4.46(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{OH}$ conformer 1), $4.49(1 \mathrm{H}, \mathrm{t}, J=5.1 \mathrm{~Hz}, \mathrm{OH}$ conformer 2$), 7.85\left(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2), 8.16$8.25\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{NH}_{2}\right.$ conformer 1 and $1 \times \mathrm{NH}$ conformer 2$)$, $8.33(1 \mathrm{H}, \mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{NH}$ conformer 1), $9.93\left(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2$), 10.29\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 1$)$; ${ }^{13} \mathrm{C}-$ NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta(\mathrm{ppm}):$ conformer 1: 25.14, 25.95, 29.14, 31.94, 36.70, 38.38, 58.44, 71.49, 139.50, 150.61, 161.31, 169.88; conformer 2: 25.22, 25.93, 29.19, 32.51, 36.86, $38.55,58.50,71.55,139.85,150.61,161.77,170.17$; MS (ES +) $\mathrm{m} / \mathrm{z} 310[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 310.1874$, found 310.1874 .
tert-Butyl \{2-[(4-amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl)amino]cyclohexyl\} carbamate (11). Prepared starting from 10 ($200 \mathrm{mg}, 0.477 \mathrm{mmol}$), using menthyl nitrite (309 $\mathrm{mg}, 1.67 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from 0/100 to $2 / 98 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($140 \mathrm{mg}, 65 \%$). $R_{f} 0.4$
(2.5/97.5 MeOH/CH2 Cl_{2}); m.p. $119-120{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 341.0,237.8$, 205.2; IR $v_{\mathrm{max}} / \mathrm{cm}^{-1}: 3294,2922,2851,1688,1562$. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=2 / 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}):$ 0.97-1.42 (36H, m,5× $\mathrm{C}_{6} \mathrm{H}_{11}, 4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $9 \times \mathrm{CH}_{3}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}, 4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $9 \times \mathrm{CH}_{3}$ conformer 2), 1.60$1.92\left(20 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 3.33$3.41(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH} \mathrm{NHCO}$ conformer 1 and $1 \times \mathrm{CHNHCO}$ conformer 2), 3.69-3.85 ($2 \mathrm{H}, \mathrm{m}, 1 \times$ CHNH conformer 1 and $1 \times \mathrm{CHNH}$ conformer 2), 4.20-4.31 ($3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.35-4.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), $6.50(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NHCO}$ conformer 2), $6.57(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{NHCO}$ conformer 1$), 7.81\left(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2), $7.97(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 8.00(1 \mathrm{H}, \mathrm{d}, J=8.6 \mathrm{~Hz}, \mathrm{NH}$ conformer 1), $8.12\left(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 1$), 9.94\left(1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2$), 10.27$ ($1 \mathrm{H}, \mathrm{d}, J=4.2 \mathrm{~Hz}, \mathrm{NH}_{2}$ conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ (ppm): conformer 1: 24.36, 24.55, 25.11, 25.94, 28.07, 29.11, 31.21, 31.99, 36.61, 53.34, 55.12, 71.41, 77.54 , 139.54, 150.62, 155.60, 161.23, 169.85; conformer 2: 24.55, 24.50, 25.23 (C-1, C-5), 25.96, 28.08, 29.34, 31.24, 32.03, 36.92, 53.30, 55.05, 71.71, 77.54, 139.66, 150.57, 155.60, 161.62, 169.79; MS (ES ${ }^{+}$) m/z $449[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 449.2871$, found 449.2861.
\boldsymbol{N}^{2}-(2-Aminocyclohexyl)-6-cyclohexylmethoxy-5-nitrosopyrimidine-2,4-diamine (8g). To 11 ($138 \mathrm{mg}, 0.308 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added TFA ($2 \mathrm{~mL} / \mathrm{mmol}$). The reaction was stirred at r.t. for 2 h . The solvent was removed under reduced pressure then the free base was triturated with saturated aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and the product extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product purified by flash chromatography (gradient from 0/100 to 5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($73 \mathrm{mg}, 68 \%$). $R_{f} 0.25$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $122-123^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 341.0; IR $\nu_{\max } / \mathrm{cm}^{-1}: 3235,3128,2918$, 2847, 1561. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5: 2$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 1.00-1.32\left(18 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.60-1.93 $\left(24 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}, 4 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $2 \times \mathrm{NH}_{2} \mathrm{CH}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}, 4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $2 \times \mathrm{NH}_{2} \mathrm{CH}$ conformer 2), 2.57-2.65 (2H, m, $1 \times \mathrm{CHNH}_{2}$ conformer 1 and $1 \times \mathrm{CH} \mathrm{NH}_{2}$ conformer 2), 3.54-3.64 $(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CHNH}$ conformer 1 and $1 \times$ CHNH conformer 2), 4.26-4.34 ($3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.43 (1 H , dd, $J=10.6$ and $6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), $7.78\left(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2), $8.14\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 1), $8.20(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 8.28(1 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{NH}$ conformer 1$), 9.96\left(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}, \mathrm{NH}_{2}\right.$ conformer 2$), 10.27(1 \mathrm{H}, \mathrm{d}, J=4.4$
$\mathrm{Hz}, \mathrm{NH}_{2}$ conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})$: conformer 1: 24.53, 24.70, 25.12, 25.94, 29.14, 31.40, 34.27, 36.66, 53.36, 57.24, 71.52, 139.57, 150.68, 161.52, 169.85; conformer 2: 24.63, 24.75, 25.19, 25.94, 29.28, 31.88, 34.37, 36.85, 53.19, 57.24, 71.57, 139.65, 150.58, 161.89, 170.52; MS (ES ${ }^{+}$) m/z $349[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 349.2347 , found 349.2348 .

2-\{1-[4-Amino-6-(cyclohexylmethoxy)-5-nitrosopyrimidin-2-yl]piperidin-4-yl\}ethan-1-ol

(8 h). Prepared starting from $7 \mathrm{~h}(80 \mathrm{mg}, 0.240 \mathrm{mmol}$), using isopentyl nitrite ($80 \mu \mathrm{~L}, 70 \mathrm{mg}, 0.60$ mmol). The crude product was purified by flash chromatography (gradient from 2/98 to 5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($60 \mathrm{mg}, 69 \%$). $R_{f} 0.3$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. 204-205 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 0.98-1.33(9 \mathrm{H}, \mathrm{m}, 5 \times$ $\mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{CH}_{2}$ piperidine), 1.33-1.42 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\right)$, 1.57-1.91 $\left(7 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}, 1 \times\right.$ CH piperidine), 2.86-3.07 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$), 3.41-3.51 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $4.31(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.1 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), $4.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.0 \mathrm{~Hz}, \mathrm{OH}), 4.68-4.84\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 8.06\left(1 \mathrm{H}, \mathrm{d}, J=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}\right)$ 10.07 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.4 \mathrm{~Hz}, \mathrm{NH}_{2}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 25.28(\mathrm{C}-1, \mathrm{C}-5), 25.95$ (C-6), 29.25 (C-2, C-4), 31.78 ($2 \times$ C-piperidine), 32.08 (C-14), 36.91 (C-3), 38.82 (C-17), 44.15 (C-piperidine), 44.52 (C-piperidine) $58.14(\mathrm{C}-18), 71.58(\mathrm{C}-7), 139.03$ (C-arom.), 150.36 (Carom.), 159.06 (C-arom.), 170.13 (C-arom.); MS (ES ${ }^{+}$) m/z $364[M+H]^{+}$.

6-(Cyclohexylmethoxy)-5-nitroso-2-(pyrrolidin-1-yl)pyrimidin-4-amine (8i). Prepared

 starting from $\mathbf{7 i}(100 \mathrm{mg}, 0.360 \mathrm{mmol})$, using isopentyl nitrite ($121 \mu \mathrm{~L}, 105 \mathrm{mg}, 0.91 \mathrm{mmol})$. The crude product was purified by flash chromatography ($1 / 99 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a purple solid ($86 \mathrm{mg}, 78 \%$). $R_{f} 0.4\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $172-173{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-$ NMR (300 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}): 1.04-1.27\left(5 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{11}\right), 1.63-1.83\left(10 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{CH}_{2} \mathrm{CH}_{2}$ pyrrolidine), 3.49-3.53 (2 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$ pyrrolidine), 3.61-3.66 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}$ pyrrolidine), $4.33\left(2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 8.10\left(1 \mathrm{H}, \mathrm{d}, J=4.3 \mathrm{~Hz}, \mathrm{NH}_{2}\right), 10.13(1 \mathrm{H}, \mathrm{d}, J=4.3$ $\left.\mathrm{Hz}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): \delta 24.58,24.71,25.25,25.95,29.26,36.89$, 47.03, 47.23, 71.48, 139.23, 150.27, 158.46, 169.65; MS (ES ${ }^{+}$) m/z $306[\mathrm{M}+\mathrm{H}]^{+}$.General procedure for the synthesis of cyano-NNO-azoxyderivatives. To a stirred suspension of the nitroso species (1 eq.) and cyanamide ($\mathrm{NH}_{2} \mathrm{CN}$) (3 eq.) in $\mathrm{CH}_{3} \mathrm{CN}$, (diacetoxyiodo)benzene (IBA) (2 eq.) was added portion-wise at r.t. The reaction mixture gradually changed in colour from purple to yellow. After 2 h solvent was removed under reduced pressure and the crude product was purified by flash chromatography.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(2-hydroxyethyl)amino]-6-

cyclohexylmethoxypyrimidine (9a). Prepared starting from 8a ($58 \mathrm{mg}, 0.197 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from $2 / 98$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid ($33 \mathrm{mg}, 50 \%$). $R_{f} 0.3\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $161-162^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 397.6,247.8,209.0$; IR $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}: 3360,2924,2851,2197$, 1558. The compound exists as two conformers, conformer $1 /$ Conformer 2 ratio $=2 / 1$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta(\mathrm{ppm}):$: 0.99-1.30 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.60-1.80 (12H, m, $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 3.32-3.37 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{NH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{NH}$ conformer 2), 3.47-3.53 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), $4.13\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1), 4.19 ($2 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.67-4.72 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), $7.83(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 7.93(1 \mathrm{H}, \mathrm{t}, J=5.7 \mathrm{~Hz}$, NH conformer 1), 8.05 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$ conformer 2), 8.29 ($2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}$ conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}):$ conformer $1: 25.17,22.93,28.96,36.49,43.51,59.36,72.20,106.20,112.44$, 159.15, 159.18, 163.64; conformer 2: 25.26, 25.93, 29.02, 36.66, 43.74, 59.67, 72.20, 106.14, 112.36, 158.73, 159.48, 164.23; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 336[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{2} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 336.1779, found 336.1782.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-\{[(2S)-1-hydroxypropan-2-yl]amino\}-6-

cyclohexylmethoxypyrimidine (9b). Prepared starting from $8 \mathrm{bb}(40 \mathrm{mg}, 0.129 \mathrm{mmol})$. The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid ($35 \mathrm{mg}, 78 \%$). $R_{f} 0.4$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $165-167^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{EtOH} / \mathrm{nm}): 400.0,247.6,207.2$; IR $v_{\max } / \mathrm{cm}^{-1}: 3346$, 2922, 2850, 2191, 1554. The compound exists as two conformers, conformer 1 / Conformer 2 ratio $=2 / 1 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 0.98-1.29\left(16 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $3 \times \mathrm{CH}_{3}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $3 \times \mathrm{CH}_{3}$ conformer 2), 1.60-1.80 ($12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 3.33-3.36 (2H, m, $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.33-3.36 (2H, m, $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.39.3.45 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.97-4.09 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CHNH}$ conformer 1 and $1 \times \mathrm{CHNH}$ conformer 2), $4.13\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1), $4.19(2 \mathrm{H}$, d, $J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.69-4.74 (2H, m, $1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), $7.68(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 7.79(1 \mathrm{H}, \mathrm{d}, J=8.3 \mathrm{~Hz}, \mathrm{NH}$ conformer 1), $8.01(2 \mathrm{H}$, br. s, NH_{2} conformer 2), $8.28\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO- d_{6}) $\delta(\mathrm{ppm})$: conformer 1: 17.00, 25.17, 25.95, 28.97, 36.49, 48.56, 64.09, 72.23, 106.15, 112.52, 158.64, 159.22, 163.65; conformer 2: 17.06, 25.28, 25.94, 29.02, 36.68, 49.10, 64.27, 72.23, 106.15,
112.52, 158.71, 159.02, 163.69; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 350[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 350.1935 , found 350.1937 .

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-\{[(2R)-1-hydroxypropan-2-yl]amino\}-6-

cyclohexylmethoxypyrimidine (9c). Prepared starting from 8c ($30 \mathrm{mg}, 0.097 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from 0/100 to 10/90 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid ($26 \mathrm{mg}, 76 \%$). R 0.4 (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $172-173{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 400.0,249.2 ; \mathrm{IR} \nu_{\max } / \mathrm{cm}^{-1}: 3345,3300$, 2922, 2849, 2190. The compound exists as two conformers, conformer $1 /$ Conformer 2 ratio = $5 / 3$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}):$ 1.06-1.38 $\left(16 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $3 \times \mathrm{CH}_{3}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $3 \times \mathrm{CH}_{3}$ conformer 2), 1.67-1.89 $\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 3.51-3.61 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 4.13$4.21\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right.$ and $1 \times \mathrm{CH} \mathrm{NH}$ conformer $1,1 \times \mathrm{CH} \mathrm{NH}$ conformer 2$), 4.25(1 \mathrm{H}, \mathrm{d}, J=$ 6.0 Hz, CH2O conformer 2); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$: conformer 1: 17.17, 26.88, $27.53,30.71,38.46,49.97,66.21,74.14,108.10,113.47,160.89,161.18,165.69$; conformer 2 : 17.41, 26.94, 27.53, 30.74, 38.62, 50.32, 66.21, 74.37, 108.10, 113.29, 160.98, 161.18, 166.34 ; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 350[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HMRS}$ calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 350.1935$, found 350.1937.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-\{[(2R)-1-hydroxybutan-2-yl]amino\}-6-

cyclohexylmethoxypyrimidine (9d). Prepared starting from 8d (170 mg, 0.526 mmol). The crude product was purified by flash chromatography (gradient from $0 / 100$ to $5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid ($90 \mathrm{mg}, 47 \%$). $R_{f} 0.33\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl} 2\right.$); m.p. $152-154{ }^{\circ} \mathrm{C} ; \mathrm{UV} \lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 400.0,248.0,207.8 ; \mathrm{IR}_{\mathrm{max}} / \mathrm{cm}^{-1}: 3341,2922,2850,2192$, 1554. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta(\mathrm{ppm}): 0.84\left(6 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \times \mathrm{CH}_{3}\right.$ conformer 1 and $3 \times \mathrm{CH}_{3}$ conformer 2), 1.00-1.28 (10H, m, $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.36-1.46(2H, m, $\mathrm{CH}_{3} \mathrm{CH}_{2}$ conformer 1), 1.57-1.78 $\left(14 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}$ conformer 2), 3.36-3.45 (4H, m, $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.82$3.93\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CH} \mathrm{NH}\right.$ conformer 1 and $1 \times \mathrm{CH} \mathrm{NH}$ conformer 2), $4.14\left(2 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1), 4.16-4.22 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), $4.66(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{OH}$ conformer 1$)$, $4.67(1 \mathrm{H}, \mathrm{t}, J=5.5 \mathrm{~Hz}, \mathrm{OH}$ conformer 2$), 7.65(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}, \mathrm{NH}$ conformer 1$), 7.76(1 \mathrm{H}, \mathrm{d}$, $J=8.9 \mathrm{~Hz}, \mathrm{NH}$ conformer 1), $8.01\left(2 \mathrm{H}, \mathrm{br}\right.$. s, NH_{2}, conformer 2), $8.25\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$, conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm})$: conformer 1: 10.43, 23.53, 25.18, 25.96, 28.97, 36.50, 54.31, 62.58, 72.24, 112.54, 159.16, 159.24, 163.60; conformer 2: 10.60, 23.79, 25.27, 25.93, 29.06, 36.64, 55.04, 62.91, 72.21, 112.45, 158.68, 159.58, 164.12; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 363[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 364.21$, found 364.21.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(1-hydroxy-3-methylbutan-2-yl)amino]-6-

cyclohexylmethoxypyrimidine (9e). Prepared starting from 8 e ($60 \mathrm{mg}, 0.178 \mathrm{mmol}$). The crude product was purified by flash chromatography (gradient from $0 / 100$ to 10/90 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid ($15 \mathrm{mg}, 22 \%$). $R_{f} 0.4$ (5/95 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $156-157{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm}): 400.0,249.2$; IR $\mathrm{vmax} / \mathrm{cm}^{-1}: 3278,2920$, $2848,2187,1548$. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=$ $5 / 3 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta(\mathrm{ppm}): 0.82-0.90\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{3}\right.$ conformer 1 and $6 \times$ CH_{3} conformer 2), 0.99-1.30 (10H, m, $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.60$1.81\left(12 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ conformer 1 and $6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.83-1.93(2H, m, $1 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ conformer 1 and $1 \times \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ conformer 2$)$, $3.43-3.54\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right.$ conformer 1 and 2 $\times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2), 3.81-3.91 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CHNH}$ conformer 1 and $1 \times \mathrm{CH} \mathrm{NH}$ conformer 2), 4.12-4.18 $\left(3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 1 and $1 \times \mathrm{CH}_{2} \mathrm{O}$ conformer 2$), 4.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=10.7$ and $5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.54-4.61 $(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), $7.66(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{NH}$ conformer 2$), 7.77(1 \mathrm{H}, \mathrm{d}, J=9.2 \mathrm{~Hz}, \mathrm{NH}$ conformer 1$), 8.00(2 \mathrm{H}$, $\mathrm{s}, \mathrm{NH}_{2}$ conformer 2), $8.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 1); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta(\mathrm{ppm})$: conformer 1: 18.67, 19.35, 25.18, 25.95, 28.64, 28.97, 36.52, 58.06, 60.94, 72.23, 106.09, 112.54, 159.09, 159.51, 163.57; conformer 2: 18.40, 19.53, 25.25, 25.91, 28.64, 29.06, 36.59, 58.61, 61.10, 72.19, 106.27, 112.43, 158.65, 159.80, 164.04; MS (ES+) m/z 378 [M+H]+; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 378.2248$, found 378.2249.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(3-hydroxypropyl)amino]-6-

cyclohexylmethoxypyrimidine (9f). Prepared starting from $8 \mathrm{f}(65 \mathrm{mg}, 0.210 \mathrm{mmol})$. The crude product was purified by flash chromatography (gradient from $20 / 80$ to $40 / 60 \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give the title compound as a yellow solid (12 mg, 16%). $R_{f} 0.3$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. 171$172{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 401.0; IR $\mathrm{Vmax}^{\operatorname{man}} \mathrm{cm}^{-1}: 3350,3144,2922,2850,2193,1556$. The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3 .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, DMSO- d_{6}) $\delta(\mathrm{ppm}):$ 0.98-1.31 ($10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 1 and $5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.61$1.82\left(16 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ conformer 2), 3.32-3.38 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{NH}$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{NH}$ conformer 2), 3.41$3.48\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{OH}\right.$ conformer 1 and $2 \times \mathrm{CH}_{2} \mathrm{OH}$ conformer 2$), 4.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.3 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$ conformer 1), $4.21\left(2 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right.$ conformer 2) 4.39-4.49 (2H, m, $1 \times \mathrm{OH}$ conformer 1 and $1 \times \mathrm{OH}$ conformer 2), $7.90(1 \mathrm{H}, \mathrm{t}, J=5.8 \mathrm{~Hz}$, NH conformer 2$), 8.00(1 \mathrm{H}, \mathrm{t}, J=$ $5.8 \mathrm{~Hz}, \mathrm{NH}$ conformer 1), $8.03\left(2 \mathrm{H}, \mathrm{br} . \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 2$), 8.30\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$ conformer 1$)$; ${ }^{13} \mathrm{C}-$ NMR (125 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}):$ conformer 1: 25.18, 25.94, 28.96, 31.97, 36.50, 38.19, $58.47,72.22,106.16,112.50,159.01,159.19,163.62$; conformer $2: 25.25,25.94,29.02,32.44$,
36.63, $38.41,58.51,72.22,106.34,112.41,158.73,159.34,164.22$; MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z} 350[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 350.1935$, found 350.1938 .

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[(2-aminocyclohexyl)amino]-6-

cyclohexylmethoxypyrimidine (9g). Prepared starting from 8 g ($70 \mathrm{mg}, 0.20 \mathrm{mmol}$), cyanamide ($25 \mathrm{mg}, 0.60 \mathrm{mmol}$), IBA ($129 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$. Purification by flash chromatography (gradient from $0 / 100$ to $30 / 70 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave a mixture of products. A second flash chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCOOH} 0.1 \%$) was performed to obtain the title compound as a yellow solid ($10 \mathrm{mg}, 13 \%$). $R_{f} 0.2$ (20/80 $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $203-204{ }^{\circ} \mathrm{C}$ dec.; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 400.0, 248.2, 209.6; IR $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$: 3293, 3145, 2924, 2853, 2191, 1555. ${ }^{1} \mathrm{H}$-NMR Spectrum: The compound exists as two conformers, conformer $1 /$ conformer 2 ratio $=5 / 3$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$: 1.07$1.52\left(18 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer $1,5 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 1.66$2.14\left(20 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer $1,6 \times \mathrm{C}_{6} \mathrm{H}_{11}$ and $4 \times \mathrm{C}_{6} \mathrm{H}_{11}$ conformer 2), 2.92$2.99\left(2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CHNH} \mathrm{C}_{2}\right.$ conformer 1 and $1 \times \mathrm{CHNH}_{2}$ conformer 2), 3.88-3.95 ($2 \mathrm{H}, \mathrm{m}, 1 \times \mathrm{CHNH}$ conformer 1 and $1 \times \mathrm{CHNH}$ conformer 2), 4.21 ($2 \mathrm{H}, \mathrm{d}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}$ conformer 1), 4.264.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2), 4.32-4.37 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ conformer 2); ${ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$: conformer $1: 25.59,27.72,26.88,27.54,30.72,32.93,33.14,38.46,55.75$, $59.57,74.20,113.43,117.69,161.32,161.42,165.80$; conformer 2: 25.54, 27.72, 26.94, 27.54, 30.78, 32.78, 33.14, 38.63, 55.96, 58.81, 74.57, 113.19, 117.34, 161.06, 161.50, 166.41; MS (ES ${ }^{+}$) $\mathrm{m} / \mathrm{z} 389[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 389.2408$, found 389.2408 .

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-[4-(2-hydroxyethyl)piperidin-1-yl]-6-

cyclohexylmethoxypyrimidine (9h). Prepared starting from 8 h ($110 \mathrm{mg}, 0.30 \mathrm{mmol}$). Purification by flash chromatography ($20 / 80$ acetone/PE) gave a mixture of products. A second flash chromatography (gradient from $0 / 100$ to $10 / 90 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) was performed to obtain the title compound as a yellow solid ($20 \mathrm{mg}, 16 \%$). $R_{f} 0.4\left(5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $135-137^{\circ} \mathrm{C}$ (dec.); UV $\lambda_{\text {max }}(E t O H / n m): 400.0 ;$ IR $v_{\max } / \mathrm{cm}^{-1}: 3483,3441,3355,2922,2852,2190 .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 0.94-1.43\left(9 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $4 \times \mathrm{CH}_{2}$ piperidine), 1.56-1.85 $\left(9 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}, 6 \times \mathrm{C}_{6} \mathrm{H}_{11}\right.$ and $1 \times \mathrm{CH}$ piperidine), 2.81-3.04 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.39-3.55$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), $4.16\left(2 \mathrm{H}, \mathrm{d}, J=5.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}\right), 4.40(1 \mathrm{H}, \mathrm{t}, J=4.5 \mathrm{~Hz}, \mathrm{OH}), 4.55-4.75(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{~N}$), $8.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 25.34,25.98,29.08,31.76$, 32.08, 36.69, 43.86, 44.23, 58.14, 72.33, 105.82, 112.55, 156.99, 158.88, 163.89; MS (ES+) m/z $404[\mathrm{M}+\mathrm{H}]^{+}$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 404.2405$, found 404.2403.

4-Amino-5-[(Z)-cyano-NNO-azoxy]-2-(pyrrolidin-1-yl)-6-cyclohexylmethoxypyrimidine

(9i). Prepared starting from $8 \mathbf{i}(40 \mathrm{mg}, 0.131 \mathrm{mmol})$. The crude product was purified by flash chromatography (gradient from 5/95 to 20/80 acetone/PE) to give the title compound as a yellow solid (18 mg, 40\%). $R_{f} 0.5$ ($5 / 95 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. 181-183 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{EtOH} / \mathrm{nm})$: 399.8, 258.4; IR $v_{\max } / \mathrm{cm}^{-1}: 3464,3339,2937,2851,2183,1554 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}):$ 0.99-1.29 (5H, m, $\mathrm{C}_{6} \mathrm{H}_{11}$), 1.60-1.81 (6H, m, $\mathrm{C}_{6} \mathrm{H}_{11}$), 1.86-1.95 (4H, m, $\mathrm{CH}_{2} \mathrm{CH}_{2}$ pyrrolidine), 3.46$3.52\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right.$ pyrrolidine), 3.53-3.59 (2H, m, CH2N pyrrolidine), 4.19 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}$, $\mathrm{CH}_{2} \mathrm{O}$), $8.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta(\mathrm{ppm}): 24.63,24.76,25.26,25.94$, 29.06, 36.64, 46.74, 46.88, 72.19, 106.10, 112.47, 156.32, 158.67, 163.40; MS (ES+) m/z 346 $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 346.1986$ found 346.1988 .

References

[1] B. S. Furniss, A. J. Hannaford, P. W. G. Smith, A. R. Tatchell, in Vogel's Textbook of Practical Organic Chemistry. (Fifth ed.), Longman Scientific \& Technical, 1989, p 413.
[2] M. Holan, U. Jahn, Org. Lett. 2014, 16, 58-61.

