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1 Introduction

The theory of quantum exactly solvable models is currently playing an important role in

the study of the gauge/gravity correspondence [1, 2] as many powerful integrable model

methods were recently adapted to investigate perturbative and nonperturbative aspects in

multicolor QCD [3, 4] and various branches of the AdS/CFT duality (see, as a largely

incomplete, list of references [5–16]).

The purpose of this paper is to study, through the Thermodynamic Bethe Ansatz

(TBA) [17–19], the finite-size corrections of the (integrable) two-dimensional CPN−1 quan-

tum sigma model minimally coupled to a massless Dirac fermion plus a Thirring term, as

described in [20]. Despite the original CPN−1 model (without the fermion) has been in-

tensively studied, helping physicists with its underlying phenomenology to understand the

(irrelevant) rôle of instantons in the real QCD and sharing, with the latter 4d theory, the

property of confinement [21], the system considered here has received much less attention.

However, very recently it has been discovered [22] that the N = 4 case describes the strong

coupling limit of the planar AdS4 × CP3 string IIA sigma model: this is the low energy

Alday-Maldacena decoupling limit, which has given rise to the O(6) non-linear sigma model

in the AdS5 × S5 case [23–27]. In fact, this relativistic CP3 × U(1) sigma model gives an

effective (low energy) description of the Glubser, Klebanov and Polyakov (GKP) spinning

string dual to composite operators in N = 6 supersymmetric Chern-Simons built with a

pair of bi-fundamental matter fields plus an infinite sea of covariant derivatives acting on

them. For large t’Hooft coupling, the low-lying excitations over this vacuum are relativistic

and precisely described by this massive sigma model with SU(4)×U(1) symmetry.
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For general N , the Lagrangian of the SU(N)×U(1) symmetric model under consider-

ation is [20] (cf. also [22] for N = 4)

L = κ(∂µ − iAµ)z̄(∂µ − iAµ)z + iψ̄γµ(∂µ − ikAµ)ψ − λT
2

(ψ̄γµψ)2, (1.1)

where the bosonic multiplet z = (z1, . . . , zN ) satisfies the constraint z̄z = 1, k is the fermion

charge (and equals 2 in [22] for N = 4) and the Thirring coupling needs to be fine-tuned

as λT = − k2

2Nκ (and equals − 1
2κ in [22]). Many important aspects of the model (1.1) were

recently discussed by Basso and Rej in [20] and more recently in [28]. In the current paper

we shall start from the asymptotic Bethe Ansatz equations proposed in [20] and derive

the set of TBA equations describing the exact finite-size corrections of the vacuum energy

on a cylinder. Although most of the results presented here are rigorously derived only for

N = 4 it is possible, just through simple considerations, to conjecture equations for general

values of N . Furthermore, borrowing the idea that 2d sigma models can be viewed as the

infinite level limit of a sequence of quantum-reduced field theories associated to perturbed

conformal field theories (CFT), we introduce a set of TBA equations classified by a pair of

integer parameters: the rank N and the level p of conformal coset models

(CPN−1)p ×U(1) =
SU(N)p

SU(N − 1)p ×U(1)
×U(1), (1.2)

or equivalently, through the level-rank duality, of the systems

(W (p))N ×U(1) =
SU(p)N−1 × SU(p)1

SU(p)N
×U(1), (1.3)

where W (p) denotes the SU(p)-related family of W -algebra minimal models. The rest of this

paper is organized as follows. In section 2, starting from the asymptotic Bethe Ansatz equa-

tions for the fundamental excitations [20], we formulate the string hypothesis and derive the

TBA equations. The corresponding Y-systems and the TBA equations in Zamolodchikov’s

universal form, for the whole family of quantum-reduced models, are reported in section 3.

The numerical and analytic checks on the ultraviolet and infrared behaviors of the sys-

tems, together with the perturbed conformal field theory interpretation, are discussed in

section 4. Section 5 contains our conclusions. The relevant S-matrix elements and TBA

kernels are reported in appendix A. Finally, in appendix B we show an interesting analogy

between the Y -system diagrams of the CP3 ×U(1) and the O(6) non-linear sigma models,

which parallels that between the diagrams of their corresponding all couplings theories

(energies), i.e. the AdS4 × CP3 and AdS5 × S5 string sigma models, respectively.
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2 The string hypothesis and asymptotic BA equations

The starting point of the analysis are the Asymptotic Bethe Ansatz (ABA) equations in

the NS sector of the SU(4)×U(1) symmetric model proposed in [20]

e−imL sinh θk =

M∏
j 6=k

S(θk − θj)
M̄∏
j=1

t1(θk − θ̄j)
M1∏
j=1

(
θk − λj + iπ

4

θk − λj − iπ
4

)
,

1 =

M1∏
j 6=k

(
λk − λj + iπ

2

λk − λj − iπ
2

)
M2∏
j=1

(
λk − µj − iπ

4

λk − µj + iπ
4

)
M∏
j=1

(
λk − θj − iπ

4

λk − θj + iπ
4

)
,

1 =

M2∏
j 6=k

(
µk − µj + iπ

2

µk − µj − iπ
2

)
M1∏
j=1

(
µk − λj − iπ

4

µk − λj + iπ
4

)
M3∏
j=1

(
µk − νj − iπ

4

µk − νj + iπ
4

)
, (2.1)

1 =

M3∏
j 6=k

(
νk − νj + iπ

2

νk − νj − iπ
2

)
M2∏
j=1

(
νk − µj − iπ

4

νk − µj + iπ
4

)
M̄∏
j=1

(
νk − θ̄j − iπ

4

νk − θ̄j + iπ
4

)
,

e−imL sinh θ̄k =

M̄∏
j 6=k

S(θ̄k − θ̄j)
M∏
j=1

t1(θ̄k − θj)
M3∏
j=1

(
θ̄k − νj + iπ

4

θ̄k − νj − iπ
4

)
,

where, with respect to [20], we have chosen the twist factor q = 1, and redefined the

magnonic rapidities as

λk =
π

2
u1,k, µk =

π

2
u2,k, νk =

π

2
u3,k . (2.2)

In (2.1) M , M̄ and Ml with l = 1, 2, 3 indicate the number of spinons, antispinons and

flavour-l magnons, respectively. As L → ∞, in the thermodynamic limit, the dominant

contribution to the free energy comes from magnon excitations arranging themselves into

strings [29] of form

λ
(l)
ka = λ

(l)
k +

iπ

4
(l + 1− 2a), (a = 1, . . . , l),

µ
(m)
kb = µ

(m)
k +

iπ

4
(m+ 1− 2b), (b = 1, . . . ,m),

ν
(n)
kc = ν

(n)
k +

iπ

4
(n+ 1− 2c), (c = 1, . . . , n).

(2.3)

The product over the strings (2.3) of the ABA equations (2.1) yield

e−imL sinh θk =

M∏
j 6=k

S(θk − θj)
M̄∏
j=1

t1(θk − θ̄j)
∞∏
l=1

M(l)∏
j=1

[
S1,l

(
θk − λ

(l)
j

)]−1
,

1 =

M∏
j=1

Sl,1

(
λ

(l)
k − θj

) ∞∏
m=1

M(m)∏
j=1

Sl,m

(
λ

(l)
k − µ

(m)
j

)

×
∞∏
l′=1

M(l′)∏
j=1

[
Sl,l′+1

(
λ

(l)
k − λ

(l′)
j

)]−1 [
Sl,l′−1

(
λ

(l)
k − λ

(l′)
j

)]−1
,
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1 =

∞∏
m′=1

M(m′)∏
j=1

[
Sm,m′+1

(
µ

(m)
k − µ(m′)

j

)]−1 [
Sm,m′−1

(
µ

(m)
k − µ(m′)

j

)]−1

×
∞∏
n=1

M(n)∏
j=1

Sm,n

(
µ

(m)
k − ν(n)

j

) ∞∏
l=1

M(l)∏
j=1

Sm,l

(
µ

(m)
k − λ(l)

j

)
,

1 =
M̄∏
j=1

Sn,1

(
ν

(n)
k − θ̄j

) ∞∏
m=1

M(m)∏
j=1

Sn,m

(
ν

(n)
k − µ(m)

j

)

×
∞∏
n′=1

M(n′)∏
j=1

[
Sn,n′+1

(
ν

(n)
k − ν(n′)

j

)]−1 [
Sn,n′−1

(
ν

(n)
k − ν(n′)

j

)]−1
,

e−imL sinh θ̄k =

M̄∏
j 6=k

S(θ̄k − θ̄j)
M∏
j=1

t1(θ̄k − θj)
∞∏
n=1

M(n)∏
j=1

[
S1,n

(
θ̄k − ν

(l)
j

)]−1
, (2.4)

where M (q) is the number of length-q strings, and we have introduced the scattering

amplitudes

Sl,m(θ) =

l+m−1
2∏

a=
|l−m|+1

2

(
θ − iπa2
θ + iπa2

)
=

l∏
a=1

(
θ − iπ

4 (l +m+ 1− 2a)

θ + iπ
4 (l +m+ 1− 2a)

)
. (2.5)

In this limit equations (2.4) become

σ(θ) = m cosh θ +K ∗ ρ(θ) +G ∗ ρ̄(θ)−
∞∑
l=1

K1,l ∗ ρ
(1)
l (θ),

σ(1)
n (θ) = Kn,1 ∗ ρ(θ) +

∞∑
l=1

(
Kn,l ∗ ρ

(2)
l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(1)

l (θ)
)
,

σ(2)
n (θ) =

∞∑
l=1

(
Kn,l ∗ ρ

(3)
l (θ) +Kn,l ∗ ρ

(1)
l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(2)

l (θ)
)
,

σ(3)
n (θ) = Kn,1 ∗ ρ̄(θ) +

∞∑
l=1

(
Kn,l ∗ ρ

(2)
l (θ)− (Kn,l+1 +Kn,l−1) ∗ ρ(3)

l (θ)
)
,

σ̄(θ) = m cosh θ +K ∗ ρ̄(θ) +G ∗ ρ(θ)−
∞∑
l=1

K1,l ∗ ρ
(3)
l (θ),

(2.6)

where n = 1, 2, . . . and we have introduced the densities of accessible states for

spinons σ, antispinons σ̄, for magnonic strings σ
(1)
n , σ

(2)
n , σ

(3)
n , likewise the occupied

state densities ρ, ρ̄, ρ
(1)
n , ρ

(2)
n , ρ

(3)
n ; the convolution operation ∗ has been defined as

f ∗ g(θ) =

∫ +∞

−∞
f(θ − θ′) g(θ′)dθ′. Further, the kernels K(θ), G(θ) and Kl,m(θ) are listed

and described in appendix A.

At temperature T = 1/R, setting

ρ(θ)

σ(θ)− ρ(θ)
= e−ε0(θ) ,

ρ̄(θ)

σ̄(θ)− ρ̄(θ)
= e−ε̄0(θ) ,

ρ
(i)
m (θ)

σ
(i)
m (θ)− ρ(i)

m (θ)
= e−ε(i,m)(θ), (2.7)
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and

L0(θ) = ln
(

1+e−ε0(θ)
)
, L̄0(θ) = ln

(
1+e−ε̄0(θ)

)
, L(i,m)(θ) = ln

(
1+e−ε(i,m)(θ)

)
, (2.8)

with i,m = 1, 2, . . . the following set of TBA equations are recovered:

ε0(θ) = iα+mR cosh θ −K ∗ L0(θ)−G ∗ L̄0(θ)−
∞∑
l=1

K1,l ∗ L(1,l)(θ),

ε(1,n)(θ) = Kn,1 ∗ L0(θ)−
∞∑
l=1

(
Kn,l ∗ L(2,l)(θ)− (Kn,l+1 +Kn,l−1) ∗ L(1,l)(θ)

)
,

ε(2,n)(θ) =
∞∑
l=1

(
(Kn,l+1 +Kn,l−1) ∗ L(2,l)(θ)−Kn,l ∗ L(1,l)(θ)−Kn,l ∗ L(3,l)(θ)

)
,

ε(3,n)(θ) = Kn,1 ∗ L̄0(θ)−
∞∑
l=1

(
Kn,l ∗ L(2,m)(θ)− (Kn,l+1 +Kn,l−1) ∗ L(3,l)(θ)

)
,

ε̄0(θ) = −iα+R cosh θ −K ∗ L̄0(θ)−G ∗ L0(θ)−
∞∑
l=1

K1,l ∗ L(3,l)(θ) .

(2.9)

In (2.9), we have included the chemical potential [18, 19]. λ = eiα = 1 for the ground

state, while λ = eiα = −1 corresponds to the first excited state [30, 31] associated to the

lifting, due to tunnelling [32–35], of a two-fold vacuum degeneracy of the model [20]. The

expression for the α-vacuum energy is

Eλ(m,R) = −m
2π

∫ ∞
−∞

dθ cosh θ (L0(θ) + L̄0(θ)) . (2.10)

In the far infrared Rm� 1 region

E±1(m,R) ' ∓2m

π
C(4,∞)K1(mR), (2.11)

where K1(x) is the modified Bessel function. The coefficient C(4,∞) will be directly obtained

from the TBA equations in section 4 and should match the number of SU(4) flavours:

C(4,∞) = 4, in agreement with [20].

3 The Y-system and the TBA in universal form

Thanks to simple identities for the TBA kernels [36, 37], the integral system (2.9) imply

into the following functional equations, the Y-system:

Y0

(
θ+i

π

2

)
Y0

(
θ−iπ

2

)
= e−i4α

Ȳ0(θ)

Y0(θ)

(
1+Y(1,1)

(
θ + i

π

4

))(
1+Y(1,1)

(
θ−iπ

4

))(
1+Y(2,1)(θ)

)
,

Ȳ0

(
θ+i

π

2

)
Ȳ0

(
θ−iπ

2

)
= ei4α

Y0(θ)

Ȳ0(θ)

(
1+Y(3,1)

(
θ+i

π

4

))(
1+Y(3,1)

(
θ − iπ

4

)) (
1+Y(2,1)(θ)

)
,

(3.1)
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and, for the magnonic equations,

Y(1, l)

(
θ + i

π

4

)
Y(1, l)

(
θ − iπ

4

)
=
(

1 + δl1Y0(θ)
)(1 + Y(1, l−1)

)
(θ)
(
1 + Y(1, l+1)(θ)

)(
1 +

1

Y(2, l)
(θ)

)
Y(2, l)

(
θ + i

π

4

)
Y(2, l)

(
θ − iπ

4

)
=

(
1 + Y(2, l−1)(θ)

) (
1 + Y(2, l+1)(θ)

)(
1 +

1

Y(1, l)(θ)

)(
1 +

1

Y(3, l)(θ)

)
Y(3, l)

(
θ + i

π

4

)
Y(3, l)

(
θ − iπ

4

)
=
(

1 + δl1Ȳ0

)(1 + Y(3, l−1)(θ)
) (

1 + Y(3, l+1)(θ)
)(

1 +
1

Y(2, l)(θ)

) ,

(3.2)

where the Y functions are related to the pseudoenergies εA(θ), through

Y0(θ) = e−ε0(θ), Ȳ0(θ) = e−ε̄0(θ), Y(i,l)(θ) = eε(i,l)(θ) . (3.3)

Notice that the r.h.s. of (3.1), due to presence of the factor Ȳ0/Y0, does not have the

standard Y-system form [36]. However, a more careful inspection of the TBA equations

reveals the presence of an important relation:

Y0(θ + iπ4 )Y0(θ − iπ4 )

Ȳ0(θ + iπ4 ) Ȳ0(θ − iπ4 )
= e−i4α

1 + Y(1,1)(θ)

1 + Y(3,1)(θ)
. (3.4)

Using this in (3.1) allows us to recast the Y-system into the following more standard-

looking form

Y0

(
θ + i

π

2

)
Ȳ0

(
θ − iπ

2

)
=
(

1+Y(1,1)

(
θ + i

π

4

)) (
1+Y(2,1)(θ)

)(
1+Y(3,1)

(
θ − iπ

4

))
,

Ȳ0

(
θ + i

π

2

)
Y0

(
θ − iπ

2

)
=
(

1+Y(3,1)

(
θ + i

π

4

)) (
1+Y(2,1)(θ)

)(
1+Y(1,1)

(
θ − iπ

4

))
,

(3.5)

together with the magnonic equations (3.2). Due to the appearance of the mixed product

Y0Ȳ0 on the l.h.s. of (3.5), the latter equations are still slightly different from the systems dis-

cussed in the early literature on Y-systems [36–38], while the the magnonic equations (3.2)

are rather standard. Therefore, the entire Y -system and subsequent universal TBA (see

below) can be thought of as encoded in the diagram in figure 1 with some caveats on the

massive nodes (3.5). This novel type of “crossed” Y-system, without shifts on the r.h.s. ,1

was first obtained in [39] and [40], in the context of the TBA for anomalous dimensions

in the planar N = 6 superconformal Chern-Simons, i.e. AdS4/CFT3. Pictorially, the

related Y -system diagram [39, 40] may be obtained from that for planar AdS5/CFT4 by

means of some sort of ’folding’ process of the two wings with doubling of the fixed row

of massive nodes; the same relation seems to hold (at strong coupling) between their low

energy decoupled models, namely the present CP3×U(1) [22] and the O(6) nonlinear sigma

1Pictorially, the bold link between the massive node 0 (0̄) and the magnonic one in figure 1 means that

the shift in the l.h.s. is twice that in the r.h.s. , so that we need somehow to compensate and shift also the

lower index, along the entire first (magnon) column. A similar bold link may be imagined in the case of

the O(2n) non-linear sigma model Y−system, in particular for 2n = 6 (cf. appendix B).

– 6 –
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0

0

(1,1) (1,p−1)

(N−1,p−1)(N−1,1)

p

N

Figure 1. The (CPN−1)p ×U(1) diagram.

models [23–27], respectively. We shall give some details on this issue in appendix B. At last

but not least, an intriguing example of “crossed” Y -system describes the strong coupling

behaviour of the gluon scattering amplitudes in SYM4 [41].

Before concluding this section, we would like to make a final relevant generalisation.

It is natural to consider a more general family of systems, stemming from the introduction

of two positive integers N and p, so that we conjecture for the massive nodes the equations

Y0

(
θ + i

π

2

)
Ȳ0

(
θ − iπ

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ + i

π

2
− iπl

N

))
,

Y0

(
θ − iπ

2

)
Ȳ0

(
θ + i

π

2

)
=

N−1∏
l=1

(
1 + Y(l,1)

(
θ − iπ

2
+ i

πl

N

))
,

(3.6)

while for the magnonic nodes the relations

Y(i,j)

(
θ + i

π

N

)
Y(i,j)

(
θ − i π

N

)
=
(
1 + δi,1δj,1Y0(θ) + δi,N−1δj,1Ȳ0(θ)

)
× (3.7)

×
p−1∏
l=1

(
1 + Y(i,l)(θ)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

Y(l′,j)(θ)

)−A(N−1)

l′,i
;

obviously, the system studied so far is recovered by fixing (N, p) to (4,∞). With this simple

generalisation, we are able to describe a previously-unknown infinite family of Y-systems

naturally associated to a generic SU(N) algebra with quantum reduced coset level p. As we

shall see in the following section, the obtained truncated family of Y-systems exhibit all the

important features common to more standard types of Y-systems. In particular, they can

be interpreted as periodic sets of discrete recursion relations [36] and their solutions lead to

sum-rules [42] and functional identities for the Rogers dilogarithm [43] (see equation (5.1)).

Although the reader should keep in mind that most of the results presented in this

paper have been rigorously derived only for (N, p) = (4,∞), from now on we shall leave

the two positive integers N and p unconstrained. For later purpose, it is convenient to

transform the Y-system into the Zamolodchikov’s universal TBA form [36]. Thanks to the

– 7 –
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Fourier integrals in (A.19), we obtain

ε0(θ) + ε̄0(θ) = 2mR cosh θ −
N−1∑
l=1

χ(1− 2l
N ) ∗ Λ(l,1)(θ),

ε0(θ)− ε̄0(θ) = i2α−
N−1∑
l=1

ψ(1− 2l
N ) ∗ Λ(l,1)(θ),

ε(i,j)(θ) = δi,1δj,1φN
2
∗ L0(θ) + δi,N−1δj,1φN

2
∗ L̄0(θ)

+

p−1∑
l=1

A
(p−1)
l,j φN

2
∗ Λ(i,l)(θ)−

N−1∑
l=1

A
(N−1)
l,i φN

2
∗ L(l,j)(θ), (3.8)

with α ∈ {0, π}, ΛA(θ) = ln(1 + eεA(θ)) and the α-vacuum energy given by equa-

tion (2.10) with

E±1(m,R) ' ∓2m

π
C(N,p)K1(mR), (3.9)

in the Rm � 1 infrared region. The coefficient C(N,p), which contains information on the

SU(N)-related vacuum structure of the model at (N, p) generic [44, 45], will be determined

in the following section.

4 The ultraviolet and infrared limits

The models under consideration can be thought of as 2d conformal field theories perturbed

by a relevant operator which becomes marginally relevant in the limit p → ∞ and whose

vacuum energy is given by the expression (2.10) endowed with the ground state TBA

solution. In particular, the CFT is characterized by the value of its conformal anomaly,

c(N,p), which peculiarly enters the (α = 0) vacuum energy (2.10) in the mR� 1 ultraviolet

regime [46]:

E+1(m,R) ' −
πc(N,p)

6R
. (4.1)

Thus, to obtain the central charge we have to study analytically the TBA equations in the

limit r = mR→ 0. In this limit the solutions εA(θ) to (3.8) develop a central plateau which

broadens as r approaches zero [17–19]. The Casimir coefficient c(N,p) acquires contributions

from right and left kink-like regions, separately [17], and the result can be written as a

sum-rule for the Rogers dilogarithm function

L(x) = −1

2

∫ x

0

[
ln(1− t)

t
+

ln t

1− t

]
dt, (0 < x < 1). (4.2)

The final result is

c(N,p) = c
(0)
(N,p) − c

(∞)
(N,p), (4.3)

with

c
(0)
(N,p) =

6

π2

[
L
(

y0

1 + y0

)
+ L

(
ȳ0

1 + ȳ0

)
+

N−1∑
i=1

p−1∑
l=1

L
(

y(i,l)

1 + y(i,l)

)]
, (4.4)
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and

c
(∞)
(N,p) =

6

π2

N−1∑
i=1

p−1∑
l=1

L
(

z(i,l)

1 + z(i,l)

)
. (4.5)

The constants ys are given by the θ-independent (i.e. stationary) solutions of the Y-system,

while the zs are the stationary solutions of (3.2) with Y0 = Ȳ0 = 0. The two relevant systems

of stationary equations are

y0ȳ0 =

N−1∏
l′=1

(
1 + y(l′,1)

)
, (4.6)

(y(i,j))
2 = (1 + δi,1δj,1y0 + δi,N−1δj,1ȳ0)

p−1∏
l=1

(
1 + y(i,l)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

y(l′,j)

)−A(N−1)

l′,i
,

with y0 = ȳ0 and y(i,j) = y(N−i,j) (i = 1, . . . , N − 1, j = 1, 2, . . . ), and

(z(i,j))
2 =

p−1∏
l=1

(
1 + z(i,l)

)A(p−1)
l,j

N−1∏
l′=1

(
1 +

1

z(l′,j)

)−A(N−1)

l′,i
. (4.7)

Finding the exact solutions to equations (3.2), (4.6) for general N > 3 and p turned out to

be much more difficult then expected. Setting ϕ = π/(2(p+N − 1)), the results for lower

ranks are the following

• N = 2:

y(1,i) = (p− i)(p− i+ 2), y0 = ȳ0 = p, (4.8)

with i = 1, 2, . . . , p− 1.

• N = 3:

y(1,i) = y(2,i) =
sin((p− i)ϕ) sin((p− i+ 3)ϕ)

sin(ϕ) sin(2ϕ)
, (4.9)

with i = 0, 1, . . . , p− 1 and y0 = ȳ0 = y(1,0) = y(2,0).

• N = 4:

y(1,p−1) = y(3,p−1) =
2 sin(2ϕ) + sin(6ϕ) + sin(10ϕ)

2 sin(6ϕ)
,

y(2,p−1) =
2 sin(2ϕ) + sin(6ϕ) + 3 sin(10ϕ)

2 sin(2ϕ) + 3 sin(6ϕ) + sin(10ϕ)
. (4.10)

(The stationary values for the remaining Y functions can be obtained using (3.2)

and (4.6) recursively.)

To deal with the generic (N, p) case, we relied on a high-precision numerical work to

conjecture the exact result for the dilogarithm sum-rule (4.4). Starting from p = 2 and

N = 2 we were able to obtain the constants ys with a precision of about 10−15, for p < 20
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Level p Numerics Exact Error

2 1.8000000000000014 9/5 1.3× 10−16

3 2.428571428571437 17/7 8.4× 10−15

4 2.928571428571431 41/14 2.6× 10−15

5 3.333333333333345 10/3 6.7× 10−15

6 3.666666666666656 11/3 1.1× 10−14

7 3.945454545454537 217/55 8.4× 10−15

8 4.181818181818161 46/11 2.0× 10−14

9 4.384615384615358 57/13 2.7× 10−14

10 4.56043956043953 415/91 3.0× 10−14

11 4.7142857142856 33/7 1.1× 10−13

41 6.212121212124 205/33 2.8× 10−12

51 6.35353535324 629/99 2.9× 10−10

61 6.4519230761 671/104 8.2× 10−10

Table 1. N = 4: comparison between numerics and equation (4.14).

and N < 5. The accuracy progressively decreased down to 10−12 for values around p = 61

and N = 4. The numerical results lead to the following precise conjecture

c
(0)
(N,p) =

p(1 + pN − p)
p+N − 1

. (4.11)

The constant zs are instead analytically known to be [42]

z(i,j) =
sin((j +N)φ) sin(jφ)

sin((i+ p)φ) sin(iφ)
, (4.12)

with φ = π/(p+N), and the corresponding Rogers dilogarithm sum-rule is [42]

c
(∞)
(N,p) =

6

π2

N−1∑
i=1

p−1∑
l=1

L
(

z(i,l)

1 + z(i,l)

)
=
p(N − 1)(p− 1)

p+N
. (4.13)

Finally, subtracting (4.13) from (4.11) we obtain

c(N,p) =
p(1− p−N +N2 + 2Np)

(N + p)(N + p− 1)
=
p dim[SU(N)]

p+N
− p dim[SU(N − 1)])

p+N − 1
(4.14)

with dim[SU(N)] = N2 − 1. The numerical outcome for the central charge at N = 4 for

the p-truncated models are compared with equation (4.14) in table 1: the match is very

good and leaves little doubt on the correctness of conjecture (4.11). In conclusion, the

central charge (4.14) deduced from equations (3.2), (3.6), coincides precisely with that of

the coset model

(CPN−1)p ×U(1) =
SU(N)p

SU(N − 1)p ×U(1)
×U(1) ≡ SU(p)N−1 × SU(p)1

SU(p)N
×U(1). (4.15)
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The Casimir coefficient for the SU(N) × U(1) sigma model is then recovered in the limit

p→∞:

c(N,∞) = dim[SU(N)]− dim[SU(N − 1)] = 2N − 1. (4.16)

Thus c(4,∞) = 7, a result that coincides with the value predicted in [20] through a naive

degree of freedom counting argument.

However, the identification of the model using only the Casimir coefficient is by no

means unique as, for example, the two U(1) factors in (4.15) yield compensating contri-

butions to c(N,p) leading to an equivalently good match with the central charge of the
SU(N)p

SU(N−1)p
coset.

To further support the identification (4.15), following [36], we have determined the

conformal dimension ∆(N,p) of the perturbing operator using the intrinsic periodicity prop-

erties of the Y-system at finite N and p.

Assuming arbitrary initial conditions and using the Y-system as a recursion relation,

we descovered that the following periodicity property holds

YA
(
θ + iπP(N,p)

)
= YA(θ), (4.17)

with P(N,p) = 2(p+N−1)
N . Thus, according to [36] (cf. also [37, 47]), we can conclude that

∆(N,p) = 1− 1

P(N,p)
= 1− N

2(p+N − 1)
, (4.18)

is the conformal dimension of the operator which perturbs the conformal field theory at

finite p and generic N . A first consequence of (4.18), is that the model
SU(N)p

SU(N−1)p
can be

almost straightforwardly discarded. Furthermore, we have assumed that the two CFTs,

originally disconnected and respectively related to (CPN−1)p and U(1), are tied together

by the perturbing operator φ(N,p) in the simplest possible way:

φ(N,p) = φ[(CPN−1)p] × φ[U(1)], ∆(N,p) = ∆[(CPN−1)p] + ∆[U(1)]. (4.19)

For the identification of ∆[(CPN−1)p] and ∆[U(1)], the presence of two independent integer

parameters was very important as both ∆[(CPN−1)p] and ∆[U(1)] depend nontrivially on N

and p. At p = 1, the TBA equations (3.8) reduce to those for a free fermion. This fact

leads to

∆[(CPN−1)1] = 0 , ∆[U(1)] = ∆(N,1) = 1/2. (4.20)

At N = 2, the TBA equations coincide with the Dp+1 models with two massive nodes and

a tail of magnons. These ground state TBA equations were identified in [48] (see, also [37])

–up to possible orbifold ambiguities– with a particular series of points of the fractional

sine-Gordon model [49]. The latter identification leads to the further constant

∆[(CP1)p] =
(p− 1)

p
, ∆[U(1)] =

1

p(p+ 1)
. (4.21)

Relations (4.20) and (4.21) together, allow to select the conformal dimension uniquely:

∆[(CPN−1)p] =
(p− 1)(N + 2p)

2p(N + p− 1)
, ∆[U(1)] =

N

2p(N + p− 1)
. (4.22)
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It is interesting to notice that for p = 2 the dimension ∆[(CPN−1)p] corresponds to the

field φ21 of the c < 1 minimal models MN+1,N+2, while for generic N and p it coincides

precisely with the conformal dimension of the field (p, p̄, 1) + (p̄, p, 1) in the W (p) minimal

model
SU(p)N−1×SU(p)1

SU(p)N
, mentioned by Fendley [50, 51] while discussing integrability issues

related to the purely-bosonic CPN−1 sigma model.

Finally, following [44, 45] equations (3.8) furnish in the infrared regime mR� 1

ε0(θ)− iα ' ε̄0(θ) + iα ' mR cosh θ − 1

2

N−1∑
l=1

ln(1 + z(l,1)), (4.23)

and consequently

E±1(m,R) ' ∓2m

π
C(N,p)K1(mR), (4.24)

with

C(N,p) =

√√√√N−1∏
l=1

(
1 + z(l,1)

)
=

sin(Nφ)

sin(φ)
, (4.25)

where we defined φ = π/(N + p). In the sigma model limit p→∞, then φ→ 0 and (4.25)

gives C(N,∞) = N , as expected.

5 Conclusions

In this paper we have proposed the Thermodynamic Bethe Ansatz equations and the Y-

systems for an infinite family of perturbed conformal field theories related to the CPN−1

sigma models coupled to a massless Thirring fermion.

Although the main motivation of the work was the recently discovered description [22]

of the low energy AdS4 × CP3 string IIA sigma model (i.e. Alday-Maldacena decoupling

regime at strong coupling [23–27]), most of the above results are of a much wider mathe-

matical and physical interest. In particular, we have introduced a novel family of periodic

Y-systems classified in terms of a pair of integers (N, p). These functional relations differ

from the standard Lie-algebra related ones, discussed for example in [36–38], in a non triv-

ial way. In fact, not only the same Y -function appears in each l.h.s. of the massive node

equations (3.2), but the massive Y s appear in a “crossed” way (cf. also appendix B for

some considerations).

Many important features of Y-systems were recently investigated and proved by means

of very powerful Cluster Algebra methods (see, for example the review [52]). Within the

latter mathematical setup, it would be important to clarify whether the Y-systems intro-

duced here are genuinely new objects or otherwise they lead to Cluster Algebra quivers that

are mutation-equivalent to some of the known ABCD-related cases [52] (cf., for example,

the discussion in section 7.3 of [55]).

Some of the mathematical results presented here correspond to numerical-supported

conjectures and, although we have little doubt on their exact validity, it would be still

important to prove them rigorously.
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The main mathematical conjectures are: the Y-system periodicity (4.17), the station-

ary dilogarithm identities (4.11) and the following non stationary sum-rules

2(N+p−1)∑
n=1

L( Ȳ0(n)

1+Ȳ0(n)

)
+L
(

Y0(n)

1+Y0(n)

)
+

N−1∑
i=1

p−1∑
j=1

L
(

Y(i,j)(n)

1+Y(i,j)(n)

)= 2p(1 + pN − p)π
2

6
,

(5.1)

where YA(n) = YA
(
θ + i πN n

)
are the solutions of the Y-system, obtained recursively

from (3.2), (3.6) with arbitrary initial conditions [43].

Concerning the specific CP3 × U(1) sigma model, we have performed a non-trivial

computation of the ultraviolet central charge from TBA/Y -system, confirming the results

predicted in [20] through a naive counting of the degrees of freedom. In fact, our conclusions

were reached using highly non trivial dilogarithm identities and by considering the sigma

model as the p→∞ representative in the family of perturbed coset conformal field theories
SU(4)p

SU(3)p×U(1) ×U(1), and concerned also the perturbing field.

Apart from the physical and mathematical aspects mentioned above, there are many

other issues that we would like to address in the near future: the kink vacuum structure, the

exact S-matrix and the mass-coupling relation for the quantum truncated models, the nu-

merical study of the TBA equations for the excited states [56–58] and the derivation of sim-

pler non-linear integral equations for both the ground state and the excited states [59–66]

are only a small sample of important open problems that deserve further attention.
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A Scattering amplitudes and TBA kernels

This appendix contains the explicit expressions for scattering amplitudes and the corre-

sponding TBA kernels used throughout the main text.

Spinon-spinon scattering. The spinon-spinon S-matrix amplitude [20] is

S(θ) = −
Γ

(
1 + i

θ

2π

)
Γ

(
1

4
− i θ

2π

)
Γ

(
1− i θ

2π

)
Γ

(
1

4
+ i

θ

2π

) , (A.1)
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and the corresponding kernel K(θ)

K(θ) =
1

2πi

∂

∂θ
lnS(θ), (A.2)

which may be represented in several alternative ways as2

K(θ) =
1

4π2

(
ψ

(
1 + i

θ

2π

)
+ ψ

(
1− i θ

2π

)
− ψ

(
1

4
+ i

θ

2π

)
− ψ

(
1

4
− i θ

2π

))
=

∞∑
n=0

(
1

π

2π(n+ 1/4)

θ2 + (2π(n+ 1/4))2
− 1

π

2π(n+ 1)

θ2 + (2π(n+ 1))2

)
=

∫ ∞
−∞

dω

2π
eiωθ

q − q4

1− q4
,

(A.4)

with q = exp
(
−π

2 |ω|
)
. It is straightforward to get∫ ∞

−∞
dθK(θ) = lim

ω→0
K̂(ω) =

3

4
. (A.5)

Spinon-antispinon scattering. The S-matrix amplitude associated to the spinon-

antispinon scattering is

t1(θ) =

Γ

(
1

2
− i θ

2π

)
Γ

(
3

4
+ i

θ

2π

)
Γ

(
1

2
+ i

θ

2π

)
Γ

(
3

4
− i θ

2π

) . (A.6)

Consequently the kernel G(θ) is

G(θ) =
1

2πi

∂

∂θ
ln t1(θ), (A.7)

explicitly

G(θ) =
1

4π2

(
ψ

(
3

4
+ i

θ

2π

)
+ ψ

(
3

4
− i θ

2π

)
− ψ

(
1

2
+ i

θ

2π

)
− ψ

(
1

2
− i θ

2π

))
=
∞∑
n=0

(
1

π

2π(n+ 1/2)

θ2 + (2π(n+ 1/2))2
− 1

π

2π(n+ 3/4)

θ2 + (2π(n+ 3/4))2

)
=

∫ ∞
−∞

dω

2π
eiωθ

q2 − q3

1− q4
,

(A.8)

with q = exp
(
−π

2 |ω|
)
. Then ∫ ∞

−∞
dθ G(θ) = lim

ω→0
Ĝ(ω) =

1

4
. (A.9)

2It could be useful to remind that

ψ(z) =
Γ′(z)

Γ(z)
= −γE −

∞∑
n=0

(
1

z + n
− 1

n+ 1

)
, (A.3)

where γE stands for the Euler’s constant.
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Magnon bound state scattering. Magnonic string solutions scatter according to the

amplitudes

Sl,m(θ) =

l+m−1
2∏

a=
|l−m|+1

2

θ − iπa2
θ + i

πa

2

 , (A.10)

from which

Kl,m(θ) =
1

2πi

∂

∂θ
lnSlm(θ) =

l+m−1
2∑

a=
|l−m|+1

2

1

π

aπ/2

θ2 + (aπ/2)2
. (A.11)

Fourier transforming (A.11) gives

K̂l,m(ω) =

l+m−1
2∑

a=
|l−m|+1

2

e−a|ω|π/2 =
e−
|ω|π
4
|l−m| − e−

|ω|π
4

(l+m)

2 sinh(π|ω|/4)
, (A.12)

and the matrix

Nl,m =

∫ ∞
−∞

dθKl,m(θ) = K̂l,m(0) = min[l,m] =
l +m− |l −m|

2
, (A.13)

whose inverse is

K̂−1
n,l (ω) = 2 cosh

(
|ω|π

4

)
δnl − (δn,l−1 + δn,l+1) , (A.14)

with ∑
l

K̂−1
n,l (ω)K̂l,m(ω) = δn,m. (A.15)

Helpful relations in bootstrapping matrices and kernels. Here we are reviewing

the identities between scattering matrices (cfr [36, 37]) required in order to write down the

Y -system and universal form TBA

Slm

(
θ +

iπ

4

)
Slm

(
θ − iπ

4

)
= Sl−1,m (θ) Sl+1,m (θ) e2πiΘ(θ) δlm

t1

(
θ +

iπ

4

)
t1

(
θ − iπ

4

)
= −S

(
θ +

iπ

4

)
S

(
θ − iπ

4

)
[S11(θ)]−1

S

(
θ +

iπ

2

)
S

(
θ − iπ

2

)
= − t1(θ)

S(θ)
S12(θ) e2πiΘ(θ)

t1

(
θ +

iπ

2

)
t1

(
θ − iπ

2

)
= −S(θ)

t1(θ)

Slm

(
θ +

iπ

2

)
Slm

(
θ − iπ

2

)
= Sl−2,m (θ) Sl+2,m (θ) e2πiΘ(θ) Ilm

(A.16)
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(Θ(x) stands for the Heaviside step function, while Ilm = δl−1,m+ δl+1,m ). These relations

are reflected into the following ones, involving the kernels:

Klm

(
θ +

iπ

4

)
+Klm

(
θ − iπ

4

)
= Kl−1,m (θ) +Kl+1,m (θ) + δ(θ) δlm

G

(
θ +

iπ

4

)
+G

(
θ − iπ

4

)
= K

(
θ +

iπ

4

)
+K

(
θ − iπ

4

)
−K11(θ)

K
(
θ +

iπ

2

)
+K

(
θ − iπ

2

)
= −K(θ) +G(θ) +K12(θ) + δ(θ)

G

(
θ +

iπ

2

)
+G

(
θ − iπ

2

)
= K(θ)−G(θ)

Klm

(
θ +

iπ

2

)
+Klm

(
θ − iπ

2

)
= Kl−2,m (θ) +Kl+2,m (θ) + δ(θ) Ilm+

+ δl1 δm1

[
δ

(
θ +

iπ

4

)
+ δ

(
θ − iπ

4

)]

(A.17)

(the last relation makes sense3 provided we define Kl,0 = 0 , Kl,−1 = −Kl,1). Moreover,

we find:

K
(
θ +

iπ

2

)
+G

(
θ − iπ

2

)
−K11

(
θ +

iπ

4

)
= 0

K
(
θ − iπ

2

)
+G

(
θ +

iπ

2

)
−K11

(
θ − iπ

4

)
= 0

K
(
θ +

iπ

2

)
+G

(
θ − iπ

2

)
+K11

(
θ − iπ

4

)
= K12(θ) + δ(θ)

K
(
θ − iπ

2

)
+G

(
θ +

iπ

2

)
+K11

(
θ +

iπ

4

)
= K12(θ) + δ(θ)

(A.18)

The universal kernels. The kernels appearing in the Zamolodchikov’s universal form

of the TBA equations (3.8) are∫ ∞
−∞

dω

2π

cosh
(
π
2aω

)
cosh

(
πω
2

) eiωθ =
2

π

cos(aπ/2) cosh θ

cos(aπ) + cosh(2θ)
= χa(θ),∫ ∞

−∞

dω

2π

sinh
(
π
2aω

)
sinh

(
πω
2

) eiωθ =
1

π

sin(aπ)

cos(aπ) + cosh(2θ)
= ψa(θ),∫ ∞

−∞

dω

2π

1

2 cosh
(
πω
2a

) eiωθ =
a

2π cosh(aθ)
= φa(θ).

(A.19)

B Folding diagrams

We wish now to discuss some features about a pictorial folding process of diagrams, by

elucidating an inspiring resemblance between the Y -system diagrams for the O(6) Non-

Linear Sigma Model and the CP3 ×U(1) model considered throughout this paper.

3Actually, the contact terms δ
(
θ ± iπ

4

)
are but a pretty formal scripture: relations (A.17) always appear

in integrals and it is to be taken into account a residue calculation, whose net result is equivalent to the

effect of some kind of complex-argument defined delta function.
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The O(2n) Non-Linear Sigma Model TBA and Y-system. According

to [50, 51, 53, 54] we can write the TBA system for the O(2n) (n ≥ 2) Non-Linear Sigma

Models as the limit of a certain sequence of coupled non-linear integral equations which read

ε0(θ) = mR cosh θ −
n−2∑
j=1

χ 2
g

(n−1−j) ∗ L(j,1)(θ)− φ1 ∗ [L(n−1,1) + L(n,1)] (B.1)

ε(a,m)(θ) = −δm1[δa1 + δa2δn2]φ g
2
∗ L0(θ)− φ g

2
∗ [L(a,m−1) + L(a,m+1)]

+
n∑
b=1

Iab φ g
2
∗ Λ(b,m)(θ) (B.2)

where g = 2(n− 1) and Iab are respectively the Coxeter number and the incidence matrix

associated to the Dn Lie algebra, while we defined

L0(θ)=ln
(

1+e−ε0(θ)
)

L(a,m)(θ)=ln
(

1+e−ε(a,m)(θ)
)

Λ(a,m)(θ)=ln
(

1+eε(a,m)(θ)
)
. (B.3)

By means of the kernel relation

χ 2
g

(n−1−j)

(
θ +

iπ

2

)
+ χ 2

g
(n−1−j)

(
θ − iπ

2

)
= δ

(
θ +

i(n−1−j)π
g

)
+ δ

(
θ − i(n−1−j)π

g

)
,

(B.4)

and upon defining (as usual)

X(a ,m)(θ) = e−ε(a,m)(θ)

X0(θ) = e−ε0(θ) ,
(B.5)

equation (B.1) entails

ε0

(
θ +

iπ

2

)
+ ε0

(
θ − iπ

2

)
= −

n−2∑
a=1

[
ln

(
1 +X(a,1)

(
θ − i(n− 1− a)π

g

))
+ (B.6)

+ ln

(
1 +X(a,1)

(
θ +

i(n− 1− a)π

g

))]
− ln

(
1 +X(n−1,1)(θ)

)
− ln

(
1 +X(n,1)(θ)

)
.

The latter is the first functional equation of the full Y -system4

X0

(
θ +

iπ

2

)
X0

(
θ − iπ

2

)
=

n−2∏
a=1

[(
1 +X(a,1)

(
θ − i(n− 1− a)π

g

))
×

×
(

1+X(a, 1)

(
θ +

i(n−1−a)π

g

))](
1+X(n−1, 1)(θ)

) (
1+X(n, 1)(θ)

)
X(a,m)

(
θ+

iπ

g

)
X(a,m)

(
θ− iπ

g

)
= [1 + δ1m(δa1 + δn2δa2)X0(θ)]

×
(1 +X(a,m+1)(θ))(1 +X(a,m−1)(θ))

n∏
b=1

(
1 +

1

X(b,m)(θ)

)Iab , (B.7)

4The only difference with respect to the Y -system derived in [54] from the TBA [50, 51] is that we do

not assume the symmetry (equality) between the two fork nodes X(n,m) and X(n−1,m).
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(1,1)

(2,1)

(1,2) (1,p-1)

(3,p-1)

(2,p-1)

0

(n-1,1)

(n-2,1)

(n-1,p-1)

(n-2,p-1)

(n,1) (n,p-1)

Figure 2. The O(2n) diagram. The labels of each node are associated to the functions Y in (B.7).

(1,1)

(3,1)

(2,1)

(1,2)

(3,2)

(1,p-1)

(3,p-1)

(2,p-1)

0

Figure 3. The O(6) diagram. The labels of each node are to be intended as the subscripts of the

functions X appearing in (B.8).

which may be encoded in the diagram of figure 2.5 The bold link has the same meaning

(explained in footnote 1 on page 6) as in the CPN−1 ×U(1) model diagram of figure 1.

Folding diagrams. In the particular case n = 3, the Y -system of the O(6) non-linear

sigma model reads

X0(θ +
iπ

2
)X0(θ − iπ

2
) =

(
1 +X(2,1)(θ +

iπ

4
)

)
×
(

1 +X(2,1)(θ −
iπ

4
)

)(
1 +X(1,1)

) (
1 +X(3,1)

)
X(a,m)(θ +

iπ

4
)X(a,m)(θ −

iπ

4
) = (1 + δm1δa2X0)

(
1 +X(a,m+1)

) (
1 +X(a,m−1)

)(
1 +

1

X(a+1,m)

)(
1 +

1

X(a−1,m)

)
a = 1, 2, 3 m = 1, 2, 3, . . . , p− 1 (B.8)

(imposing X(a,0) = X(a,p) = (X(0,m))
−1 = (X(4,m))

−1 = 0 and taking the limit p → ∞),

which may be represented on the diagram in figure 3 and enjoys the usual (uncrossed) form.

5This diagram and its interpretation is slightly different from those of [54].

– 18 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
3

Moving from this O(6) diagram we may think to construct that of figure 1 for N =

4, p =∞ paralleling the graphic folding procedure resulting in the AdS4 digram [39] from

that of AdS5, as described previously in the main text. Namely, we can merge together

rows 1 and 3 in figure 3, while all nodes along the symmetry row 2 (including the massive

node) shall split into two nodes. In particular, the unique massive node 0 is “torn” into

two, that is, we can imagine, the spinon 0 and the antispinon 0̄ in figure 1 (for N = 4).

The latter need now to satisfy the “crossed” equations (3.5).

The physical and mathematical implications of this observation are left for ongoing

investigations, also in relation to other folding [67] and quiver [52, 55] procedures.
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