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Abstract

We exhibit a relationship between the massless a integrable quantum field theory and a
certain third-order ordinary differential equation, thereby extending a recent result connecting the
massless sine-Gordon model to the Schrodinger equation. This forms part of a more genera
correspondence involving A,-related Bethe ansatz systems and third-order differential equations.
A non-linear integral equation for the generalised spectral problem is derived, and some numerical
checks are performed. Duality properties are discussed, and a simple variant of the non-linear
equation is suggested as a candidate to describe the finite volume ground state energies of minimal
conformal field theories perturbed by the operators ¢,,, ¢, and ¢, This is checked against
previous results obtained using the thermodynamic Bethe ansatz. © 2000 Elsevier Science B.V.
All rights reserved.
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1. Introduction

A curious connection between certain integrable quantum field theories and the
theory of the Schrodinger equation has been the subject of some recent work [1-4]. In
this paper we extend these results by establishing a link between functional relations for
A,-related Bethe ansatz systems (see, for example, Refs. [5,6]) and third-order differen-
tia equations. Most of our analysis concerns a certain speciaisation of the model, a
particularly symmetric case that can also be related to the dilute A-model of [7].
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In the cases studied in [1-4], the most general differential equation was a radial
Schrodinger problem with ‘angular momentum’ | and homogeneous potential x2M,
initially defined on the positive rea axis x € (0,%):

I+
e T T

¥(X,E) = Eg(x,E). (1.1)

The relevant integrable quantum field theories were the massless twisted sine-Gordon
models or, equivaently, the twisted XXZ/6-vertex models in their thermodynamic
limits, and their reductions. It is worth noting that these models are al related to the Lie
algebra A,. Spectral functions associated with (1.1) satisfy functional relations [8—11],
and these were mapped into functional equations appearing in the context of integrable
quantum field theory in [1-4]. We will follow a similar strategy here, taking a simple
third-order ordinary differential equation as our starting-point and showing that the
Stokes multipliers and certain spectral functions for this equation together satisfy
relations which are essentialy the analogues, for the Bethe ansatz systems treated in
[6,7], of the T-Q systems which arise in the context of the integrable quantum field
theories related to A, [12,13]. This is the subject of Section 2, while in Section 3 we
borrow some other ideas from integrable quantum field theory in order to derive a
non-linear integral equation for the spectral functions, an equation which is put to the
test in a simple example in Section 4. Duality properties are discussed in Section 5,
allowing us to find the equivalent of the angular-momentum term in (1.1) for the
third-order equation. Connections with various perturbed conformal field theories are
discussed and tested in Section 6. Finally, Section 7 discusses the most general
A,-related BA equations that arise in this context, and Section 8 contains our conclu-
sions.

2. The differential equation

We begin with the following third-order ordinary differential equation:
y"(X,E) + P(x,E) y(x,E) =0, (2.1)

and initialy restrict ourselves to purely homogeneous * potentials x3M, giving P(x, E)
the form

P(x,E) =x*—E. (2.2)

These are the simplest higher-order generalisations of the | = 0 cases of (1.1), and so we
expect that some of the properties of that equation, used in the anaysis of [4], will be
preserved. In particular, motivated by the results of [8,9] for second-order eguations, we
suppose that (2.1) has a solution y = y(x, E) such that:

) y is an entire function of ( x, E) though, due to the branch point in the potential
a x=0, x must in general be considered to live on a suitable cover of the
punctured complex plane;
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(i) y, Y =dy/dx and y’ = d?y/dx? admit, for M > 1/2, the asymptotic repre-

sentations
M+ 1 1 M+1 M 1 M+1
y~x e m+1t y~—e M1~ y'~x"e w1t T,
(2.3)
as x tends to infinity in the sector
47
larg x| < T3 (2.4)

Furthermore, these asymptotics, or even just the asymptotic of y(x,E) with X
remaining on the positive real axis, characterise y uniquely.

For M <1/2, the story is complicated by the appearance of extra terms in the
asymptotic (2.3). The behaviour of the solution which decays as x — +« can be more
generaly found from the formula

y(x,E)~P(x,E)_1/3exp(—fxx P(t,E)l/adt), (2.5)

with the constant x, being related to the normalisation of the solution. (This is the
analogue of an approximate WKB solution of a Schrodinger equation.) Since to take
M < 1/2 would bring other technical problems into the treatment to be given below,
from now on, unless otherwise stated, we shall restrict ourselves to M > 1/2. This
range is the analogue of the ‘semiclassical domain’ of [13] (see Refs. [1,2,4] for a
discussion in the context of differential equations).

Given y(x,E), bases of solutions to the third-order equation can be constructed just
as in the second-order case. For general values of k, define

Yi( X,E) = 0*y( 0 *x, 0 3MkE), (2.6)
with

(2.7)

2mi
‘”_eXp(3|v|+3)'

Then y, solves
V(X,E) +e 2 P(x,E)y,(x,E)=0, (2.8)

and so when k is an integer it provides a (possibly new) solution to the original problem
(2.1). However, since we will shortly need to consider fractional values, we will leave k
arbitrary for now. It is convenient to define sectors ., as
2k ‘ T
< .

3M+3| 3M+3

On the cover of the punctured complex plane on which x is defined, the sector .,
abuts the sectors .%,_; and %, ,, and the sector (24) is ¥_; , U, ,, U , U
3,2+ The pattern of dominance and subdominance of solutionsis more involved than in
the second-order case, since there are now three different behaviours for solutions at
large | x|. In addition to a solution with leading behaviour x Mexp(—x"*! /(M + 1)) as
|X| > +oe, there are also solutions which behave as x Mexp(e*™'/3xM*1 /(M + 1)).

St largx—

(2.9)



586 P. Dorey, R. Tateo / Nuclear Physics B 571 [PM] (2000) 583-606

(This is simply a consequence of the fact that the three third roots of —1 are —1, e™'/3
and e "'/3.) Depending on the sector, either one or two of these solutions tend to zero
at large | x|. We call ‘subdominant’ the solution which tends to zero fastest in a given
sector; then, up to a scalar multiple, y, is characterised as the unique solution to (2.8)
subdominant inside .%,.

The asymptotic (2.3) and the definition (2.6) together imply

1 1
M+ DKo M e —(M+ Dky M+ 1 _ ~(M+DkyM+1
yk~w( kx Mo~ ur1? ) Ve~ —€ m+1? )

- (M+DkyM+1

1
Y ~ " (MFDkyMe= 5 , (2.10)
for | x| — o with
XEF 3,/ UF1,,UA1,UH 30 - (2.11)

Comparing Yy, k.1 and Yy, , intheregion &, ,, UA, 3,,, where the asymptotics
of al three are given by (2.10), establishes their linear independence. The set
{Yi: Yis 1, Yir o) therefore forms a basis of solutions to (2.8) (and, for k integer, to
(2.1)). Alternatively, we can examine

Wi ok = WL Vi Vi s Vi ] (2.12)
where the generalised Wronskian W[ f,g,h] is defined to be
f f/ f//
Detig g g"|- (2.13)
h h H

It is a standard result (see, for example, Ref. [14]) that, for f, g and h solving (2.1),
WI f,g,h] isindependent of x, and that f, g and h are linearly independent if and only
if W[f,g,h] is non-zero. For (k;,k,,k;) =(—1,0,1), the asymptotic (2.10), used in
F_1,2UF 5, shows that

o M ] 2M
W_, 5, =8isin a |sin . (2.14)
- 3M+3 3M+3
It is also the case that
Wi, s ak,+ akg+al E) = Wi i, 1 ( o *ME), (2.15)

SO W, .+ 1+ 2 iSnon-zero for all k, thus confirming the independence of {y,, Y, 1, Vi 2}-

We now aim to generalise the analysis of [4] to this situation, guided in part by the
treatment of A,-related BA systems provided by [6]. Since y,,Y,,Y; form a basis, we
can write

Yo~ SY(E)y1+ S?(E)y, —y;=0 (2.16)
with
Wo 23

SU(E) = 223 Q) =M 217
(E) W123, (E) W123. ( . )
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The coefficient of y, in (2.16) is —1 by (2.15); SV and S® are Stokes multipliers for
(2.1), and are analytic functions of E. Notice the formal similarity between this equation
and Eq. (15) of Ref. [6].

Now suppose that k; and k, differ by an integer. Then y, and y,  both solve (2.8
(with e 2k = e’z“l"' = e’z“?”' ), and it can be checked by direct substitution that the
function

Zii (X E) = Vi, Vi, = Vi Vi, (2.18)
solves
Zii( X, E) — e 27P(X,E) 7 ( X, E) = 0. (2.19)

This is just the equation adjoint to (2.8); the observation that the Wronskian of two
solutions of a third-order ordinary differential equation satisfies the adjoint equation
dates back at least to Birkhoff [15]. Observe also that if k, and k, are shifted by a
half-integer, then a solution of the original equation(2.8) results:

z . ,k2+%( X,E) + e 2*"P(x,E) Zk1+%,k2+%( x,E) =0. (2.20)
For |k, —k,| < 3, the regions (2.11) for k= k,; and k=k, have a non-empty overlap,

and an asymptotic for z, ,, is easily obtained from (2.10). In particular, for k=1,2,3 we
have

xM+1

X 40,
(2.21)

Z v axs2( X, E) ~ 2isin(7k/3) x Me~

For k=1, z_y ,,,, solves (2.1), and now from (2.21) we see that it shares (up to a
proportionality factor) the asymptotic (2.3). By unigueness, we deduce

Z 1 ,21/2(%E) =iV3y(xE). (2.22)

Unfortunately, this argument is not so effective for the other cases. At k=2, the
formula (2.21) shows only that z ,,; is not subdominant on the real axis, and this
information is not enough to pin the function down. For k=3, sin(rk/3) = 0 and all
that can be deduced is that the leading asymptotic of z_; , 5, is subleading to the term
over which we have control.

The next step is to manipulate (2.16) in order to eliminate either S or S?. We have

Y1¥o— SP(E) ¥1y1 + SP(E) V1Y, —¥1Ys =0, (2.23)

V1Yo = SY(E)y,1y1 + SP(E) Y, Y, — ¥, Y5 =0, (2.24)
and, subtracting,

SP(E) 2z, =2y + 235- (2.25)

For the reasons just explained, functions z,, with Ik, — k,| =1 are the most easily
handled, so we use the identity y,z,5=Y,7,, + 2, Y to rewrite (2.25) as

S(Z)( E) Y221, =Y2Z01 + Z12 Y3+ Z53Y: - (2.26)
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Likewise,

SP(E)Y121,=21, Yo+ Y1Zos + Zyy ¥z - (2.27)

Now the result (2.22) can be combined with shifts in E to «®™/*E and »?M/*E
respectively to rewrite both (2.26) and (2.27) as

T(E)Y_1/aY1/4a=Y-1/4Ys/a+Y-3/4Y3/a T Y _5/2Y1/a» (2.28)
where
T(E) = SP(w®™/%E) = S?P(w?M/E). (2.29)

As a byproduct, this has established that the two Stokes multipliers SV and S? are
related by an analytic continuation in E.

Finally, taking (2.28) at x=0 yields a functional relation involving E aone. To
absorb various phases, it is convenient to set

Q" (E) =E"'/3My(0,E), Qi (E)=Q" (0 *MkE). (2.30)
Then the relation is
TQt1/4Q1+/4 = Qt1/4Q5+/4 + Qt3/4Q3+/4 + Qt5/4Qf/4' (2'31)

This is very similar to the equations related to the dilute A model studied in [7,16]. An
equation involving y’(0,E) can also be derived. Firgt, differentiate (2.25) twice with
respect to x:

SP(E)zy, =75 + 7. (2.32)

Using the fact that y;, y, and y, all solve (2.1), we have Y, z{, = Y Z,; + 7/, Y3, and so
the previous steps can be repeated to find

T(E)YL1/aY1/a=Y"1/aY5/a Y 3/4Y3/a+ Y 5,01 a- (2:33)
Again set x= 0, and define

Q (E) =3E*Yy'(0,E),  Q((E)=Q (0 *E) (2.34)
(the factor % is included for later convenience). Then

TQ71,4Q1/4=Q71/4Q5,4 + Q3,4Q3/4 + Q75,4Q1 4 (2.35)

There is no simple relation involving y'(0,E) aone, but from (2.18) and (2.22) one can
deduce

i\/§y’:3/71/23/’1,/2_)’11/2 Y12 (2.36)
which alows y'(0,E) to be recovered once y(0,E) and y”(0,E) are known.

3. The non-linear integral equation

The functions Q*(E) are not single-valued, and to derive an integral equation it is
more convenient to work with the functions y(0,E) and y’(0,E) directly. Set

D(E)=y(0.E), D (E)=1y'(0.E) (3.1)
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(so that D*(E)=E**Q*(E) and QI (E)= w**E¥ "D *(w 3M¥E)). These are
entire functions of E and can be interpreted as spectral determinants for the third-order
equation (2.1), since their zeroes coincide with the values of E for which the solution ,
decaying at x —» + for all values of E, in addition either vanishes at x =0 (for the
zeroes of DY), or has a vanishing second derivative at x =0 (for the zeroes of D7).
(See, for example, Ref. [4] for a more detailed discussion of this point in the context of
second-order equations.) For M > 1 /2, the functions D *( E) have large-| E| asymptotics

IND*(E) ~ay(~E)", |El=, lag(—E)l<m, (3.2)
where = (M + 1)/3M, a, = (3M,3), and

k(ab) = [ a((x?+1)"" = x2/?) =
0

(3.3)

The growth of InD *( E) is no larger on the positive real E-axis than elsewhere, so the
ordersof D" and D~ as functions of E are both equal to u, and are less than 1 for
M > 1/2. Invoking the Hadamard factorisation theorem, we can write

D*(E)=D+(0)]_[(1—£+). (34)
k=1 E(
The precise values of the constants D *(0) are irrelevant for the treatment below, but
some knowledge of the positions of the zeroes { E} will be crucial. We conjecture that,
for all M >0, al of the zeroes of D*(E) lie on the positive real E-axis. Some
numerical evidence in favour of this claim will be presented below.

The generaised T—Q relations (2.31), (2.35) taken at either E < {w*“/*E}} or

Ee{w 3MES} imply
_, D*(®™E})

Di(w*3MEni)
T = -0t (3.5)
D (w "/2E7) D (w™/7E2)

an equation that can be written in a Bethe-ansatz form as

© Eki _ w—SMEni . o Ekt _ w—SM/ZEni
kl_Il El — 03ME}! - kl_Il Ef — 0M/2EE (3.6)
= = _ E

This equation is at least not inconsistent with the conjectured reality of the E,’s, since
both sides then reduce to pure phases. There are certainly other, complex, solutions to
(3.6), so the reality property should be seen as a way of selecting the particular solution
relevant to our differential equation, analogous to the selection of the ground state in an
integrable model.

A non-linear integral equation, similar to those described in [13,17-19], can now be
obtained for the quantity

Di(w_gME) Di(wSM/ZE)
l .
Di(a)‘?ME) Di(w73M/2E)

d*(E) =w* (3.7)
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We shall follow a path that completely parallels the treatment given in [13]. By (3.5),
d*(E) = —1 a the points {E}. (The value —1 might also occur at other points; we
supplement our previous conjecture with the assumption that none of these points lie on
the positive real axis.) The product representation (3.4) implies

Ind*(E) = J_riWSM — nglF(E/En), (3.8)
where
F(E) - In(1— Eo M) (1- Ew73M/2) | 39)
(1-Ew®™) (1-Ew 3M/?)
The sum over the E, in (3.8) can be written as a contour integral
Ind*(E) = +im + [ EF(E/E’)&E,In(M—di(E’)) (3.10)
3M+3 c2im

with the contour C running from + to O above the real axis, winding around 0 and
returning to + o below the real axis. (It is at this point that the conjectures about the
locations of the E,’s and of the other zeroes of d*(E) + 1 are used.) If the new variable
0 = uInE isintroduced, the function F becomes

F(e3M0/(M+1))
1 ¢ 1 T 1
snh(2——0+ir snh(2——6+i———
) 1+¢ 1+¢ 1+¢  21+¢
= In| w=3/2
] 1 ) . 1 o1 ’
sinh( 2 0—im snh(2——0—-i—-——
1+¢ 1+¢ 1+¢ 21+¢

(3.11)
with ¢=1/M. Now define
f£(0) =Ind*(eMI/M+D) (3.12)
use the property d*(E)* = d*(E*)~! and integrate by parts to recast (3.10) as

fi(e)—f:da’ R(6— 6')f (6 —i0)

- 2i[_°° d6' R(6— 6') ImIn(1 + exp( f (6" - 0)))

= 4]
T IM + 3
(3.13)

with

i
R(8) = o4, F (/D). (3.14)
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The term (1 —R)=* f *(9) on the lL.h.s. of (3.13) is easily inverted using Fourier
transforms. Using

. sinh(he+imT) 2hsin(27)
N Srn(ho—imr)  cosn(2h8) — cos(2rm) (3.15)
mk
in( 27 snh{(1-27)——
fs_ieikecom(zz:z;(—zcos)(sz) N Ejnh(i;%fh) (3.16)
we have
S sinh(%(l—f)k) . sin:(ggk)
gnh(§(1+§)k) sinh(§(1+§)k)
k ™
B 25inh(? cosh(g(1—2§)k)
B sjnh(g(1+ g)k) ’
A sinh(ggk)cosh(gk) -

sinh(g(1+§)k)cosh(%k) '

Transforming back to 6 space and rewriting the imaginary part in terms of values above
and below the rea axis, the functions f *(6) solve

f4(0) = tima—ibge’+ [ @(0—0)In(1+e" ) do
%1

— [ e(0=0)In(1+e"") do’, (3.18)
g2

where a=2/3, the contours &, and &, run from —o to +o, just below and just
above the real 6-axis,

el
' M’ .

¢(0) == T T
f—“ cosh(—k)sinh(k—g) 2m

2 3
and the constant b, = 2sin(7"%;*)a, has been fixed using the asymptotic behaviour
(3.2). (The corresponding zero-mode can be traced to the zeroin 1— R at k=i.) The
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parameter o« in (3.18) is analogous to the chemical potential (or twist) term in the
equations of [13,17-19].

A first consistency check isimmediate: in the large 6 limit of (3.18) the driving term
b,e’ dominates, and so in this limit the functions exp(f *(6)) are —1 at the points
6= 6=, or

E=Ef=e"/#=((2n—1+ 2)m/by)"" (n=12,...). (3.20)

The same limit can be treated directly using a WKB-like approach to the differential
eguation (2.1). Start from (2.5) with x> x, and fix X, to be at the inversion point
P(x,,E) =0 (x,=EY3™). Now, using analytic continuation (see, for example, Section
47 in Ref. [20]), the dominant part in the region x < X, is

y( X, E) ~|P( X,E)|1/3exp(%fxox| p( x,E)|1/3dX)

V3 %o 1 T
- /39y — —
xcos( : f XIP( x, E) | ~dx 3 ) (3.21)
Thus to have y(0,E) = 0, requires

BT -E) =by(B) = (0= )m, n=12..,  (322)

n

where the formula

T aa

sin( — —)

[la-x=—P 2l (ab) (3.23)

0 sn—

b

was used. The prediction (3.22) agrees perfectly with (3.20). In Fig. 1 the positions of
the lowest zeroes of D*(E) are plotted in the range 0.1 < 3M < 7, and compared with
the WKB-like prediction. Evidence for the reality of the E, at 3M = 1 will be given in
Section 4; in the meantime, we note that the levels continue smoothly away from that
point, and the eigenvalues appear to remain red in the range studied. (The figure can be
compared with Figs. 1 and 2 of Ref. [4], which illustrate cases where the spectrum does
not remain real in the full range displayed.) The kernel ¢(6) given in (3.19) coincides
with i /27 times the logarithmic derivative of the scalar factor in the Izergin—Korepin
Smatrix for the a model [21] (cf. Eq. (3.21) of Ref. [22], though note that the
normalisation of ¢ used by Smirnov in [22] differs from ours &[SMimovl = 2 g(thispaper] )
This is an element of the advertised link between the differential equation (2.1) and the
a? model, the parameters being related as M=1/¢ (with ¢ related to the a?
coupling vy as £€=vy/(m— v) [22]). When 3M is an integer the potential is analytic,
and the associated scattering theory is diagonal; the same phenomenon was observed in
the Schrddinger /sine-Gordon case in [1]. The similarity between the relations (2.31),
(2.35) and (3.6) and those arising in the dilute A model [7,16] has already been
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1ln (E)

o 1 p E) 5 3 3 7
N = 3M

Fig.1. The positions of the first eight zeroes of D* (E), plotted on a log scale. Dotted lines show the
WKB-like predictions, and solid lines the results from the non-linear integral equation.

mentioned. Since the a?> model is conjectured to be the continuum limit of the dilute A
mode! (see, for example, Ref. [23]), the fact that elements of it emerge here is not a

—n/2
Fig. 2. The integration path.
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complete surprise. Nevertheless, it is an encouraging signal that we are on the right
track. We will return to this point in Section 6.

4. The linear potential

A simple but non-trivial example occurs when M =1/3, and is the analogue of the
‘Airy case’ of the second-order problem, discussed in [1,24]. This lies outside the
M > 1/2 zone treated so far, so we have to assume that the results obtained above
continue to hold as the region of their initial derivation is left. The basic differential
equation is

y'(X,E) + xy( X,E) = Ey( x,E). (4.1)
Setting y( X, E) =.2(x — E), this becomes
& (X) +xL”(x) = 0. (4.2)

This equation is solvable via a complex-Fourier transform:

3 : 1,
L(X) = py /Fe"px*zp dp, (4.3)

where the integration path I is represented in Fig. 2. (A curious feature of this case is
that the function T(E) is a constant, equal to 1.) Even though the problem is not
self-adjoint, numerical evidence suggests that all the zeroes of .&(x), .&'(x) and .&"'(x)
lie on the negative rea axis (see Fig. 3), and so the zeroes of y(0,E) =.«(—E), and of
y'(0,E) and y”(0,E), are positive and real. In the first columns of Tables 1 and 2, the
positions of the first ten zeroes of .&/(—x) and .«/""(—x) are displayed.

The approximate positions of the zeroes of .o(x) can be found from the WKB
formula of the last section. As a check, we rederive them here via a saddle-point

/ /

-15 -10 -5 =] s

Fig.3. A search for the zeroes of ./(x) in the complex x-plane. The function plotted is | A(X)|/(1+ | A(X)D,
A(X) = eX7(X).
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Tablel

Zeroes of &/(— x)

k E, (Exact) E, (WKB) E, (NLIE)

1 2.8868281617697677 2.84467 2.886828161769766
2 5.1522519299627660 5.13866 5.152251929962763
3 7.1303732976716514 7.12265 7.130373297671650
4 8.9403621072563961 8.93513 8.940362107256395
5 10.635608688272157 10.6317 10.63560868827213
6 12.245164125544329 12.2421 12.24516412554437
7 13.787063381394688 13.7846 13.78706338139461
8 15.273489957153985 15.2714 15.27348995715393
9 16.713173447810789 16.7114 16.71317344781078

treatment of (4.3). The exponent of the integrand for x = —|x| < 0 has stationary points
at

po=ilxI"?, p,=ie*i27/3x"/3, (4.4)
Deforming the contour I" so that it touches the points p, , we get

(4.5)

3 T 3 T
—|x\4/3e"”/3+i— —Ix\4/3e‘”/3—i—
3 4 3

1

L (—Ix]) ~///(e4

where the phases + /3 are the contributions from the choice of the steepest descent
directions, transforming the quadratic terms in the expansion near the saddle points into
a pure Gaussian integral

3 ) 3
r=y\gn [ e a=ix (46)
T 97—

Thus for large negative x we have

3
Z1xv3 -
2(—Ixl) ~2Ix" %" cos| 2v3|x|*2 - 5/ (4.7)
For x> 0, the dominant saddle point is instead at p,= —ilx|"/*, and
3
S(X) ~ X" % X", (4.8)

(This agrees with the general asymptotic (2.5), since y(x,E) =.%(x — E).) The domi-
nant behaviours of .«’(x) and . (x) for x rea and | x| large are

= 4/3

- E‘X|4/3

o' (=Ix) ~ —2e®  cos(3V3IX*?),  F(IX)~-e s (4.9)

ElX 4/3

1
ta _ -
" (=Ix) ~2Ix%e® cos(%¢3|x|4/3+§), 2" (1x) ~1x e 3
(4.10)

4/3
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Table2

Zeroes of &7""(— x).

k E, (Exact) E, (WKB) E, (NLIE)

1 0.8909448213691012 0.85075 0.890944821369104
2 3.6439018898747455 3.66124 3.643901889874749
3 5.8171363674931786 5.82455 5.817136367493172
4 7.7377094704565507 7.74230 7.737709470456556
5 9.5084853382296383 9.51174 9.508485338229636
6 11.174539990553549 11.1770 11.17453999055357
7 12.761111499098718 12.7631 12.76111149909874
8 14.284208133811659 14.2859 14.28420813381167
9 15.754819677279076 15.7562 15.75481967727909

Continuing to differentiate, the general result for the approximate positions of the zeroes
of the m" derivative .o/™(x) is

3/4
)77'} (n=12,...). (4.11)

4 2m+1
& M(x)=0: x=—[ ( -

33 3

At m= 0 (4.11) reduces to the M = 1/3 WKB prediction (3.22). In Tables 1 and 2 the
results from formula (4.11) are compared with the ‘exact’ result from a numerical
treatment of (4.3), and also against the results of the numerical solution of the non-linear
integral equation (3.18). Clearly the agreement is very good.

5. Duality and a more general chemical potential

In this section we shall investigate the effect of a duality transformation on (2.1),
anaogous to that studied in [2] for the Schrodinger equation (1.1). In the Schrodinger
case duality maps wavefunctions for confining potentials (M > 0) to wavefunctions for
singular potentials (—1<M <0), in such a way that the theories with M and
M= —M/(M + 1) are dual, their respective spectral problems being essentially equiva-
lent. It also changes the coefficient of the ‘angular momentum’ term I(l + 1) /x? in
(1.1) in a non-trivial way; the same phenomenon here will alow us to guess the
corresponding term for the third-order problem (2.1).

To implement the duality transformation, we begin with a Langer [25] type variable
transformation

y(x) =e?u( z), z=Inx, (5.1)
after which (2.1) becomes
u”’(z) —u(z)+ (eBM*32—Ee**)u(z) =0. (5.2)

The duality M — M is now effected by interchanging the roles of the two exponentials.
Substituting

z
N
M+1

ol

EL/3
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yields

u//r z) —
(2) (M+1)°
where E= —(M + 1)3M /EM+1,
Now transforming back results in the equation

OM(M+2(1d 1)y iy =
y +W(————)y+(—x /( )—E)y=0. (54)

x2dx X3
As promised, the confining ‘ potential’ x3™ has been exchanged for a singular potential

—x3M/(M+D “and a new term, proportional to (x~2d/dx — x~ %)y, has been generated.
This motivates us to enlarge the set of differential equations under consideration to

y”—G(l d l)y+(x3“"—E)y=O (5.5)

U(2z) + (—€¥/MD - EeS?)u(z) = 0, (5.3)

xXdx X3
with G a new parameter, analogous to I(I + 1) for the Schrodinger equation. Duality
maps (5.5) to

ym _ é’(
where
J(X,E,G) = (M+1) TEV3AM/ Mt Dy((M+ 1) E" V3V MD EG)  (5.7)

1d

S s | I (X =By, (59)

and
M - M+ 1)*M . G-—M(M+2
g__(M+1) g G- MM+2)

M'=_ 1 T M1 1
M+ 1 EM+1 (M+1)2

(5.8)

Duality therefore maps the 3-parameter family ({M, E,G}) of differential equations (5.5)
onto itself. The analysis of Section 2 can now be repeated for these generalised
problems. It is convenient to write G = g(g + 2) and to work mostly with g instead of
G. We first enlarge the scope of (2.6) by setting

Ye(%E.Q) = 0*y(0 " x,07ME, g); (5.9)
then y, solves
. 1d 1 ok
(O (7&—;)%&6 P(X,E)y,=0. (5.10)
Next we define z,, asin(2.18). If e k™' =e 227" = e 2! then
i 1 d L — 2Kri
ZklkZ_G(?& - F)Zklkz_e P(x,E) Zk1k2=0, (5.11)

which is the equation adjoint to (5.10)*. We can recover the original problem by shifting
k by a half-integer, and arguing just as before we find that

Z_1,51,2(XE,Q) =i\/§y(x,E,g) (5.12)

! Notice that the operator x2d /dx — x~2 is by itself anti-self-adjoint; this gives some insight as to why it
is a sensible generalisation of the x~2 term in the Schrodinger equation.
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and then

T(EO)Y 1,aY1a=Y-1/4 Y54+ Y 374 Y34+ Y 5,4 Yiar (5.13)

where T(E,g) = SP(0®"/E, g) = S?(w?M/*E,g), and S? and S? are defined as
in (2.16). A non-zero value of G = g(g -+ 2) causes (5.10) to be singular at the origin,
so simply considering (5.13) at x = 0 is not an option. Instead, we expand y(x,E,g) as

y(x,E.9) =D"(E.g) x;+D°(E.9) xo+ D (E.9) x_. (5.14)
where { x.,xo,x_} forms a basis of solutions defined via behaviour near the origin:

xi(X,E,g) ~x"+0O(x*3), i=+,0,—, (5.15)
with the A;’s the roots of the indicial equation (A — 1)(A(A —2) —g(g + 2)) = 0:

A=—0, A=1 A =g+2. (5.16)
Explicitly, the functions D*, D® and D~ are
D= W[y, xo.x-] Do — Wy, x_.x.] ~_ WIYx« o]
W[ x5 x0:x-] W[ x5 x0:x-] W[ x5 x0:x-]
(5.17)

with W[ x,,xo.x_1=2(g+ D3 At g=0 they reduce to y(0,E), y(0,E) and
y"(0,E) /2 respectively, in agreement with the notation of earlier sections.
Defining

Q*(E,g) =ET*V2MD*(E,q), ¢ =Q* (0" E,g), (5.18)

the generalised T—Q relations (2.31), (2.35) have exactly the same form as before, and
(3.6) becomes

Ef — 0 VE? = Ef —w M/2EE

— " _pTet) . 5.19
kl:ll Ekir - “)?'MEnir “ kl:[l Ekir - waM/zEnir ( )

The arguments of Section 3 can now be repeated essentially verbatim, to discover that,
so long as G is such that the conjectures of Section 3 about the zeroesof T and D *
remain true, the quantities D* and D~ for the more genera differential equation (5.5)
are again described by the non-linear integral equation (3.18), but with chemical
potential term now taking the value a = 2(g+ 1).

At M=1, 0*3*™= —1, the L.hs. of (5.19) is 1 and the A,-related BA equation
‘collapses’ onto one more closely linked with A,. This leads to a rather surprising
equivalence between spectral problems for a Schrodinger equation with potential
x5+ 1(1 + 1) /x? and the third-order problem (5.5) at M = 1. For these special points,
the guantities in this paper are related to those of [4] as

D*(E,g)lu-1x Di(C_S/zEJ)meig],

T(E,@)lw=1=Ty(c%2E,1)IFLEY, (5.20)



P. Dorey, R. Tateo / Nuclear Physics B 571 [PM] (2000) 583-606 599

where | + 1= 2(g+1), c=Z L7/ XI'6/3 'and T, isone of the ‘fused’ T-operators

f T E T
discussed in Section 4 of Ref. [4].

6. A link with perturbed conformal field theory

We now return to the relation with the a? model, briefly mentioned at the end of
Section 3. The analogy with results of [17—19] for the A,-related models suggests that
the quantity

Catt = otbe f e’In(1+e'"®) de—f e’In(1+e ") de (6.1)
eff 2 %, e, :

should be interpreted as an effective central charge of an underlying conformal field
theory. For general « = 2(g+ 1), this would predict

3
Car =1y

Going further, it is natura to interpret (3.18) and (6.1) as the ultraviolet limit of the
following ‘ massive’ system:

2 (6.2)

f(0) =ima—irsinhg+ [ (60— 6")In(1+e"™) do
g1
— [ e(6=0)In(1+e ") do’,
P

3ir
Cyr(r) = ?(fgsinho In(1+e"®) do— fgsinha In(1+e "®)da|. (6.3)

This should encode finite-size effects in the massive & theory, with r = M_R, M, the
mass of the fundamental soliton and R the circumference of the (infinite) cylinder on
which the theory is living. (Notice that there is no need to distinguish f* from f~ any
more, since the mapping 6 —» — 0 now has the effect of negating «.) There is now a
natural scale, which can be related to an operator ¢ perturbing the ultraviolet conformal
field theory. Standard considerations [26], based on the 6 = 6+ i27#(M + 1) /3M
periodicity of f(6), suggest that so long as « is not an integer c(r) will have an
expansion in powers of r%M/(M+D (together with an irregular ‘anti-bulk’ term, irrele-
vant to the current discussion). This implies for ¢ either the conformal dimensions
h,=h,=1 S 6.4

0T T T oM 2 (6.4)
and an expansion of c(r) in which only even powers of the coupling A to the operator
¢ appear, or, aternatively, the conformal dimensions

By =hy=1— —
ST T M+

and an expansion which sees both even and odd powers of A.

(6.5)
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When « is an integer, the standard considerations of [26] may have to be modified.
Absorbing the term i7a into a shift in f(6), (6.3) becomes exactly odd under a
negation of 6. This forces the shifted f(#) to be zero a& =0, even in the far
ultraviolet, and so long as the would-be plateau value is non-zero, it splits the plateau
region into two pieces, each of half the previous length. As a result, the regular
expansion of c(r) isin powers of r3"/M*D and not rM/M+1 Formula (6.4) now
describes the situation when both even and odd powers of A appear in the expansion of
C«¢, While for even powers only, the correct formula is I_1¢ =h,=1-3M/(4M + 4).
Note though that this plateau-splitting effect does not occur at « = 0, since for this case
the plateau value of f is anyway zero, and imposing f(0) = 0 has no effect.

As explained in [22] (see also Refs. [28-30)), the a? model, when appropriately
guantum-reduced, should correspond to the minimal models My g (with p and g
coprime integers and p < q) perturbed by either ¢,,, ¢,, or [31, 32] ¢>15 With ¢,, the
perturbing operator, the relation with the parameter ¢ appearing in the kernel (3.19) is
[22]

p 2

q (1+¢)°

Since M =1/¢, the ultraviolet effective central charge for a given value of «, as
predicted by (6.2), is

(6.6)

(6.7)

To recover ¢,, perturbations one simply has to swap p and g in (6.6) and (6.7) [22],
while to find ¢,5, p/q should be replaced by 4p/q [31].

For the sine-Gordon model, naturally associated with the ¢,; perturbing operator
[33,34], it has been observed both analytically and numerically [13,17-19,35,36] that
reduction is implemented at the level of finite-size effects and the non-linear integral
equation via a particular choice of the chemical potential. The similarity between our
equations and those in [17-19] suggests that the same should be true here. To decide
which value of o will tune (6.3) onto the ground state of the relevant perturbed minimal
model, we demand that the ultraviolet effective central charges match up; the predicted
dimensions of the perturbing operators, and a comparison of results at non-zero values
of r with those obtained via the thermodynamic Bethe ansatz method, will then provide
some non-trivial tests of the proposal.

The effective central charge of the ground state of the theory .#,,, is ¢y =1 —6/pq.
Thus to have any chance of matching the vacua of the ¢,,-perturbed models, we must
set a = 2/p. The required value of h,, namely h,, = (3p/4q) — 3, is then matched by
(6.4). The value just chosen for o being a non-zero integer if and only if p=2, (6.4)
will be the correct formula to use provided the regular parts of the ground state energies
of the models ., perturbed by ¢,, expand in even powersof A for p > 3, and in even
and odd powers for p=2. This ‘prediction’ holds for al of the examples that we
checked. We then compared numerical results for (M,a) = (4,1), (3,%), (3,2), (4,3) and
(1,0) against the tables of [27,37] for the AY (Yang-Lee), Eg, E;, Eg and D,-related
TBA equations, respectively, finding excellent agreement. Swapping p and g in (6.7),
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Table3

NLIE results versus TBA data from Refs. [27,37-39]

Model (M, @) r TBA NLIE

A? + ¢y, 4,0 0.001 0.399999735051974 0.399999735051971
0.002 0.399998953903823 0.399998953903824

[ &9 0.025 0.499926331494289 0.499926331494288
0.05 0.499705463734389 0.499705463734387

E, + ¢1p G.3) 0.02 0.699928050129612 0.699928050129611
0.04 0.699712371203531 0.699712371203531

Es + b1p (3.3 0.025 0.857016839032789 0.857016839032790
0.05 0.856639509661813 0.856639509661819

D, + ¢4, 1,0 0.01 0.999972507850553 0.999972507850552
0.02 0.999890328583463 0.999890328583464

AL+ by GhH 0.02 0.499697279140833 0.499697279140832
0.04 0.498957654198721 0.498957654198722

A, + ¢y G.3 0.001 0.799999470103948 0.799999470103940
0.002 0.799997907807646 0.799997907807649

Mas + doy ¢t 0.1 0.596517064916761 0.596517064916762
0.15 0.592881408017592 0.592881408017593

My + s (.3 01 0.709591770021299 0.709591770021299
0.15 0.705031895238354 0.705031895238357

the choice «=2/q should capture the ¢,, cases. The conforma weight of h,, =

(3q/4p) is matched by (6.4), provided the swap of p and q in (6.6) is remem-

bered. This time « is never an integer, and the use of (6.4) is justified by the regular
parts of the ground state energies of the ¢,, perturbations always being in even powers
of the coupling A. For (M,a) =(%,2), (£,1) and (£,2) the results from the A, and
A,-related TBA equations [27] and the .#,; model [38,39] were reproduced within our
numerical accuracy?. Finally, replacing p/q by 4p/q in (6.2) (q>2p), a a=1/p
the models .#,, perturbed by ¢, are recovered. Thistime it is (6.5) which predicts the
correct value for h,,, as expected given that ¢, perturbations expand in both even and
odd powers of A. TBA equations for a number of ¢,5-perturbed models have been
proposed in [31,38,40], but so far we have only compared (3.18) with the TBA for the
¢, perturbation of the .#,, model given in [38]. A selection of our numerical results
for all of the cases just mentioned is presented in Table 3, together with thermodynamic
Bethe ansatz data taken from Refs. [27,37—-39]. To facilitate the comparison, we took
r = M, R throughout, with M, the mass of the fundamental particle in the reduced
scattering theory. For AY and Eg this is the first breather in the unreduced theory, and
M, is equa to 2cod57/12)M, and 2cod(37/10)M, respectively. In all of the other
models in the table, M, is equal to M. The results strongly support the claim that the
system (6.3) encodes the ground state energies of ¢,,, ¢,; and ¢, perturbations of
minima models.

2 Beware of a misprint in Eq. (7) of Ref. [38]: the (minus) sign before ij: , should be reversed.
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In previoudy-studied examples, equations similar in form to those for the ground
state have been found to describe excited states (see, for example, Refs. [13,35,41-43]).
We expect that the same will be possible here, but we will leave investigation of this
point for future work. Finaly, we remark that it would be interesting to derive a
non-linear integral equation for the a® mode! directly from finite lattice BA equations.
We understand that progress is currently being made in this direction [44].

7. General A,-related BA eguations

In this section, we discuss the effect of adding a term proportional to x ™3 to the
differential equation (5.5). The equation becomes

1

d 1
"~ G| — - = |y+P(xEL)y=0 7.1
V=6l 2 g ~ 73|y POGEL =0 (71)
where
L
P(XEL) =x"—E+ —. (7.2)

Duality actson M and G as before, and transforms L as

~ L

The relation (5.7), apart from the appearance of L and L as arguments of y and ¥
respectively, is unchanged. The earlier treatment can be generalised by defining

Y =Y( X,E,g,L) = 0 y( 0 *x,0 3V E, g, 0 M DKL), (7.4)
so that
" 1 d l — 2kmi
k_G(F&_F)yk—'—e P(X,E,L)yk=0. (75)

If we also define z, asin (2.18), then, for k; and k, differing by an integer,

/11

Zklkz - G

1d 1 —2kmi
?& B F Zk1k2 —-€ P(X’E’L) Zk1k2 = 0’ (76)

(with e 2kl = @~ 2kemi = @~ 2k7i ) whijch is the adjoint to (7.5). Again we can recover
the original problem by shifting k by a half-integer. As before, we find that
Z 1 21,%E 0,L) =iV3 y(x,E,g,L) and (cf. (2.28))

T(E,9.L)Y_1/aY1/a=Y-1/2Ys/a+Y_3/2Y34a+t Y_5/4Y1/4- (7.7)
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The presence of a non-vanishing L has however introduced an extra complication. To
see this explicitly, shift k by +1/4 to get

Tiyoyim:yoyig/z+yly,1/2+y,1y1/2, (7.8)

with T*=T(Ew " 3M/4,g,F iL). If this equation is rewritten in terms of the function
y(x,E,g,L), both signs of L appear: for k integer or half-integer we have

Y= o*y( X0, Eo~Mk g,(—1)% L). (7.9)

Notice that the same does not happen for the argument g (or G), which is why this
problem did not arise before. From an analytic point of view, y(x,E,g,L) and
y(x,E,g,— L) are just two distinct points of the same function, but in the derivation of
the non-linear integral equation it is only the analyticity in E that is used. To proceed, it
is best to consider L to be held fixed once and for all, and to treat the pair of functions
v = wky(w_kx,w_?’MkE,g,L) and v, = wky(w_kx,w_WkE,g,— L) independently.
Then (7.8) becomes

+., = - - -
To000 412 = Vg0 23/2 010 1,2t V_101,5. (7.10)

This equation is very reminiscent of those given in [6] for the A,-lattice model. There
remains an Xx-dependence in (7.10) which can be eliminated, once again, by expanding

v=D"(E,g,L) x,+D°(E,g,L) xo+ D (E,g,L) x_, (7.11)
1=D"*(E,g,L) x.+D°E,g,L)Xxo+D (E,g,L) x_, (7.12)

where{ x_, xo,x_)} and { ., Xo, x_} are aternative bases defined via the behaviour near
the origin

Xi(%Eg,L) ~x4+0O(x""3), i=+.0-, (7.13)
X(%,E,g,L) ~x"+O(x}*3), i=+,0,—, (7.14)
and the A;’s and A,’s are respectively solutions of the indicial equations
(A=D(MA-2)-9g(g+2) +L=0,
(A-1)(MA—-2)—g(g+2))-L=0. (7.15)

If the labelling is chosen consistently with that of section Section 5, so that the A’s and
the A’s reduce to the quantities in (5.16) when L = 0, then

T irQoi(jil/zz Qoiéis/z"‘ Qli6%1/2+ Q:L161i/2' (7-16)
with
Q*(E,g,L) =EX:~D/3MD*(E g,l), QFf =Q*(w 3M*E,g,L), (7.17)

Q*(E,g,L) =EX:"V/3MD*(E g,l), QFf =Q*(w *M*E,g,L). (7.18)
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This leads to two coupled sets of BA equations

% + _  —3Mp+ o E+ _ ,,—3M/2p+

1_[ =5 w E; YV g 1_[ = w E, (7.19)
kei EF — 0*MEF k=1 Eki—(uw'/zEnir ’ '

© E+ _ ,.—-3ME+ ) + _ —-3M/2F+

M & _ a2 5 (7.20)
k=1 EX — w®MEZ k=1 Ef —3M/2E?

Generalising the analysis of Section 3, it should be possible to derive a non-linear
integral equation relevant to this more general case. We expect that this equation will
coincide with the ai"-related case of the equations found in [45,46], in its massless limit,
but we will leave a detailed investigation for future work.

8. Conclusions

We have continued to study the relationship between integrable quantum field
theories and ordinary differential equations, and in the process have obtained a novel
non-linear integral eguation which is able to describe the ¢,,, ¢, and ¢,5 perturba
tions of minimal models within a unified framework. We have also found a natural
generalisation of the duality symmetry enjoyed by the Schrodinger/massess sine
Gordon system [2]. A major theme has been that the A, structures hidden inside certain
third-order ordinary differential equations, and also inside certain integrable quantum
field theories and BA systems, are very closely related. It seems clear that the correct
way to generaise to yet further modelsisto look to differential equations of even higher
order. While this might appear to be a task of ever-increasing complexity, there are
some reasons to suppose that a more unified picture will ultimately emerge. ADE
structures have been observed in many different, but related, settings in the context of
integrable models (see, for example, Refs. [5,26,45-51] and references therein). One
might hope that the process of generalisation will reveal similar phenomena on the
differential equations side of the correspondence, but more case-by-case analysis will
certainly be required before this can be confirmed.

Notes added

) The ‘massless’ non-linear integral equation derived in Section 3 has appeared
previously, in connection with the Izergin—Korepin model, in [52].

(i) A conjecture due to Kausch et al. [40,53] states that the ¢, perturbation of

M, 4 and the ¢y perturbation of .#, , have identical ground-state scaling
functions if (and only if) P’ =p/2, d = 24q. (Thisimplies p=2mod4, since
(p,g) and (p',g) must both be coprime; such pairs are called ‘type II' in
[40].) It is easily checked that this equality follows from the recipe for finding
ground-state scaling functions given in Section 6: the values of M and « that
should be used in the two cases are identical, and so both are described by the
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same non-linear integral equation. We take this as additional support both for
our conjectures and for that of Ref. [40Q].

(i) In a recent paper [54], Suzuki has independently remarked the relevance of
higher-order ordinary differential equations to integrable models associated
with the algebra A,, though with a dlightly different emphasis from that
adopted above.

We would like to thank Ole Warnaar and the referee for bringing Ref. [52] to our
attention, and Gabor Takacs for telling us about the type Il conjecture.
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