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1 Introduction

The Hubbard model [1] arises as an approximate description of correlated electrons in

narrow-band materials. Despite its simplicity, it is believed to capture important nonper-

turbative features of real many-body fermionic systems. In one dimension, the model is

exactly solvable and its relevance for the study of strongly correlated electrons is perhaps

comparable to that of the Ising model for magnetism. Quite unexpectedly, the Hubbard

model has also attracted the attention of high energy physicists due to its multiple connec-

tions [2–8] with the integrable spin chains emerging in the context of N=4 Super Yang-Mills

theory [9–11]. In particular, the exact Bethe Ansatz equations of Lieb and Wu [12], and

the corresponding string hypothesis [13], have many features in common with the asymp-

totic Bethe Ansatz of Beisert and Staudacher for the anomalous dimensions of single-trace

operators with large quantum numbers [11].

We start from the 1D Hubbard Hamiltonian written in the form

H0 = −
L∑
i=1

∑
σ=↑,↓

(
c†i,σci+1,σ + c†i+1,σci,σ

)
+ u

L∑
i=1

(
1− 2 c†i,↑ci,↑

)(
1− 2 c†i,↓ci,↓

)
, (1.1)

where L is the length of the chain, c†i,σ and ci,σ are fermionic creation-annihilation operators

satisfying

{ci,σ, cj,τ} =
{
c†i,σ, c

†
j,τ

}
= 0,

{
ci,σ, c

†
j,τ

}
= δij δστ , (1.2)

with periodic boundary conditions c1,σ = cL+1,σ, c†1,σ = c†L+1,σ, and u ≥ 0 is a dimensionless

coupling constant proportional to the electric charge. For L even, the Hamiltonian (1.1) is

SO(4)-symmetric [57]. We shall consider a two-parameter deformation of (1.1) where this

symmetry is explicitly broken by coupling the electrons to a chemical potential µ and to a

magnetic field B:

Hµ,B = H0 − µN̂ − 2BSz, (1.3)

with the conserved electron number N̂ and spin Sz operators defined as

N̂ =
L∑
i=1

(
c†i,↑ci,↑ + c†i,↓ci,↓

)
, Sz =

1

2

L∑
i=1

(
c†i,↑ci,↑ − c

†
i,↓ci,↓

)
. (1.4)

Lieb and Wu showed that this system is integrable and that it can be solved by means of the

Bethe Ansatz (BA) method [12]. The spectrum of the Hamiltonian (1.3) is characterized

by two sets of complex quantum numbers (Bethe roots): the charge momenta {kj}Nj=1

and spin rapidities, {λj}Mj=1. N is the total number of electrons and M is the number of

down-spin electrons, with 2M ≤ N ≤ L. The Bethe roots are solutions of the Lieb-Wu BA

equations:

eikjL =

M∏
l=1

(
λl − sin(kj)− iu
λl − sin(kj) + iu

)
, j ∈ {1, . . . , N} , (1.5)

N∏
j=1

(
λl − sin(kj)− iu
λl − sin(kj) + iu

)
=

M∏
m=1
m 6=l

(
λl − λm − 2iu

λl − λm + 2iu

)
, l ∈ {1, . . . ,M} , (1.6)

– 2 –
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and the corresponding energy is given by

E = −2
N∑
i=1

cos(ki) + u (L− 2N)− µN −B (N − 2M). (1.7)

The system at finite temperature can be studied using the Thermodynamic Bethe

Ansatz (TBA) method [13, 14]. The TBA equations for the Hubbard model, an infinite

set of coupled nonlinear integral equations, were first derived by Takahashi starting from

equations (1.5), (1.6) and the classification of their solutions according to the so-called

string hypothesis [13]. An alternative approach was introduced more recently by Jüttner,

Klümper and Suzuki in [15], and is based on an associated integrable lattice model intro-

duced by Shastry [16, 17] and the path integral approach to thermodynamics, also called

Quantum Transfer Matrix (QTM) method [18–21]. One of the main results of [15] is a

much simpler set of only three coupled nonlinear integral equations (NLIEs) of Klümper-

Batchelor-Pearce-Destri-DeVega type [22–25]. Although the two approaches lead to equiv-

alent expressions for the Gibbs free energy, a direct link between the two sets of nonlinear

integral equations was until now not found for the Hubbard model. For the discussion of

the equivalence between QTM and TBA in other models, see [26].

In this paper we shall reconsider the Hubbard model TBA inspired by some notable re-

cent results obtained studying the TBA equations for N=4 Super Yang-Mills (SYM). The

TBA was introduced in the AdS/CFT context [27–29] to overcome the so-called wrapping

problem [30] affecting the Beisert-Staudacher equations. Recently, this very complicated

set of TBA equations was recast into the greatly simplified form of a nonlinear matrix

Riemann-Hilbert problem: the Quantum Spectral Curve or Pµ-system [31, 32]. This new

formulation, contrary to the TBA, treats the full spectrum on an equal footing. It has

already led to an impressive number of perturbative and nonperturbative results [33–35].

A similar reduction was also recently obtained [36] in the case of the N=6 Chern-Simons

theory, and made possible the determination of the so-called slope and interpolating func-

tions, both nontrivial nonperturbative quantities [37]. The role of the Quantum Spectral

Curve approach in the general integrable model framework is not fully understood and one

of the purposes of the present work is to investigate whether a similar structure arises also

in the context of the Hubbard model.

One of the main achievements of this paper is the reduction of the TBA equations

derived by Takahashi to a closed system of functional relations, involving only four functions

PV
a(z), PH

a(z), (a = +,−), entire on a two-sheeted Riemann surface and characterised by

a specific asymptotics. The equations are

PH
+(z)P̃H

−(z)− P̃H
+(z)PH

−(z) = −2 sinh(2φ(z)), (1.8)

PV
+(z)P̃V

−(z)− P̃V
+(z)PV

−(z) = 2 sinh(2φ(z)), (1.9)

TH
1,1(z) = e−φ(z+iu)+φ(z−iu) TV

1,1(z), (1.10)

where Tφ(z) = −iz
√

1− 1/z2, and

Tα1,1(z) = Pα
+(z + iu)Pα

−(z − iu)−Pα
−(z + iu)Pα

+(z − iu), α = H,V. (1.11)

– 3 –
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In (1.8) and (1.9), P̃α
i denotes the second-sheet evaluation of Pα

i . The Gibbs free energy

f is contained in the large-z asymptotics, for instance

lnTH
1,1(z) ∼ − 1

T
(f + µ+ u). (1.12)

We also found an alternative formulation, based on the fact that the P functions satisfy

the functional relation

P̃H
a(z)PV

b(z) = Fab(z + iu)eφ(z) + Fab(z − iu)e−φ(z), (1.13)

where Fab(z) (a, b = +,−) are entire functions analytic on the whole complex plane. The

set of equations (1.13) and (1.8), (1.9) is equivalent to (1.8)–(1.10), and may be seen as

the analogue of the AdS/CFT Pµ-system.

Furthermore, these relations imply that the zeros of the P and F functions are con-

strained by a set of exact Bethe Ansatz equations. More precisely, setting Q+(z) =

eiB̂z/uPH
+(z) P̃H

+(z) and Q+−(z) = e
i
2

(B̂−µ̂)z/uF+−(z), we have

eB̂−µ̂
Q+−(si + iu)

Q+−(si − iu)
= −eε(si)/T , at Q+(si) = 0, (1.14)

e−2µ̂ Q+−(wα + 2iu)

Q+−(wα − 2iu)
= −Q+(wα + iu)

Q+(wα − iu)
, at Q+−(wα) = 0, (1.15)

where µ̂ = µ/T , B̂ = B/T and ε(z) = −2Tφ(z) = 2iz
√

1− 1/z2. Notice that the solutions

of these equations have an infinite number of Bethe roots. In fact, (1.14), (1.15) coincide

with the infinite Trotter number limit of the exact Bethe Ansatz diagonalising the Quantum

Transfer Matrix. Since the latter equations are the starting point for the derivation of the

NLIEs of [15], our analysis provides the missing link between the two different approaches

to the Hubbard model thermodynamics. As mentioned above, this was a longstanding

problem (see, for example, the discussion at the end of chapter 13 of [38]).

In this paper we also present a preliminary study of the numerical solution method for

the ground state. At least for sufficiently high values of the temperature, we expect that

the ground state is singled out by the requirement that all the roots si are located on the

second sheet. In the region of validity of this assumption, our functional relations give rise

to a simple set of nonlinear integral equations, easy to solve numerically. We have explicitly

checked the agreement of our results against the TBA predictions for many points in the

region |B| < 1, |µ| < 1, 0 < u < 2 and T ≥ 1. However, the study of [15] indicates that

there is a flow of roots from the second to the first sheet as T is decreased. It should be

possible to generalise our numerical method to this parameter region, as well as to excited

states, but we leave this problem for future studies.

As a last remark, we point out that this infinite Bethe Ansatz is reminiscent of the

one discovered in the AdS/CFT context in [39, 40] (however, in the latter case a relation

with a lattice construction is not known).

The rest of the paper is organised as follows. Section 2 contains the TBA equations

written in a slightly modified form that highlights some of the symmetries of the model and

can be implemented numerically without range restrictions on the parameters µ and B.
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Section 3 contains the Y-system [41] and the basic discontinuity relations [42] that allow

its extension to arbitrary branches of the Riemann surface on which the Y functions,

solution of the TBA equations, are defined. In section 4, taking hints from the recent

results in AdS/CFT and motivated by the symmetry of the TBA equations, the Y’s are

parametrised in terms of T functions in two alternative gauges (TV and TH). The simple

analytic properties in these two gauges motivate a further reparametrisation of the T’s as

2×2 determinants of more elementary objects: the P functions. Moreover, a resolvent-type

representation for the P’s allows to express all the relevant quantities in terms of a pair of

densities ρV and ρH fulfilling a new set of NLIEs defined on a finite support (described in

section 7). Equation (1.13) and the exact Bethe Ansatz equations are derived in section 5,

where the connection with the results of [15] is also discussed. The free-fermion limit is

briefly discussed in section 6. Section 7 contains the new NLIEs together with preliminary

numerics and a brief description of the numerical technique adopted. Section 8 describes

the formal transformation relating the thermodynamic equations to the finite-size ones

describing the Hubbard chain with twisted boundary conditions. The more technical parts

of the analysis are confined to four appendices. A proof of the special analytic properties

of the Y functions on the Riemann section with only short cuts (the “magic” sheet of [43])

is reported in appendix A. The study of the monodromy properties of the P functions

and the proof that they live on a two-sheet Riemann surface is given in appendix B. The

derivation of the factors connecting the TV to the TH gauge, the proof of equation (1.10)

and the derivation of the novel set of NLIEs are the main results of appendix C. Finally,

appendix D contains a dictionary linking this work to the paper [15].

2 Thermodynamic Bethe Ansatz equations

In the notation of Takahashi, the solutions of the TBA equations are{
ηn(z), η′n(z), ζ(k)

}
, n ∈ N+, (2.1)

where the physical range for the arguments is z ∈ R and k ∈ [−π, π]. It is very convenient

to reparametrise the variable k as z = sin(k), and introduce the two-indexed functions

Ym,n as follows:

Y1,n(z) = ηn−1(z), Yn,1(z) = 1/η′n−1(z), n ∈ N+, (2.2)

Y1,1(z) = 1/ζ(k), for k ∈
[
−π

2
,
π

2

]
, (2.3)

Y2,2(z) = ζ(k), for k ∈
[
−π,−π

2

]
∪
[π

2
, π
]
. (2.4)

The structure of the TBA equations is thus codified on the L-shaped diagram represented

in figure 1, with every node of the diagram associated to one of the unknown Y functions of

the TBA. As a consequence of the change of variable z = sin(k), the functions Y1,1(z) and

1/Y2,2(z) have a branch cut of square root type on the real axis for z ∈ (−1, 1), and are in

fact two branches of the same function ζ(z): denoting with a tilde the analytic continuation

around one of the branch points z = ±1, we have Ỹ1,1(z) = 1/Y2,2(z).

– 5 –
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Figure 1. The diagram on which the Y-

system (3.4) is defined.

Figure 2. The extended diagram carrying the

indices of the T functions.

The TBA equations consistent with the Hamiltonian defined in (1.3) can be written as

lnYn+1,1(z) =

∫ 1

−1
ln

(
1 + Y2,2(v)

1 + 1/Y1,1(v)

)
an(v − z) dv −

∞∑
m=1

ln

(
1 + Ym+1,1

1 + 1/Zm+1(µ̂)

)
∗ am,n(z)

− lnZn+1(µ̂), (2.5)

lnY1,n+1(z) = −
∫ 1

−1
ln

(
1 + 1/Y2,2(v)

1 + Y1,1(v)

)
an(v−z) dv +

∞∑
m=1

ln

(
1 + 1/Y1,m+1

1+1/Zm+1(B̂)

)
∗ am,n(z)

+ lnZn+1(B̂), (2.6)

lnY2,2(z)=− lnY1,1(z)+2ε(z)/T =
∞∑
m=1

(
ln

(
1+Ym+1,1

1+1/Zm+1(µ̂)

)
−ln

(
1+1/Y1,m+1

1+1/Zm+1(B̂)

))
∗ an(z)

+ lnZ(B̂, µ̂) + ε(z)/T − 2 u/T, (2.7)

where we have defined

B̂ = B/T, µ̂ = µ/T, ε(z) = 2iz
√

1− 1/z2 = −2Tφ(z), (2.8)

an(z) =
nu

π(n2u2 + z2)
, am,n(z) =

n∑
j=1

(am+n−2j(z) + am−n+2j(z)) , (2.9)

Z(B̂, µ̂) =
cosh(µ̂)

cosh(B̂)
, Zn(x) =

sinh2(nx)

sinh2(x)
− 1. (2.10)

In (2.5)–(2.7), the convention for the convolutions is a ∗ b(z) =
∫
R dv a(v)b(v− z). Further-

more, here and in the rest of the paper we are implicitly assuming that the integrals over

the interval z ∈ (−1, 1) run slightly above the branch cut.

Notice that the TBA equations (2.5)–(2.7) are written in a slightly different form as

compared to [13]. For the equations of [13], the standard method of iterative solution [44]

– 6 –
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requires sign restrictions on B and µ, while here this can be avoided since the symmetries

B ↔ −B and µ ↔ −µ of the ground state solution are explicit. A further symmetry

corresponds to the exchange of the two wings

Ya,b ↔ 1/Yb,a, B ↔ µ, (2.11)

up to a change of sign for all the driving terms (T ↔ −T, φ↔ −φ).

There are many equivalent expressions for the Gibbs free energy, for example:

f/T + µ̂ = u/T − ln(2 cosh(µ̂))− 1

2π

∫ 1

−1
ln ((1 + Y1,1(z))(1 + 1/Y2,2(z)))k′(z) dz

− 1

2π

∞∑
n=1

∫
R

ln

(
1 + Yn+1,1(z)

1 + 1/Zn+1(µ̂)

)
k′n(z) dz, (2.12)

where

k(z)=arcsin(z)= i ln(−x(z)), x(z)= iz+iz
√

1− 1/z2, k′(z)=
d

dz
k(z)=

i

z
√

1−1/z2
,

kn(z)=k(z + inu)− k(z − inu), (2.13)

so that k′n(z) = 1√
1−(z+inu)2

+ 1√
1−(z−inu)2

. The free energy can equivalently be rewritten

using only the Y functions of the horizontal part of the diagram of figure 1, as

f/T + µ̂ = −u/T − ln(2 cosh(B̂))− 1

2π

∫ 1

−1
ln ((1 + 1/Y1,1(z))(1 + Y2,2(z)))k′(z) dz

− 1

2π

∞∑
n=1

∫
R

ln

(
1 + 1/Y1,n+1(z)

1 + 1/Zn+1(B̂)

)
k′n(z) dz. (2.14)

The equivalence between (2.12) and (2.14) can be checked by using the TBA equation (2.7),

and reflects the symmetry (2.11) and the properties [38]:

f(−B,µ, T ) = f(B,µ, T ), f(B,−µ, T ) = f(B,µ, T ) + 2µ. (2.15)

Equations describing excited branches of the free energy — which control the correlation

lengths among local operators at finite temperature — can in principle be obtained by

analytic continuation [45], see also [46–49]. For the Hubbard model, this has been accom-

plished only for a few states [50–52]. The TBA equations appear not to be the optimal tool

for this analysis, and the results of [50–52] were obtained adopting the QTM method. It

would be important to have a more complete understanding of the free energy spectrum,

and one of the aims of the present work is to propose an alternative formulation which

seems to have some advantages over the existing approaches.

3 The Y-system and the discontinuity relations

In this section we shall describe the essential analytic properties of the system, necessary

for the following simplifications. An important complication comes from the fact that the Y

functions have square root branch points at certain positions in the complex rapidity plane.

In particular, it can be seen analysing the TBA equations that Y1,n and Yn,1 are analytic

in a strip |Im(z)| < (n − 1)u, but have square root branch points at z = ±1 + i(n − 1)u,

z = ±1− i(n− 1)u, and possibly at other positions further from the real axis.

– 7 –
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Figure 3. The “magic” sheet. Figure 4. The “mirror” sheet, on which the

Y-system and T-system are defined.

To describe this structure, let us setup some useful notation. We adopt the convention

that, for complex z, the Y’s are evaluated on a Riemann sheet with short cuts, the “magic”

sheet (see figure 3), and use the notation g̃(z) for the analytic continuation of a function

g(z) around either1 of the branch points z = ±1. Since we reserve this notation to branch

points of square root type, we always have the property ˜̃g = g. Another notation that we

shall use often is g[+n](z) = g(z + inu), where the shifts are evaluated on the magic sheet.

From (2.5)–(2.7) with n = 1, one can derive the following discontinuity relations [42, 53]

for the monodromies around some of the branch points closest to the real axis

Ỹ1,1(z) = 1/Y2,2(z), Y1,1(z)Y2,2(z) = e−4φ(z), (3.1)

Y
[+1]

2,1 (z)/Ỹ
[+1]

2,1 (z) =

(
1 + 1/Y1,1(z)

1 + Y2,2(z)

)
, (3.2)

Y
[+1]

1,2 (z)/Ỹ
[+1]

1,2 (z) =

(
1 + 1/Y2,2(z)

1 + Y1,1(z)

)
. (3.3)

Furthermore, a crucial property implied by the TBA equations is that the Y’s are solutions

of the Y-system [41]

Y̌m,n(z + iu) Y̌m,n(z − iu) =

(
1 + Y̌m,n+1(z)

) (
1 + Y̌m,n−1(z)

)(
1 + 1/Y̌m+1,n(z)

) (
1 + 1/Y̌m−1,n(z)

) , (3.4)

where (m,n) ∈ {(1, k), k ∈ N+}∪{(k, 1), k ∈ N+} with boundary conditions Yk,0 =1/Y0,k =

Yk+2,2 = 1/Y2,k+2 = 0 for k ∈ N+ (see figure 1). Notice that there is no independent

equation centered at the node (2, 2). Indeed, the function Y2,2 is simply related to Y1,1

through equations (3.1). In (3.4), we have used the notation Y̌ to emphasise that the

functional relations (3.4) are valid on the specific Riemann section shown in figure 4, the

1It can be checked that the result of the analytic continuation around two branch points symmetric with

respect to the imaginary axis is always the same.

– 8 –



J
H
E
P
0
6
(
2
0
1
5
)
0
1
5

“mirror” sheet, where all the branch cuts are traced as semi-infinite lines parallel to the

real axis, and do not cross the strip |Re(z)| < 1. This gives a precise prescription on how

to evaluate the shifted values appearing on the l.h.s. of (3.4). Adapting the arguments

of [42, 53, 54], it can be proved that the functional relations (3.1)–(3.4), together with the

asymptotics

ln

(
1 + 1/Y1,n+1(z)

1 + 1/Zn+1(B̂)

)
= O

(
1

z2

)
, ln

(
1 + Yn+1,1(z)

1 + 1/Zn+1(µ̂)

)
= O

(
1

z2

)
, n ∈ N+, (3.5)

lnY2,2(z) = lnZ(B̂, µ̂) + ε(z)/T − 2u/T + O

(
1

z2

)
, (3.6)

and the assumption that the Y’s have no zeros or poles in the strip |Im(z)| ≤ u, are fully

equivalent to the TBA.

One might expect that each Y function should display, on a generic Riemann section,

an infinite ladder of further square root branch points at steps of 2iu, replicated from the

ones closer to the real axis by the Y-system (3.4) [42]. However, this is not the case. We

shall indeed prove that each of the Y functions has only a finite number of branch points

on any sheet and that the number of Riemann sheets is actually finite. The fact that

all functions appearing in this problem are defined on a finite genus Riemann surface is

perhaps obvious from the perspective of the exact Bethe Ansatz and the Quantum Transfer

Matrix construction of [15]. However, starting from the TBA equations this property is

much harder to prove. To establish this result, we adopt the following strategy. First, we

show that the Y functions have at most four branch cuts on the magic sheet:

• Y1,n(z) and Yn,1(z) for n ≥ 2 have only four branch cuts at

z ∈ (−1, 1)± iu(n− 1), z ∈ (−1, 1)± iu(n+ 1),

• Y1,1(z) and Y2,2(z) have only three branch cuts at

z ∈ (−1, 1), z ∈ (−1, 1)± 2iu.

This result is established in appendix A.2 Secondly, it is shown in appendix B that no

further branch cuts can appear on the other sheets. A direct numerical solution of the

TBA equations highlights, unequivocally, the presence of at most four short cuts for the

functions Y1,n and Yn,1, both on the magic and mirror sections. For the magic sheet,

contour plots for the functions Ψ
(+)
12 and Ψ

(−)
21 with

Ψ
(±)
a,b (z) =

∣∣1 + (Ya,b(z))±1
∣∣

1 + |1 + (Ya,b(z))±1|
(3.7)

are displayed in figures 5 and 6.

2It is important to notice that the proposed proof can be straightforwardly adapted to the known

AdS/CFT cases, this gives an alternative and perhaps more transparent way to understand the nice prop-

erties discovered in [43] for the AdS5/CFT4 Y functions on the magic sheet.
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Figure 5. A contour plot for Ψ
(−)
2,1 (z) in the

complex z-plane confirms the presence of only

four short cuts for Y2,1(z) on the magic sheet.

(u = 1, T = 0.5, B = 0.4, µ = 0.1).

Figure 6. A contour plot for Ψ
(+)
1,2 (z) in the

complex z-plane confirms the presence of only

four short cuts for Y1,2(z) on the magic sheet.

(u = 1, T = 0.5, B = 0.4, µ = 0.1).

4 The T-system

Following the strategy which allowed the simplification of the AdS/CFT TBA, we shall

now make a chain of simplifications and reduce relations (3.1)–(3.4) to the finite set of

constraints (1.8)–(1.10). The first step is to parametrise the Y functions as

Yn,s(z) =
Tn,s+1(z)Tn,s−1(z)

Tn+1,s(z)Tn−1,s(z)
, n, s ∈ N+, (4.1)

where the T’s (Tn,s with n, s ∈ N) are defined on the extended lattice displayed in figure 2

and satisfy, on the mirror section, a discrete Hirota equation (the T-system)

Ťn,s(z + iu)Ťn,s(z − iu) = Ťn+1,s(z)Ťn−1,s(z) + Ťn,s−1(z)Ťn,s+1(z), (4.2)

with boundary conditions Ťk−1,−1 = Ť−1,k−1 = Ťk+2,3 = Ť3,k+2 = 0 for k ∈ N+. No-

tice that the Y-system (3.4) is automatically fulfilled as a consequence of (4.1) and (4.2).

However, the parametrisation (4.1) is not one-to-one. Different solutions of the T-system,

corresponding to the same set of Y’s, are linked by a gauge transformation [55]. A clever

gauge choice can greatly simplify the problem.

4.1 Vertical and horizontal gauges

We shall now introduce the two gauges TH and TV, each defined by a set of simple condi-

tions on one of the wings, horizontal (H) or vertical (V), of the diagram in figure 2. We

require that they fulfill the following properties, compatible with the cut structure of the

Y functions, summarised in section 3:

TH
1,n(z), (n ≥ 1) has only two branch cuts at z ∈ (−1, 1)± inu (4.3)

TH
0,n(z) = 1, TH

2,n(z) = TH [+n]
1,1 (z)TH [−n]

1,1 (z), (n ≥ 2) (4.4)
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and

TV
n,1(z), (n ≥ 1) has only two branch cuts at z ∈ (−1, 1)± inu (4.5)

TV
n,0(z) = 1, TV

n,2(z) = TV [+n]
1,1 (z)TV [−n]

1,1 (z), (n ≥ 2). (4.6)

The conditions listed above still leave a residual gauge invariance. These gauges are fixed

uniquely by imposing the following extra conditions:

TH
1,0(z) = e−2φ(z), TV

0,1(z) = e2φ(z). (4.7)

It is shown in appendix B that this choice is indeed possible. Given these definitions, it is

far from obvious that also the functions TH
n,m with n > m and TV

n,m with m > n have such

a simple cut structure. However, one of our main results, is that these two gauges are in

fact connected by an elementary transformation:

TH
1,s(z)

TV
1,s(z)

=
TH
s,1(z)

TV
s,1(z)

= e−φ
[+s](z)+φ[−s](z), s ∈ N+, (4.8)

TH
s,0(z) =

1

TV
0,s(z)

= e−2
∑s−1
n=0 sgn(−s+1+2n) φ[−s+1+2n](z), s ∈ N, (4.9)

TH
2,s(z)

TV
2,s(z)

=
TH
s,2(z)

TV
s,2(z)

= e−φ
[s+1](z)+φ[−s−1](z)+φ[s−1](z)−φ[1−s](z), s = 2, 3, . . . . (4.10)

To prove (4.8)–(4.10), it is necessary to parametrise (4.3)–(4.6) with more elementary

building blocks, the P functions introduced in section 4.2 and the resolvent parametrisation

of section 4.3. The technical details of the derivation are described in appendix C.

In the matching condition (4.8)–(4.10), together with the requirement that the T’s have

no poles, is hidden the full content of the original TBA equations, and its generalisation

to excited states. Furthermore, we will see in section 5 that the T functions have a clear

interpretation: they are directly related to the eigenvalues of the (fused) Quantum Transfer

Matrix in the infinite Trotter number limit [15].

4.2 The P functions

The next natural step is to parametrise the T functions defined in (4.3)–(4.7), and possess-

ing only two cuts, in terms of objects having only one branch cut running along (−1, 1).

We introduce a pair of Pa (a = +,−) functions for each of the wings, and write

TH
1,s(z) = P

H [+s]
+ (z)P

H [−s]
− (z)−P

H [−s]
+ (z)P

H [+s]
− (z), (4.11)

TV
s,1(z) = P

V [+s]
+ (z)P

V [−s]
− (z)−P

V [−s]
+ (z)P

V [+s]
− (z), (4.12)

with s ∈ N+. Thanks to relations of Plücker’s type among determinants, this parametri-

sation is automatically consistent with the T-system in the corresponding H or V wing of

the diagram. This “quantum Wronskian” construction [55, 56] suggests that the P’s are

related to the Q functions describing the spectrum of the thermodynamic problem [15];

this relation is made precise in section 5.
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To fix completely these functions, we have to specify their asymptotics and to constrain

further their analytic properties. As suggested by the asymptotics of the Y functions (3.5),

we demand that,3 for large z,

PH
±(z) ∼ CH√

2 sinh(B̂)
e∓

i
2
B̂z/u, PV

±(z) ∼ CV√
2 sinh(µ̂)

e∓
i
2
µ̂z/u. (4.13)

The particular normalization of the prefactors CH and CV in (4.13) is chosen for future

convenience. As shown in appendix B, the four P functions live on a two-sheet Riemann

surface. This is an important simplification as compared to the AdS/CFT case studied

in [31], where the analogous P functions have additional infinitely many branch cuts,

starting from their second sheet.4 As we discuss in appendix C, equation (4.7) gives the

constraint

PH
+(z)P̃H

−(z)− P̃H
+(z)PH

−(z) = −2 sinh(2φ(z)), (4.14)

PV
+(z)P̃V

−(z)− P̃V
+(z)PV

−(z) = 2 sinh(2φ(z)). (4.15)

Equations (4.14)–(4.15), together with the relation giving the matching of the two wings:

TH
1,1(z) = e−φ

[+1](z)+φ[−1](z) TV
1,1(z), (4.16)

the asymptotics (4.13) and information on the number of zeros on the first Riemann sheet,

form a closed set of conditions for the P functions. In section 7, we will show how to solve

these equations numerically. Notice that the constants CH and CV are fixed by the solution

to this system, and contain the free energy f through the relation:

f/T + µ̂ = −2 lnCH − u/T = −2 lnCV + u/T. (4.17)

We will prove (4.17) in section 4.4, with the aid of a very convenient parametrisation in

terms of resolvents, inspired by [40, 43].

4.3 Resolvent parametrisation

In the following, we shall assume that the P functions have no zeros on the first sheet. We

expect that this singles out the ground state solution in a large parameter region for suffi-

ciently high temperatures. The numerical solution of the functional relations presented in

section 7 reveals the existence of an infinite number of zeros on the second sheet. Starting

from the ground state, we expect that excited states can be obtained by analytic continu-

ation in B and µ, leading to the migration of a finite number of zeros to the first sheet and

to simple modifications in the equations presented in this section. We point out that, in a

neighbourhood of T = 0, even the ground state solution should present a finite number of

zeros on the first sheet [15], and therefore the following analysis needs to be modified.

3In analogy with the AdS/CFT case [32], for excited states we expect that this asymptotic behaviour

may be modified by power-like prefactors encoding the quantum numbers.
4In AdS/CFT, the structure associated to the presence of a ladder of infinitely many branch cuts is

encoded in a periodic matrix µij . In the current setup, the introduction of a periodic matrix can be avoided.
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Figure 7. ρH for B = 1, µ = 0.5 and T = 1, for

u = 0, u = 0.25, u = 0.5, u = 1 and u = 2. ρH
is monotonically increasing with u.
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z
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-ΡV

Figure 8. −ρV for B = 1, µ = 0.5 and T = 1,

for u = 0, u = 0.25, u = 0.5, u = 1 and u = 2.

−ρV is monotonically decreasing with u.

Let us introduce two resolvent functions

Gα(z) =
1

2πi

∫ 1

−1

ρα(v)

z − v
dv, α = H,V, (4.18)

where the densities ρH and ρV are for the moment undetermined. This is the most generic

parametrisation of a function with a single cut, no zeros and no poles on the first sheet,

and large-z asymptotics Gα ∼ 1/z on the first sheet. Under analytic continuation through

the cut, the resolvents transform as

G̃α(z) = Gα(z) + ρα(z). (4.19)

Thus, under the assumptions discussed above, we can parametrise the P’s as√
2 sinh(B̂)PH

±(z) = hH(z) e±(B̂GH(z)− i
2
B̂z/u), (4.20)√

2 sinh(µ̂)PV
±(z) = hV(z) e±(µ̂GV(z)− i

2
µ̂z/u),

where the functions hα (α = H,V) are required to have a single cut, no zeros or poles and

a constant leading asymptotics on the first sheet. Taking ratios of these functions we find

e2B̂ρH =
P̃H

+PH
−

P̃H
−PH

+

, e2µ̂ρV =
P̃V

+PV
−

P̃V
−PV

+

. (4.21)

As a consequence of the simple monodromy properties of the P’s, also ρH and ρV live on a

two-sheet Riemann surface, with

ρ̃α(z) = −ρα(z). (4.22)

More precisely, we require that the behaviour at the branch points is such that the functions

ρα(z)/(z
√

1− 1/z2) are analytic in a neighbourhood of the cut z ∈ (−1, 1). Due to (4.21),

however, the densities can have logarithmic singularities elsewhere in the complex plane,

in correspondence to zeros of the P̃’s.
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Substituting (4.20) into (4.14) and (4.15), we find

hH(z)h̃H(z) sinh(B̂ρH(z)) = 2 sinh(B̂) sinh(2φ(z)), (4.23)

hV(z)h̃V(z) sinh(µ̂ρV(z)) = −2 sinh(µ̂) sinh(2φ(z)). (4.24)

The solution of the latter equations, compatible with the asymptotics (4.13) and the ab-

sence of zeros on the first sheet, is unique and given by:5

lnhH(z) = −
z
√

1− 1/z2

2π

∫ 1

−1
ln

(
2 sinh(2φ(v)) sinh(B̂)

sinh(B̂ρH(v))

)
dv√

1− v2 (v − z)
, (4.25)

lnhV(z) = −
z
√

1− 1/z2

2π

∫ 1

−1
ln

(
−2 sinh(2φ(v)) sinh(µ̂)

sinh(µ̂ρV(v))

)
dv√

1− v2 (v − z)
. (4.26)

Thus, with the definitions (4.25) and (4.26), the parametrisation (4.20) automatically fulfills

the constraints (4.14), (4.15).

Considering the large-z asymptotics of (4.25), (4.26) we find that, on the first sheet,

lim
z→∞

lnhH(z) = lnCH =
1

2π

∫ 1

−1
ln

(
2 sinh(2φ(v)) sinh(B̂)

sinh(B̂ρH(v))

)
dv√

1− v2
, (4.27)

lim
z→∞

lnhV(z) = lnCV =
1

2π

∫ 1

−1
ln

(
−2 sinh(2φ(v)) sinh(µ̂)

sinh(µ̂ρV(v))

)
dv√

1− v2
. (4.28)

In section 4.4, we will connect the integrals appearing in (4.27) to the free energy and

establish relation (4.17).

From (4.11)–(4.12) and (4.20), one can rewrite the T functions in terms of the densi-

ties as

TH
1,s = h

[+s]
H h

[−s]
H T H

1,s, TV
s,1 = h

[+s]
V h

[−s]
V T V

s,1, s ∈ N, (4.29)

where we have borrowed the notation of [40, 43] and denoted

T H
1,s =

sinh
(
B̂
(
s+ G[s]

H − G
[−s]
H

))
sinh(B̂)

, T V
s,1 =

sinh
(
µ̂
(
s+ G[s]

V − G
[−s]
V

))
sinh(µ̂)

. (4.30)

Equation (4.29) defines a gauge transformation between the Tα and the T α functions, with

T H
0,s = 1, T V

s,0 = 1, s ∈ N, (4.31)

T H
2,s = T H [+s]

1,1 T H [−s]
1,1 , T V

s,2 = T V [+s]
1,1 T V [−s]

1,1 , s ∈ N+. (4.32)

In particular, the h factors in (4.29) cancel in the gauge invariant combinations (4.1). The

gauges T α are characterised by the simple large z asymptotics

T H
1,s(z) ∼ sinh(sB̂)/ sinh(B̂), T V

s,1(z) ∼ sinh(sµ̂)/ sinh(µ̂), s ∈ N+, (4.33)

which fixes them uniquely. Finally, in these gauges relations (4.7) become

T H
1,0(z) =

sinh(B̂ρH(z))

2 sinh(2φ(z)) sinh(B̂)
e−2φ(z), T V

0,1(z) = − sinh(µ̂ρV(z))

2 sinh(2φ(z)) sinh(µ̂)
e2φ(z). (4.34)

5Notice that in (4.25), φ(v) needs to be evaluated just above the branch cut, so it agrees with 1
T

√
1− v2.
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Figure 9. Comparison of the numerical solution of the TBA equations (red, dashed line) with the

new set of nonlinear integral equations (gray, continuous line), at T = 1, u = 1, B = 0, µ = 0. The

two curves are interpolations of the numerical solution. The numerical solution of the TBA was

obtained by discretising the integrals with a step ∆z = 1/60 ' 1.7 × 10−2, truncating the infinite

sums after 60 terms and cutting off the integrals over the real line at zmax = −zmin = 50. The

new NLIEs were solved as explained in section 7, using Ntrunc = 50 in (7.8). The difference of the

curves is of order 10−6, and is not visible on the scale of the plot.

As discussed in section 7, the densities can be computed by solving numerically a set of

NLIEs, which can be derived from the constraint (4.16). Some examples of solutions are

displayed in figures 7 and 8. Finally, let us remark again that the information contained in

the pair {ρH, ρV} is fully equivalent to the knowledge of the solution of the TBA equations.

In figure 9, the TBA solution is compared with the same quantity reconstructed from the

parametrisation (4.1), (4.30).

4.4 The free energy

The purpose of this section is to derive a simple formula for the free energy in terms of the

densities. The starting point is equation (2.12), written in the equivalent form:

f/T + µ̂ = −u/T − ln
(

2 cosh(B̂)
)
− 1

2π

∫ 1

−1
ln ((1 + 1/Y1,1(z))(1 + Y2,2(z)))k′(z) dz

− 1

2π

∞∑
n=1

∫
R

ln

(
T̄ H

1,n+1(z + iu)T̄ H
1,n+1(z − iu)

T̄ H
1,n(z)T̄ H

1,n+2(z)

)
k′n(z) dz, (4.35)

where we have set T̄ H
1,s = T H

1,s sinh(B̂)/(sinh(sB̂)), so that ln T̄ H
1,s(z) ∼ 0 at large z. Adopting

the “telescoping” technique used in [39, 43, 54], it is now possible to remove the infinite

sum appearing on the r.h.s. of (4.35). Since T̄ H
1,n is analytic for |Im(z)| < (n+ 1)u, we can

shift the integration contours and prove that, for n ∈ N+,

∫
R

ln
(
T̄ H,[+1]

1,n+1 (z)T̄ H,[−1]
1,n+1 (z)

)
k′n(z) dz =

∫
R

ln
(
T̄ H

1,n+1(z)
) (

k′n+1(z) + k′n−1(z)
)
dz. (4.36)
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This shows that many cancellations take place in (4.35), leading to

f/T + µ̂ = −u/T − 1

2π

∫ 1

−1
ln ((1 + 1/Y1,1(z))(1 + Y2,2(z))) k′(z) dz (4.37)

− 1

π

∫ 1

−1
ln T H

1,2(z)k′(z) dz +
1

2π

∫
R

ln T H
1,1(z)k′1(z) dz.

Using (4.1) and the fact that Y2,2 = 1/Ỹ1,1, (4.37) becomes

f/T + µ̂ = −u/T − 1

2π

∫ 1

−1
ln

T H [+1]
1,1 (z) T H [−1]

1,1 (z)T̃ H [+1]
1,1 (z)T̃ H [−1]

1,1 (z)

T H
1,0(z) T̃ H

1,0(z)

 k′(z) dz

+
1

2π

∫
R

ln T H
1,1(z)k′1(z) dz. (4.38)

The convolution appearing in the first line of (4.38) can be viewed as a contour integral

around the cut of k′(z), and, deforming this contour to a pair of infinite lines, one can write∫ 1

−1
ln

(
T H [+1]

1,1 (z)T H [−1]
1,1 (z)T̃ H [+1]

1,1 (z)T̃ H [−1]
1,1 (z)

)
k′(z) dz

=

(∫
R+i0+

−
∫
R−i0+

)
ln
(
T H [+1]

1,1 (z)T H [−1]
1,1 (z)

)
k′(z) dz. (4.39)

Shifting the line contours appearing in the latter expression (and pushing some of them to

infinity), one can show that the integrals involving T H
1,1 in equation (4.38) actually cancel

each other out. Substituting (4.34) for T H
1,0, we finally arrive at the desired result:

f + µ = −u− T

2π

∫ 1

−1
ln

(
4 sinh2(2φ(z)) sinh2(B̂)

sinh2(B̂ρH(z))

)
dz√

1− z2
. (4.40)

Starting from the alternative expression (2.14) for the free energy, working in the gauge

T V and following the same steps, we also obtained

f + µ = u− T

2π

∫ 1

−1
ln

(
4 sinh2(2φ(z)) sinh2(µ̂)

sinh2(µ̂ρV(z))

)
dz√

1− z2
. (4.41)

The comparison between (4.40), (4.41) and (4.27) finally gives the formula (4.17), showing

that the free energy f appears in the asymptotics of the P’s.

4.5 Energy-carrying Bethe roots

Let us look more closely at the kernels appearing in (4.40) and (4.41). From (4.21), we have

sinh2(2φ(z))

sinh2(B̂ρH(z))
= P̃H

+(z)PH
+(z)P̃H

−(z)PH
−(z), (4.42)

where we have used (4.14). The same relation with B̂ → µ̂, H → V is valid for the

density ρV. Thus, the kernels entering the energy formula have logarithmic singularities
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in correspondence to the zeros of the P functions. Should any of these zeros cross the

integration contours in (4.40), (4.41), the energy would pick extra residue terms of the form

iT k̃(zi), as is easy to verify by first performing an integration by parts.6 This suggests

that zeros of the P functions can be regarded as energy-carrying Bethe roots for the finite

temperature spectrum. According to our assumptions, for the ground state with real B

and µ all the zeros lie on the second sheet, but they may cross the interval and move to

the first sheet under analytic continuation in B and µ. We will return on this point in

section 6 below.

5 Exact Bethe Ansatz and relation with the Quantum Transfer Matrix

In this section we will recast the closed set of conditions (4.14)–(4.16) into another, inter-

esting form, which reveals the presence of an exact Bethe Ansatz. This second formulation

is perhaps closer in spirit to the Pµ-system of AdS/CFT [31], which was one of the main

sources of inspiration for the present work.

5.1 Formulation as a coupled Riemann-Hilbert problem

We start by considering the analytic continuation of (4.16) through the cuts at z ∈ (−1, 1)±
iu, which yields

P
H [±2]
+ (z) P̃H

−(z)−P
H [±2]
− (z) P̃H

+(z)

P
V [±2]
+ (z) P̃V

−(z)−P
V [±2]
− (z) P̃V

+(z)
= e∓(φ[±2](z)+φ(z)). (5.1)

Two of the P̃ functions in (5.1) can be eliminated using the constraints (4.14), (4.15).

Solving (5.1) for the remaining two P̃’s, we find

P̃H
a(z)PV

b(z) = F
[+1]
ab (z)eφ(z) + F

[−1]
ab (z)e−φ(z), a, b = +,−, (5.2)

where Fab has a simple explicit expression:

Fab(z) =
eφ

[−1](z)P
H [+1]
a (z)P

V [−1]
b (z) + e−φ

[+1](z)P
H [−1]
a (z)P

V [+1]
b (z)

TH
1,1(z)

, a, b = +,−. (5.3)

Relation (5.3) shows that Fab(z) could — in principle — have a pair of branch cuts on

the lines Im(z) = ±iu. However, by shifting equation (5.2) of ±iu, and evaluating the

discontinuity across the branch cut, we find

e−φ
[±1]

disc
[
F

[±1]
ab

]
= disc

[
P̃H [±1]
a P

V [±1]
b

]
= 0, (5.4)

which implies that Fab is analytic in the whole complex plane. The absence of branch

cuts can also be directly verified by using the definition (5.3): the quantities F
[±1]
ab − F̃

[±1]
ab

vanish since they are proportional to the difference of the l.h.s. and r.h.s. of (4.16). Notice

that the l.h.s. of (5.2) has no poles. As a consequence, it is possible to prove that the F

6One could also express the ground state free energy as an infinite sum iT
∑
j k(zj) (which should be

regularised).
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functions, appearing on the rhs, are entire on the whole complex plane. This can be also

deduced from equation (5.9) below.

These newly introduced quantities fulfill, together with the P’s, a closed set of func-

tional relations. The fundamental set of equations is

PH
+(z)P̃H

−(z)− P̃H
+(z)PH

−(z) = −2 sinh(2φ(z)), (5.5)

PV
+(z)P̃V

−(z)− P̃V
+(z)PV

−(z) = 2 sinh(2φ(z)), (5.6)

P̃H
a(z)PV

b(z) = F
[+1]
ab (z)eφ(z) + F

[−1]
ab (z)e−φ(z), a, b = +,−, (5.7)

with the requirement that the F functions have no cuts and no poles, and the P’s have

only one cut on each of their two sheets, and no poles. These equations make explicit the

nonlinear Riemann-Hilbert nature of the problem, since they show how the two branches

of the P’s are connected through the entire 2 × 2 matrix Fab. In this respect, they are

reminiscent of the Pµ-system. It is important to underline that (5.5)–(5.7) are completely

equivalent to (4.14)–(4.16). In particular, it is possible to show that the definition (5.3)

and the relation (4.16) are both hidden in these equations.

Equations (5.5)–(5.7) imply the existence of many other functional relations among

the F’s and the P’s. For instance:

F++(z)F−−(z)− F+−(z)F−+(z) = −1 (5.8)

F
[+1]
++(z)F

[−1]
−−(z) + F

[+1]
−−(z)F

[−1]
++(z) = F

[+1]
+−(z)F

[−1]
−+(z) + F

[+1]
−+(z)F

[−1]
+−(z)+2 cosh(2φ(z)).

Finally, as already remarked in section 1, the Hubbard Hamiltonian (1.1) has, for B=µ=0,

a hidden SO(4) ∼= SU(2) × SU(2)/Z2 symmetry [57]. While this symmetry was not very

evident in the original Y-system and discontinuity relations, it appears to be nicely encoded

in the structure of equations (5.5)–(5.7). At generic values of the magnetic field or chemical

potential, the symmetry is broken by the boundary conditions (4.13).

5.2 The exact Bethe Ansatz

The relations obtained in the previous section contain an exact Bethe Ansatz constraining

the position of the zeros of the P and F functions. Starting from (5.2), we immediately get

F
[±1]
ab (z) = ±1

2

e±φ(z) P̃H
a(z)PV

b(z)− e∓φ(z)PH
a(z)P̃V

b(z)

sinh(2φ(z))
, a, b = +,−. (5.9)

Combining these expressions to form bilinear combinations of the Fab’s reveals a fur-

ther set of interesting relations of quantum Wronskian type. For instance, using (5.9)

and (4.14), (4.15), we obtain

F
[+1]
++(z)F

[−1]
+−(z)− F

[−1]
++(z)F

[+1]
+−(z) = PH

+(z)P̃H
+(z). (5.10)

The r.h.s. of (5.10) defines an entire function on the whole complex plane. It is convenient

to isolate the exponential prefactors and set

QH
+(z) = eiB̂z/uPH

+(z) P̃H
+(z), Q+−(z) = e

i
2

(B̂−µ̂)z/uF+−(z). (5.11)
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The a = +, b = − case of equation (5.2) can then be rewritten as

Q[+1]
+−(z)eB̂−µ̂+φ(z) +Q[−1]

+−(z)e−B̂+µ̂−φ(z) = P̃H
+(z)PV

−(z)e
i
2

(B̂−µ̂)z/u. (5.12)

We assume that for the ground state all zeros of the P functions are on the second sheet;

therefore the zeros of the r.h.s. of (5.12) coincide with the zeros of QH
+, giving the first of

the Bethe Ansatz equations quoted in section 1. The second BA equation can be derived

by taking ratios of the expressions obtained by evaluating (5.12) at zeros of Q[±]
+−. The

resulting set of quantisation conditions is:

eB̂−µ̂
Q+−(si + iu)

Q+−(si − iu)
= −e−2φ(si), at QH

+(si) = 0, (5.13)

e−2µ̂ Q+−(wα + 2iu)

Q+−(wα − 2iu)
= −
QH

+(wα + iu)

QH
+(wα − iu)

, at Q+−(wα) = 0. (5.14)

Very interestingly, these equations appear to be the infinite Trotter number limit of the

BA diagonalising the Quantum Transfer Matrix of Jüttner, Klümper and Suzuki [15]. We

remind the reader that the QTM is defined as a discrete object acting on a N̄ -site quantum

space (N̄ is known as the Trotter number), and that the thermodynamics of the Hubbard

model is described by the largest eigenvalue of the QTM in the limit N̄ → ∞. For the

ground state at finite even values of N̄ , the BA of [15] is

eB̂−µ̂
q2(si + iu)

q2(si − iu)
= −bN̄ (si), i = 1, . . . , N̄ , (5.15)

e−2µ̂ q2(wα + 2iu)

q2(wα − 2iu)
= −q1(wα + iu)

q1(wα − iu)
, α = 1, . . . , N̄/2 , (5.16)

where7 limN̄→∞ bN̄ (z) = e−2φ(z) and

q1(z) =

N̄∏
i=1

(z − si) , q2(z) =

N̄/2∏
α=1

(z − wα) . (5.17)

The functions appearing in the BA equations (5.13), (5.14) are the continuum version of

these polynomials. In fact, we believe that they can be factorised over their zeros as infinite

products of the form8

Q+−(z)

Q+−(0)
=

∞∏
α=1

(
1− z

w
(+−)
α

)(
1− z

w
(+−)
−α

)
,
QH

+(z)

QH
+(0)

=

∞∏
i=1

(
1− z

s
(H,+)
i

)(
1− z

s
(H,+)
−i

)
,

(5.19)

7See appendix D for more details.
8We expect that the P functions can be factorised in the following form (cf [40]),(

2 sinh(B̂)
) 1

2
e±

i
2
B̂z/u PH

±(z) = CH

∞∏
i=1

(
1 + 1/

(
z

(H,±)
i x(z)

))(
1 + 1/

(
z

(H,±)
−i x(z)

))
, (5.18)

where z
(H,±)
i = x

(
s

(H,±)
i

)
, and the Zhukovsky map x(z) is defined in (2.13). Again, the pairing of zeros is

to guarantee the convergence of the product.
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where Re(s−i) = −Re(si), Re(w−α) = −Re(wα). In (5.19), the zeros have been paired

up in order to make the product convergent. This rearrangement is necessary, since the

zeros accumulate at infinity with an evenly spaced asymptotic distribution (see sections 6

and 7). The regularisation (5.19), without extra Hadamard factors, is consistent with the

infinite Trotter number limit of (5.15)–(5.17).

In addition to (5.13), (5.14), there are naturally other equivalent sets of BA equations.

For completeness, let us discuss the general structure. From (5.9) and (4.14), (4.15), one

can obtain the following quantum Wronskian-type relations

F
[+1]
±±(z)F

[−1]
±∓(z)− F

[−1]
±±(z)F

[+1]
±∓(z) = ±PH

±(z)P̃H
±(z), (5.20)

F
[+1]
±±(z)F

[−1]
∓±(z)− F

[−1]
±±(z)F

[+1]
∓±(z) = ±PV

±(z)P̃V
±(z), (5.21)

F
[+1]
++(z)F

[−1]
−−(z)− F

[−1]
++(z)F

[+1]
−−(z) = PV

+(z)P̃V
−(z) + PH

+(z)P̃H
−(z), (5.22)

F
[+1]
+−(z)F

[−1]
−+(z)− F

[−1]
+−(z)F

[+1]
−+(z) = PV

+(z)P̃V
−(z)−PH

−(z)P̃H
+(z), (5.23)

which allow one to derive alternative pairs of BA equations. Generalising (5.11), we define

QH
a(z) = eiB̂az/uPH

a(z) P̃H
a(z), (5.24)

QV
a(z) = eiµ̂az/uPV

a(z) P̃V
a(z), (5.25)

Qab(z) = e
i
2

(B̂a+µ̂b)z/uFab(z), a, b = +,−, (5.26)

where B̂± = ±B̂, µ̂± = ±µ̂. We expect that all the Qab and Qa functions thus introduced

admit a factorisation of the form (5.19), each with a different set of zeros. The systems of

BA equations fulfilled by these functions can be easily obtained from (5.13) by symmetry.

We can schematically summarise these symmetries as

QH
−
(
z; B̂, µ̂

)
= QH

+

(
z;−B̂, µ̂

)
, QV

−
(
z; B̂, µ̂

)
= QV

+

(
z; B̂,−µ̂

)
, (5.27)

Q−a
(
z; B̂, µ̂

)
= Q+a

(
z;−B̂, µ̂

)
, Qa−

(
z; B̂, µ̂

)
= Qa+

(
z; B̂,−µ̂

)
, (5.28)

with a = +,−. In addition, we have the substitution rule

QH
a ↔ QV

a, φ↔ φ̃ = −φ, a = +,−. (5.29)

Finally, let us point out that the definitions (5.24), (5.25) can be inverted as

lnPH
a(z) = − i

2
B̂az/u +

√
1− z2

2πi

∫ 1

−1
lnQH

a(v)
dv√

1− v2 (v − z)
, (5.30)

lnPV
a(z) = − i

2
µ̂az/u +

√
1− z2

2πi

∫ 1

−1
lnQV

a(v)
dv√

1− v2 (v − z)
, (5.31)

(a = +,−), leading to the following equivalent formulae for the free energy:

f+µ = −u−T
π

∫ 1

−1
ln
(
2 sinh(B̂)QH

±(v)
) dv√

1−v2
= u−T

π

∫ 1

−1
ln
(
2 sinh(µ̂)QV

±(v)
) dv√

1−v2
.

(5.32)
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5.3 Relation with the Quantum Transfer Matrix

By comparison with the results of [15] we can uncover the physical meaning of TH
1,1, TV

1,1 and

show that these functions are simply related to the eigenvalues of the Quantum Transfer

Matrix. Starting from (5.2), we get(
e−2φ[+1](z) +

F
[+2]
ab (z)

Fab(z)

)
= e−φ

[+1](z) P̃
H [+1]
a (z)P

V [+1]
b (z)

Fab(z)
, (5.33)(

e2φ[−1](z) +
F

[−2]
ab (z)

Fab(z)

)
= eφ

[−1](z) P̃
H [−1]
a (z)P

V [−1]
b (z)

Fab(z)
, a, b = +,−. (5.34)

Multiplying (5.33) by P
H [−1]
a /P̃

H [+1]
a and (5.34) by P

H [+1]
a /P̃

H [−1]
a and adding them, we

find, after using (5.3)

P
H [−1]
a (z)

P̃
H [+1]
a (z)

(
e−2φ[+1](z)+

F
[+2]
ab (z)

Fab(z)

)
+
P

H [+1]
a (z)

P̃
H [−1]
a (z)

(
e2φ[−1](z)+

F
[−2]
ab (z)

Fab(z)

)
= (5.35)

P
H [−1]
a (z)P

V [+1]
b (z) e−φ

[+1](z) + P
H [+1]
a (z)P

V [−1]
b (z) eφ

[−1](z)

Fab(z)
= TH

1,1(z). (5.36)

The combination in (5.35) agrees with the form of the Quantum Transfer Matrix eigenvalues

(see equation (15) in [15]), namely

(Λ)ref [15] ↔ TH
1,1. (5.37)

The precise details of this identification are given in appendix D. Notice that, as a conse-

quence of the absence of poles for the P functions, this quantity does not have poles on

any sheet, and that this pole-free condition gives precisely the Bethe Ansatz. Furthermore,

setting P̃H
aP

H
a = Q̄H

a, we can write

TH
1,1 = PH [+1]

a PH [−1]
a

[
1

Q̄H[+1]
a

(
e−2φ[+1]

+
F

[+2]
ab

Fab

)
+

1

Q̄H[−1]
a

(
e2φ[−1]

+
F

[−2]
ab

Fab

)]
. (5.38)

In the quantity in the square brackets we recognise the infinite Trotter number limit of

the “auxiliary” transfer matrix eigenvalues Λaux introduced in [15], equation (25). Setting

a = +, the identification is

(Λaux)ref [15] ↔
TH

1,1

P
H [+1]
+ P

H [−1]
+

. (5.39)

6 The free fermion limit

The exact solution of the TBA equations at u = 0 was found already by Takahashi in [13].

It is interesting to recover this result starting from relations (4.14)–(4.16). In the limit

u → 0+, the shifts in the P functions shrink to zero and, for Re(z) ∈ (−1, 1), the P

functions collapse to their values above/below the cut. Therefore,

TH
1,1 ∼ eB̂PH

+ P̃H
− − e−B̂PH

− P̃H
+, (6.1)

TV
1,1 ∼ eµ̂PV

+ P̃V
− − e−µ̂PV

− P̃V
+, (6.2)
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and equation (4.16) becomes

eB̂PH
+ P̃H

− − e−B̂PH
− P̃H

+ =
(
eµ̂PV

+ P̃V
− − e−µ̂PV

− P̃V
+

)
e−2φ. (6.3)

A second constraint is simply obtained by continuing (6.3) to the second branch:

eB̂P̃H
+PH

− − e−B̂P̃H
−PH

+ =
(
eµ̂P̃V

+PV
− − e−µ̂P̃V

−PV
+

)
e2φ. (6.4)

Solving (6.3), (6.4) with the aid of (4.14), (4.15), we find

sinh(B̂)PH
+(z)P̃H

−(z) = 2 cosh
(
φ(z)− (B̂ + µ̂)/2

)
cosh

(
φ(z)− (B̂ − µ̂)/2

)
, (6.5)

sinh(µ̂)PV
+(z)P̃V

−(z) = 2 cosh
(
φ(z) + (B̂ + µ̂)/2

)
cosh

(
φ(z)− (B̂ − µ̂)/2

)
. (6.6)

We can now compute the densities using (4.21). For the horizontal wing the result is

e2B̂ρH(z) =
P̃H

+(z)PH
−(z)

P̃H
−(z)PH

+(z)
=

cosh(φ(z) + (B̂ + µ̂)/2) cosh(φ(z) + (B̂ − µ̂)/2)

cosh(φ(z)− (B̂ + µ̂)/2) cosh(φ(z)− (B̂ − µ̂)/2)
, (6.7)

and, denoting the r.h.s. of this equality as e2B̂ρH(z) = R(B̂, µ̂; z), the density characterising

the vertical wing is given by

e−2µ̂ρV(z) = R(µ̂, B̂; z). (6.8)

The kernel appearing in the free energy formula (4.40) reduces to

ln

(
sinh2(2φ(z)) sinh2(B̂)

sinh2(B̂ρH(z))

)
= ln

(
sinh2(2φ(z)) sinh2(µ̂)

sinh2(µ̂ρV(z))

)
= −

∑
σ1,σ2

ln
(

cosh(φ(z) + σ1B̂/2 + σ2µ̂/2)
)
, (6.9)

with σ1, σ2 = ±1, giving the well-known result for the Gibbs free energy at u = 0.

The pattern of Bethe roots displayed by the free fermion solution is interesting, as the

numerical solution for u > 0 (see section 7) suggests that the zeros are smoothly deformed

away from their positions at u = 0. Each of the P functions has two infinite strings of

zeros on the second sheet, corresponding to the two factors on the r.h.s. of (6.5). Denoting

as zn(B̂, µ̂) the solution of the equation

2φ
(
zn(B̂, µ̂)

)
+ B̂ + µ̂ = i(2n+ 1)π, (6.10)

and defining

A(B̂, µ̂) =
{
zn
(
B̂, µ̂

)
, n ∈ Z

}
, (6.11)

the distribution of zeros is summarised in table 1, and illustrated in figures 10 and 11 for

two of the P̃’s at B = 1 and µ = 1/2. Zeros belonging to A(B̂, µ̂) accumulate at infinity

along the line Im(z) = −B/2−µ/2, and their asymptotic spacing is πT . As can be obtained

from equations (5.20)–(5.23) in the u → 0 limit, in the free fermion case the zeros of the

F functions are a subset of the zeros of the P’s (see table 1).
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-B/2 + Μ/2

-B/2 - Μ/2

-20 -10 10 20

-1.0

-0.5

0.5

1.0

Figure 10. Position of the zeros of P̃H
+ in the

complex z plane, for the free fermion solution

at B = 1 and µ = 0.5 and T = 1.

B/2 + Μ/2

-B/2 + Μ/2

-20 -10 10 20

-1.0

-0.5

0.5

1.0

Figure 11. Position of the zeros of P̃V
+ in the

complex z plane, for the free fermion solution

at B = 1 and µ = 0.5 and T = 1.

Function Zeros

PH
a(z) z ∈ A

(
B̂a, µ̂

)
∪A

(
B̂a,−µ̂

)
PV
a(z) z ∈ A

(
B̂, µ̂a

)
∪A

(
− B̂, µ̂a

)
Fab(z) z ∈ A

(
B̂a,−µ̂b

)
Table 1. Distribution of the Bethe roots among different P and F functions, with a, b = +,−,

and B̂± = ±B, µ̂± = ±µ. Zeros of P’s live on the second sheet.

Let us make a short comment on the analytic continuation mechanism governing the

transition to excited states. As already anticipated in section 4.5, the free energy acquires

an extra residue whenever one of the energy-carrying Bethe roots crosses the integration

contour. The movement of these zeros can be driven by analytic continuation in B and

µ. In general, such a crossing does not correspond to a branch point in the domain of

the parameters B̂ or µ̂, since the contour can be deformed to avoid the contact with the

wandering zero. Genuine branch points correspond to the so-called pinching phenomenon,

when a pair of zeros collide on the contour from opposite sides [45]. In the free fermion

case, this happens at values of B and µ given by:

λB/λµ e
±2/T = −1, λB λµ e

±2/T = −1, (6.12)

where λB = eB/T , λµ = eµ/T are the fugacities, corresponding to a pair of zeros of

sinh2(B̂)/ sinh2(B̂ρH) = sinh2(µ̂)/ sinh2(µ̂ρV) pinching the contour of integration at the

origin in the z-plane. Analytic continuation around one of these points causes the transi-

tion to an excited branch of the free energy, and of the P functions. Finally, it is interesting

to notice that the branch points (6.12) mark the boundaries of the four phases of the sys-

tem at T = 0. In the interacting regime u > 0 at T = 0, the phase diagram includes

a fifth phase describing the Mott insulator behaviour [12] (see also chapter 6 of [38]). It

would be very interesting to investigate the branching structure of the free energy at finite

temperatures and coupling, and link it to the phase diagram of the Hubbard model. We

expect this to be possible with the numerical method described in section 7 and plan to

come back to these questions in the future.
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7 Numerical solution

In section 4.3, we have parametrised the P functions appearing in the problem in terms

of the densities ρH and ρV. They can be computed by solving a system of coupled non-

linear integral equations, which determine simultaneously the densities and the function

Y1,1 entering the TBA equations. This formulation is very similar to the set of NLIEs

proposed in [43] for the AdS5/CFT4 spectral problem. We discuss here only the ground

state equations.

7.1 Nonlinear integral equations

First, by expressing Y1,1 in the TH and in the TV gauge, we find

r(z) =
T H [+]

1,1 (z) T̃ H [−]
1,1 (z)

T H [−]
1,1 (z) T̃ H [+]

1,1 (z)

= e4φ(z)
T V [+]

1,1 (z) T̃ V [−]
1,1 (z)

T V [−]
1,1 (z) T̃ V [+]

1,1 (z)

, (7.1)

where

r(z) =

(
1 + Y1,1(z) e4φ(z)

1 + Y1,1(z)

)
, (7.2)

and the functions T i1,1, i = H,V depend on the densities through the parametrisation (4.30).

In an iterative scheme, equations (7.1) can be used to update the values of one of the two

densities starting from the knowledge of r(z). This method is described in [43] and is

reviewed below in section 7.2. To close the system, there is a further equation determining

Y1,1 as a function of ρH and ρV:

lnY1,1(z) = 2u/T − 2φ(z)+ln

(
T H

1,2(z)

T V
2,1(z)

)
+

∫ 1

−1

dv

2πi(v−z)
disc

[
ln

(
T H [+1]

1,1 (v) T H [−1]
1,1 (v)

T V [+1]
1,1 (v) T V [−1]

1,1 (v)

)]

− ln

(
T H [+1]

1,1 (z) T H [−1]
1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z)

)
. (7.3)

This relation is derived in appendix C, both from the TBA equations and also purely

from the Riemann-Hilbert formulation (4.14)–(4.16). An equivalent form of (7.3), which is

convenient for the numerical implementation, is

lnY1,1(z) = 2u/T − 2φ(z)+ln

(
T H

1,2(z)

T V
2,1(z)

)
+−
∫ 1

−1

dv

2πi(v − z)
disc

[
ln

(
T H [+]

1,1 (v) T H [−]
1,1 (v)

T V [+]
1,1 (v) T V [−]

1,1 (v)

)]

− 1

2
ln

T H [+1]
1,1 (z) T H [−1]

1,1 (z) T̃ H [+1]
1,1 (z) T̃ H [−1]

1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z) T̃ V [+1]
1,1 (z) T̃ V [−1]

1,1 (z)

 , (7.4)

where −
∫

denotes Cauchy’s principal value integral.
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7.2 The numerical method

The system (7.1), (7.4) can be solved iteratively for the values of ρH(z), ρV(z) and Y1,1(z)

on the interval z ∈ (−1, 1). One iteration step, updating the values of the densities ρ
(k)
i →

ρ
(k+1)
i , can be represented as

ρ
(k)
H , ρ

(k)
V −→(7.4) Y

(k)
1,1 −→

(7.1) ρ
(k+1)
H

′
, ρ

(k+1)
V

′
. (7.5)

After each step, we update the solution as ρ
(k+1)
i = θρ

(k)
i +(1−θ)ρ(k+1)

i

′
. The introduction

of the weights θ, 1 − θ is a common recipe used to ensure convergence. In all cases we

considered, the scheme was stable taking θ = 1
2 .

In the above described procedure, the most difficult step is the solution of (7.1) for the

densities. Let us review the method discussed in [43], concentrating on the equation for

the horizontal wing. Using (4.30) and the basic property G̃H = GH + ρH, the first equality

in (7.1) can be written as

r(z) =
sinh

(
B̂
(
G[2]

H (z)−/GH(z)+ρH(z)/2+1
))

sinh
(
B̂
(
/GH(z)−G[−2]

H (z)+ρH(z)/2+1
))

sinh
(
B̂
(
G[+2]

H (z)−/GH(z)−ρH(z)/2+1
))

sinh
(
B̂
(
/GH(z)−G[−2]

H (z)−ρH(z)/2+1
)) ,
(7.6)

where /GH denotes the Cauchy principal value integral

/GH(z) =
1

2πi
−
∫ 1

−1

ρH(v)

z − v
dv. (7.7)

By extracting9 ρH from the r.h.s. of (7.6), we obtain the density in terms of G[±2]
H , /GH and r.

This equality is used to update the value of ρH in the last passage of (7.5).

The numerical evaluation of the singular integrals appearing in the NLIEs (7.1), (7.4)

can be performed very efficiently using a Chebyshev expansion. To optimize the numerical

method we found it convenient to discretise the densities by using a Chebyshev expansion

of the second kind

ρnum
α (z) =

√
1− z2

Ntrunc∑
n=0

c
(α)
2n U2n(z), z ∈ (−1, 1), α = H,V, (7.8)

(where we have taken the correct parity into account) and evaluate principal value integrals

using the properties

−
∫ 1

−1

dv

π(v − z)

√
1− v2 Un(v) = −Tn+1(z), −

∫ 1

−1

dv

π(v − z)
√

1− v2
Tn(v) = Un−1(z),

where Tn and Un denote the Chebyshev polynomials of the first and second kind, respec-

tively. To produce the data presented in this paper, we took Ntrunc = 50. In the vast

majority of the cases we considered, less than 30 iterations were sufficient to achieve con-

vergence of the coefficients c
(α)
n entering (7.8) on the fifth digit. We observe that the error

is approximately halved at every iteration.

9Notice that (7.6) can be written as a quadratic equation for tanh(B̂ρH/2).
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Figure 12. Plot of the function −Re
(

ln(sinh(B̂ρH(z))
)

in the complex z-plane, for B = 1, µ = 0.5,

T = 0.3 and u = 0.1. The positive peaks correspond to energy-carrying Bethe roots, while the

negative peaks on the real axis are zeros of sinh(2φ(z)) (cf. equation (4.42)).

Let us also make a comment on the region of convergence. We observe that, for fixed

values of B̂, µ̂ and u, the iterative scheme is convergent for sufficiently high temperatures

— in particular a preliminary study suggests that, for arbitrary B,µ ∈ R, the convergence

region probably includes 0 < u < 2 and T ≥ 1 — but breaks down below a certain

threshold temperature. Lowering u, the breakdown temperature decreases, and this hints

that, for a given value of T , the method should be applicable without modifications in a

nonvanishing neighbourhood of the free fermion point. We suspect that the breakdown of

the method for low temperature or strong coupling is related to the appearance of zeros

on the first sheet for the ground state solution [15]. We plan to come back to this issue in

the near future.

7.3 Exploring the complex plane

The numerical method we have described computes ρH(z), ρV(z) and Y1,1(z) for −1 < z < 1.

Once we have a solution on the interval, we can reconstruct the behaviour of these functions

in the complex plane. We do this in two steps. First, we use equation (7.3) to compute

Y1,1(z) for z on the whole first Riemann section — with cuts at z ∈ (−1, 1), z ∈ (−1, 1)±2iu

— from the values of the densities on the interval. From the same information, we can also

compute GH(z) and GV(z) for an arbitrary complex value of z. Then, one can obtain the

values of ρH(z), ρV(z) for any complex values of z by inverting (7.1). The complex zeros

of sinh(ρH(z)) are visible in figure 12 for the numerical solution corresponding to µ = 1/2,

B = 1, u = 0.1, showing a clear qualitative similarity with the free fermion case.
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8 Mirror equations

In this section we shall describe the finite-size versions of the functional relations (5.5)–

(5.7), which form a set of equations fully equivalent to the Lieb-Wu quantisation condi-

tions (1.5), (1.6) with more general twisted boundary conditions. Comparing the thermal

BA (1.14), (1.15) and the Lieb-Wu equations (1.5), (1.6), and considering the dispersion

relations implied by (1.7), (4.40), one can see that the two systems are formally related by

a simple map swapping L↔ 1/T and single-particle energies with momenta:10

(k(z), ε(z)) −→ (−iε(z), ik(z)) (8.1)

L→ 1/T . (8.2)

Applying (8.1) to (5.5)–(5.7), we find a simple set of functional relations:

pH
+(z)p̃H

−(z)− p̃H
+(z)pH

−(z) = 2i sin(Lk(z)), (8.3)

pV
+(z)p̃V

−(z)− p̃V
+(z)pV

−(z) = −2i sin(Lk(z)), (8.4)

p̃H
a(z)pV

b(z) = f
[+1]
ab (z)e−

i
2
k(z)L + f

[−1]
ab (z)e

i
2
k(z)L, a, b = +,−, (8.5)

where we require that the functions pαa (z) live on a two-sheeted Riemann surface, while

the fab’s are entire. Relations (8.3)–(8.5) can be seen as a set of Baxter-like equations for

the Hubbard Hamiltonian. For L an even integer, they admit many solutions where the f ’s

are polynomials; consequently, the p’s can be written as polynomial functions of x(z) and

x̃(z), fixed in terms of their zeros on two sheets. For completeness, we can also consider

exponential prefactors of the same type as the ones in (5.11), relabeling B → α, µ → β.

We then find easily the quantisation conditions for the following Bethe parameters: the

zeros sj of the p’s, and λl of the f ’s. Setting k(sj) = kj , and following the same route of

section 5, we find

eikjL+i(α̂−β̂) = −
M∏
l=1

(
λl − sin(kj)− iu
λl − sin(kj) + iu

)
, j ∈ {1, . . . , N} , (8.6)

e−2iβ̂
N∏
j=1

(
λl − sin(kj)− iu
λl − sin(kj) + iu

)
=

M∏
m=1
m 6=l

(
λl − λm − 2iu

λl − λm + 2iu

)
, l ∈ {1, . . . ,M} , (8.7)

which is precisely the BA diagonalising the Hubbard Hamiltonian on the L-site chain with

twisted boundary conditions [58, 59]:

cL+1,↑ = c1,↑ e
i(α̂−β̂−π), cL+1,↓ = c1,↓ e

i(α̂+β̂−π). (8.8)

The relation between the two Bethe Ansatz systems discussed above is directly connected

to the path integral approach to the thermodynamics. Adopting the notation of [60], the

latter is based on rewriting the partition function,

Z1D quantum = trVphys
e−1/T H, (8.9)

10Notice that the identification of ik(z) as the free energy carried by a Bethe root of rapidity z is motivated

by the discussion of section 4.5.
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of a spin chain of L sites with Hamiltonian H, as

Z1D quantum = lim
N̄→∞

Z2D classical(N̄ , L, u)
∣∣
u= 1

TN̄

, (8.10)

where Z2D classical(N̄ , L, u) is the partition function of an appropriately defined two-

dimensional statistical model living on a L × N̄ lattice. Its column-to-column transfer

matrix is the Quantum Transfer Matrix TQTM(u). By a π/2 rotation on the lattice we

switch from (8.9) to the description

Z1D quantum = lim
N̄→∞

trVTrotter
(TQTM(u))L

∣∣
u= 1

TN̄

. (8.11)

The exact Bethe Ansatz (1.14), (1.15) describes the spectrum of TQTM in the Trotter limit

N̄ → ∞. It is an interesting open problem whether one can define the QTM directly in

this limit, and give it a meaningful physical interpretation as a continuum model living on

a space of size 1/T .

A somehow similar problem has arisen in the context of AdS/CFT integrability, where

Zamolodchikov’s ideas on the TBA for Lorentz invariant scattering theories [61] were

adapted to the study of the non-relativistic string sigma model dual to planar N=4 SYM

by considering its doubly Wick rotated counterpart (the mirror model) [30, 62]. Thanks

to the knowledge of the action for the AdS5 × S5 string sigma model, it has recently been

possible to identify the corresponding mirror model as a string theory living on a mirror

background [63].

Finally, we would like to mention that is also possible to introduce a mirror version

of Takahashi’s TBA, in such a way that it is equivalent to the finite-size BA (8.6), (8.7).

Apart from minor subtleties,11 the mirror TBA equations can be obtained from (2.5)–(2.7)

and the energy formula (2.12) through the following formal map:

ε(z)→ ik(z), k(z)→ −iε(z), T → 1/L,
{
B̂, µ̂

}
→
{
iα̂, iβ̂

}
, (8.12)

and by modifying the integration contours as (cf [27–29, 62])

∫ 1+i0+

−1+i0+

→
∫ −1+i0+

−∞+i0+

+

∫ ∞+i0+

1+i0+

, (8.13)

so that the roles of the mirror and magic sheets of figures 3, 4 are interchanged.12 From

these equations, one could in principle repeat the reduction presented in this paper and

obtain the system (8.3)–(8.5).

11For example, we think the −2u/T term in (2.7) should be dropped.
12Due to this change in kinematics, the mirror TBA described here has some features in common with the

TBA for the B model of [64], although the latter has a different dispersion relation. It would be interesting

to investigate the relation between the two.
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9 Conclusions

The one-dimensional fermionic Hubbard model is one of the most interesting systems of low-

dimensional condensed matter physics. Since its appearance in 1963, it has been intensively

studied by means of exact and perturbative methods, greatly advancing the understanding

of the physics of electron transport in 1D solids. A partial grasp about the huge number of

results on this model can be obtained by consulting [65], the book [38] and the collections of

works in [66, 67]. The purpose of this article is to add a little piece to the jigsaw, by recasting

the Thermodynamic Bethe Ansatz equations of Takahashi as a nonlinear Riemann-Hilbert

problem, reminiscent of the Quantum Spectral Curve formulation recently obtained for the

study of anomalous dimensions in AdS/CFT [31]. One of the main results presented in this

paper is a new set of nonlinear integral equations describing the thermodynamics of the

system. In their region of validity (see discussion at the end of section 7.2), these equations

can be integrated numerically with very high precision and, even when implemented on

Mathematica, the iterative algorithm converges in only a few seconds of CPU time. The

complexity of this formulation is comparable to the system of nonlinear integral equations

derived by Jüttner, Klümper and Suzuki in [15]. However, as a consequence of the fact

that the equations proposed here are defined on a finite support, we think that they may

prove more convenient for the study of finite temperature correlation lengths.
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A The magic sheet

In this section we will show that the Y functions have the following cut structure on the

magic sheet:

• Y1,n(z) and Yn,1(z) for n ≥ 2 have only four branch cuts:

z ∈ (−1, 1)± iun, z ∈ (−1, 1)± iu(n+ 2),

• Y1,1(z) and Y2,2(z) have only three branch cuts:

z ∈ (−1, 1), z ∈ (−1, 1)± 2iu.
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As we will argue in appendix B, a stronger property is true, namely the Y functions have

no branch points outside the positions specified above, on any Riemann sheet. However,

here we will present only the proof on the magic sheet, which is easier as it relies only

on the structure of the Y-system and discontinuity relations. Before we start, we need to

rewrite the Y-system (3.4) — originally defined on the mirror section — on the magic sheet.

Using (3.1)–(3.3), it is simple to prove that the magic-sheet version of the Y-system is

Y
[+1]

1,n Y
[−1]

1,n = (1 + Y1,n+1)(1 + Y1,n−1), n ≥ 2 (A.1)

1

Y
[+1]
n,1 Y

[−1]
n,1

= (1 + 1/Yn+1,1)(1 + 1/Yn−1,1), n ≥ 2, (A.2)

Y
[+1]

1,1

Y
[−1]

2,2

=

(
1 + Y1,2

1 + 1/Y2,1

)
. (A.3)

We will now test the cut structure of the Y1,n+1 functions for n ≥ 1. First, let us introduce

Xn =

(
1 + Y

[n+1]
1,n

Y
[n+1]

1,n

)(
1 + Y

[n]
1,n+1

Y
[n]

1,n+1

)
, n ≥ 2. (A.4)

These combinations are useful since, applying (A.1) in two elementary steps, it is possible

to prove that

Y
[n+3]

1,n(
1 + Y

[n+2]
1,n−1

)1−δn,2 = Xn Xn+1

(
1 + Y

[n]
1,n+3

Y
[n−1]

1,n+2

)
, n ≥ 2. (A.5)

Notice that the term in brackets in (A.5) has no cut because it falls into the analyticity

strip. Therefore, the cut structure of the l.h.s. of (A.5) depends on the Xn factors. We

shall now show that Xn have no cut on the real axis, for all n ≥ 2. Starting from n = 2,

we can compute

X2 =

(
1+Y

[3]
1,2

)(
1+Y

[2]
1,3

)
Y

[3]
1,2Y

[2]
1,3

=
Y

[1]
1,2

(
1+Y

[3]
1,2

)
Y

[2]
1,3

=

(
Y

[1]
1,2 +1+Y

[2]
1,3

)
Y

[2]
1,3

= 1+
Y1,3(

1+Y
[1]

1,4

) . (A.6)

This expression manifestly does not have branch points on the real axis, as all terms on

the r.h.s. fall into their respective analyticity strips. A very similar calculation shows that

X3 =

(
1 + Y

[4]
1,3

)(
1 + Y

[3]
1,4

)
Y

[4]
1,3Y

[3]
1,4

=
Y

[2]
1,3

(
1 + Y

[4]
1,3

)
Y

[3]
1,4

(
1 + Y

[3]
1,2

) =
Y

[2]
1,3 +

(
1 + Y

[3]
1,4

)(
1 + Y

[3]
1,2

)
Y

[3]
1,4

(
1 + Y

[3]
1,2

)
= 1 +

Y
[1]

1,4

(
Y

[2]
1,3 + 1 + Y

[3]
1,2

)
(

1 + Y
[2]

1,5

)(
1 + Y

[2]
1,3

)(
1 + Y

[3]
1,2

) = 1 +
Y

[1]
1,4(

1 + Y
[2]

1,5

) − 1

X2

Y
[1]

1,4(
1 + Y

[2]
1,5

) , (A.7)

and, literally by repeating this calculation with shifted indices, one finds the general case:

Xn+1 = 1 +

(
Y

[n−2]
1,n+1

1 + Y
[n−1]

1,n+2

)
− 1

Xn

(
Y

[n−1]
1,n+2

1 + Y
[n]

1,n+3

)
, n ≥ 2. (A.8)
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Taking into account the analyticity strips of the functions on the rhs, this equation shows

by induction that all Xn are free of cuts. Therefore, the l.h.s. of (A.5) is analytic in a

neighbourhood of the real axis, meaning that Y1,n with n ≥ 2 has possibly two cuts in the

upper half plane at Im(z) = u(n± 1), but no cut at Im(z) = u(n+ 3). Moreover, because

of the Y-system, no further cuts are possible and the Y1,n’s with n ≥ 2 have only two short

branch cuts in the upper half plane. By symmetry, the argument can be repeated for the

lower half plane and for the Yn,1 functions with n ≥ 2.

The argument presented above (contrary to the remaining part of this appendix) can

be straightforwardly adapted to the horizontal wing of the AdS/CFT Y-systems.

Let us now prove that Y1,1 and Y2,2 have only three cuts. Using (A.1), we can compute

Y
[4]

1,1 = Y
[2]

2,2

(
1 + Y

[3]
1,2

1 + 1/Y
[3]

2,1

)
= Y

[2]
2,2

(
1 + (1 + Y

[2]
1,3)/Y

[1]
1,2

1 + (1 + 1/Y
[2]

3,1)Y
[1]

2,1

)
(A.9)

=
Y

[2]
2,2

Y
[1]

1,2Y
[1]

2,1

(
1 + Y

[1]
1,2

1 + 1/Y
[1]

2,1

)
R =

Y
[2]

1,1Y
[2]

2,2

Y
[1]

1,2Y
[1]

2,1Y2,2

R, (A.10)

where R manifestly has no cut on the real axis and is defined by

R =

(
1 + Y

[2]
1,3/(1 + Y

[1]
1,2)

1 + (Y
[2]

3,1)−1/(1 + 1/Y
[1]

2,1)

)
=

(
1 + (1 + Y

[1]
1,4)/Y1,3

1 + (1 + 1/Y
[1]

4,1)Y3,1

)
. (A.11)

Because Y1,1(z)Y2,2(z) = e−4φ(z) has no cuts outside the real axis, the only discontinuity

can come from the factor:

H = 1/
(
Y

[1]
1,2Y

[1]
2,1Y2,2

)
. (A.12)

Using the discontinuity relations (3.1)–(3.3), we find

H̃

H
=

1 + 1/Y1,1

1 + Y2,2

1 + 1/Y2,2

1 + Y1,1

Y2,2

Ỹ2,2

= 1. (A.13)

This shows that Y1,1 (and therefore also Y2,2) does not have a branch cut with Im(z) = 4u.

The Y-system, together with the results already obtained for the other Y functions, imply

that no further cuts are possible.

B Monodromy properties of the P functions

The purpose of this appendix is to provide a proof for some statements made in section 4.

(1) First, we prove that it is possible to choose the T gauges in such a way that equa-

tion (4.7) holds, namely

TH
1,0(z) = e−2φ(z), TV

0,1(z) = e2φ(z). (B.1)

In the proof we will use the resolvent parametrisation of section 4.3, which, rigorously

speaking, is valid only for the ground state. However, we expect that the result holds

in general.
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(2) Secondly, we derive the constraints (4.14), (4.15).

(3) Finally, we discuss how to infer that the second-sheet evaluation of the P functions,

P̃, do not have other branch cuts apart from z ∈ (−1, 1). This shows that the P’s live

on a Riemann surface with only two sheets.

To prove these properties, we will adapt many of the arguments of [43] to the present case.

Proof of equation (4.7) for TH
1,0 and TV

0,1. To verify the statement (1), let us start

from the gauge T H (we restrict to the horizontal wing since the situation is clearly analogous

for the vertical wing). This gauge is defined by the parametrisation

T H
1,n = sinh

(
B̂
(

1 + G[+n]
H − G[−n]

H

))
/ sinh(B̂), n ≥ 1,

T H
0,s = 1, s ∈ N, T H

2,l = T H [+l]
1,1 T H [−l]

1,1 , l ≥ 2, (B.2)

with the resolvent density ρH fixed uniquely, in terms of the Y functions, through equa-

tion (7.1). We shall prove that13

T H
1,0(z) =

sinh(B̂ρH(z))

2 sinh(2φ(z)) sinh(B̂)
e−2φ(z). (B.3)

We start by rewriting some of the discontinuity relations (3.1)–(3.3) in terms of the T H

functions. Using the properties of this gauge, equation Y1,1 = 1/Ỹ2,2 can be written as

T̃ H
1,0 = T H

3,2/T H
2,3

(
T̃ H

2,1

T H
2,1

)
, (B.4)

while the relation Y1,1 Y2,2 = e−4φ becomes

e−4φ =
T H

1,0T H
2,3

T H
3,2

=
T H

1,0

T̃ H
1,0

(
T̃ H

2,1

T H
2,1

)
. (B.5)

The equation involving Y1,2 is automatically satisfied by the parametrisation (B.2), while

the equation for Y2,1 will be used later. Now, we compare the T-system equations at the

nodes (1, 1) and (2, 2). On the magic sheet, these two equations read

T̃ H [+1]
1,1 T H [−1]

1,1 = T H
1,0T H

1,2 + T H
2,1, (B.6)

T̃ H [+1]
2,2 T H [−1]

2,2 = T H [+1]
1,1 T̃ H [−1]

1,1 T H
2,3 = T H

2,3T H
2,1 + T H

3,2T H
1,2. (B.7)

The identity (B.7) was derived using T H
2,s = T H [+s]

1,1 T H [−s]
1,1 . Eliminating T H

21 from these

equations shows that

disc

[
T̃ H [+1]

1,1 T H [−1]
1,1

]
= T H

1,2

(
T H

1,0 − T3,2/T H
2,3

)
= T H

1,2 T H
1,0

(
1− e4φ

)
, (B.8)

13The analogous expression for the upper wing is

T V
0,1(z) =

sinh(µ̂ρV(z))

2 sinh(2φ(z)) sinh(µ̂)
e2φ(z).
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where we have used (B.5) in the last step. Using (B.2) in (B.8), we find the result quoted

in (B.3). To construct the gauge TH, we can now introduce the gauge transformation factor

hH through equation (4.25), so that hHh̃H = sinh(2φ sinh(B̂))/ sinh(B̂ρH). Defining the TH

gauge through

TH
1,s = h

[s]
H h

[−s]
H T H

1,s, s ∈ N+, TH
0,n = 1, n ∈ N, (B.9)

we finally arrive at

TH
1,0(z) = hH(z)h̃H(z) T H

1,0(z) = e−2φ(z). (B.10)

Proof of the constraints (4.14), (4.15). Statement (2) can be proved by revisiting

the derivation of (B.8) given above in the case of the gauge TH. This leads to

disc

[
T̃H [+1]

1,1 TH [−1]
1,1

]
= TH

1,2 TH
1,0

(
1− e4φ

)
. (B.11)

The constraint (4.14) follows from (B.11) using (B.1) and the expression of the TH functions

in terms of PH’s. One can also derive an equation analogous to (B.11) with H→ V, φ→ −φ,

and prove (4.15) by the same method.

Proof that the P functions have only a single cut on the second sheet.

Statement (3): let us now sketch the proof that the P’s have no cut outside the

real axis even on their second Riemann sheet, and, therefore, live on a two-sheeted surface.

The proof is very similar to the ones used in a more complicated context in [32, 36]. To

start, we observe that, due to (B.3), the ratio in brackets in (B.4) and (B.5) is actually

one, so that T̃ H
2,1 = T H

2,1. Since TH
2,1 = h

[+2]
H h

[−2]
H hH h̃H T H

2,1, we find that also TH
2,1 has no

cut on the real axis:

TH
2,1 = T̃H

2,1. (B.12)

Furthermore, notice that we have not used yet the discontinuity equation (3.3) involving

Y2,1. Rewriting this relation in terms of T functions in the gauge TH, we find

TH [+1]
1,1 TH [−1]

1,1

TH [+1]
2,2 TH [−1]

2,2

=
TH

1,0

TH
3,2

T̃H [+1]
3,1 TH [+1]

2,0

TH [+1]
3,1 T̃H [+1]

2,0

. (B.13)

The ratio on the l.h.s. side can be simplified using TH
2,2 = TH[+2]

1,1 TH[−2]
1,1 , and leads to

1 =
TH

1,0 TH
2,3

TH
3,2

T̃H [+1]
3,1 TH [+1]

2,0

TH [+1]
3,1 T̃H [+1]

2,0

= e−4φ
T̃H [+1]

3,1 TH [+1]
2,0

TH [+1]
3,1 T̃H [+1]

2,0

. (B.14)

Using the T-system and (B.1), it is simple to compute the factor involving TH
2,0, and

finally (B.14) reduces to the condition

TH [+1]
3,1 = T̃H [+1]

3,1 . (B.15)

Furthermore, using the discontinuity relations

Y
[n]
n+1,1/Ỹ

[n]
n+1,1 =

(
1 + 1/Y

[n−1]
n,1

)
/

(
1 + 1/Ỹ

[n−1]
n,1

)
, n ∈ N+, (B.16)
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which follow from the Y-system, it is possible to generalise (B.12) and (B.15) to

disc
[
TH [n−2]
n,1

]
= 0, n = 2, 3, . . . . (B.17)

The set of equations (B.17) can be used to prove that the P’s live on a two-sheeted Riemann

surface. By definition, these functions have a single cut on their first sheet, and parametrise

some of the TH’s as

TH
1,s = P

H [+s]
+ P

H [−s]
− −P

H [−s]
+ P

H [+s]
− , s ∈ N+. (B.18)

Hirota equation (4.2) allows to extend (B.18) and compute any TH function in terms of the

PH’s. However, since (4.2) is defined on the mirror section, the computation may require

to explore the values of the P functions on the second sheet. In particular, it can be

easily checked that TH,[n−2]
n,1 with n > 1 involves (linearly) the values of P̃

H,[2n−2]
± , so that

imposing the constraints (B.17) gives information on the possible cuts of the P̃H’s. For

instance, from equation (B.12), one can recover the constraint (4.14). With the aid of this

result, the other equations in (B.17) can be used to prove that

P̃
H [+n]
± − ˜̃

P
H [+n]
± = 0, n ∈ N+. (B.19)

Obviously, by symmetry all these results are valid both in the upper and in the lower half

complex plane, and show that P̃H
± have no cuts outside the real axis.

C Fixing the gauge factor TH/TV

The main purpose of this appendix is to derive the form of the gauge transformation (4.8)–

(4.10) relating the TH and TV functions. Along the way, we will also obtain the two

NLIEs (C.4) and (C.8), adopted for the numerical solution method described in section 7.

Let us briefly discuss the logic of this section. In appendix B, we have encoded the

discontinuity equations (3.1)–(3.3) in the simple statement that the P functions live on a

two-sheeted Riemann surface and satisfy the relations (4.14), (4.15). However, some infor-

mation is still missing to close the system. In fact, notice that, when describing the system

with the functions PH
±, there is nothing to guarantee the correct large z behaviour (3.5)

for the Yn,1’s with n ≥ 1. To fill this gap we will extract an extra equation from the TBA,

equation (C.6), and show that it fixes the form of the gauge transformation (4.8)–(4.10).

Finally, we will show that the final set of equations (4.14)–(4.16) is self-consistent and that

equation (C.6) can be rederived from them.

Direct proof. The Y function sitting at the central node can be parametrised equiva-

lently using the gauges T H or T V. This gives the two expressions

1 + 1/Y1,1 = 2
e2φ sinh(2φ) sinh(B̂)

sinh(B̂ρH)

T̃ H [+1]
1,1 T H [−1]

1,1

T H
1,2

, (C.1)

1 + Y1,1 = −2
e−2φ sinh(2φ) sinh(µ̂)

sinh(µ̂ρV)

T̃ V [+1]
1,1 T V [−1]

1,1

T V
2,1

. (C.2)
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Constructing the quantity

r(z) =

(
1 + 1/Y2,2(z)

1 + Y1,1(z)

)
=

(
1 + Y1,1(z) e4φ(z)

1 + Y1,1(z)

)
, (C.3)

and matching the alternative expressions for r(z) obtained from (C.1) and (C.2) gives the

first equation of the NLIEs written in section 7:

r(z) =
T H [+1]

1,1 (z) T̃ H [−1]
1,1 (z)

T H [−1]
1,1 (z) T̃ H [+1]

1,1 (z)

= e4φ(z)
T V [+1]

1,1 (z) T̃ V [−1]
1,1 (z)

T V [−1]
1,1 (z) T̃ V [+1]

1,1 (z)

. (C.4)

Finding a second constraint to close the system is slightly more involved. First, using (C.1)

and (C.2), we find:

0 = lnY1,1(z)+4φ(z)−ln

(
sinh(B̂ρH(z))/ sinh(B̂)

sinh(−µ̂ρV(z))/ sinh(µ̂)

)
−ln

(
T H

1,2(z)

T V
2,1(z)

)
+ln

 T̃ H [+1]
1,1 T H [−1]

1,1

T̃ V [+1]
1,1 T V [−1]

1,1

 .

(C.5)

We can combine (C.5) with the TBA equation (2.7), simplified using the “telescoping”

procedure discussed in section 4.4. If the Y1,n and Yn,1 functions are parametrised using

the T H and T V gauges, respectively, the infinite sums in (2.7) reduce to only a few terms,

giving

lnY1,1(z) = 2u/T − 2φ(z)− ln

(
T H

1,1

T V
1,1

)
∗ a1(z) + ln

(
T H

1,2(z)

T V
2,1(z)

)
. (C.6)

By using Cauchy’s theorem and shifting the integration contours to infinity, one can write

the last convolution term as

ln

(
T H

1,1

T V
1,1

)
∗ a1(z) = −

∫ 1

−1

dv

2πi(v − z)
disc

[
ln

(
T H [+1]

1,1 (v) T H [−1]
1,1 (v)

T V [+1]
1,1 (v) T V [−1]

1,1 (v)

)]
(C.7)

+ ln

(
T H [+1]

1,1 (z) T H [−1]
1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z)

)
.

Equation (C.6) can then be rewritten as

lnY1,1(z) = 2u/T − 2φ(z) +

∫ 1

−1

dv

2πi(v − z)
disc

[
ln

(
T H [+1]

1,1 (v) T H [−1]
1,1 (v)

T V [+1]
1,1 (v) T V [−1]

1,1 (v)

)]

− ln

(
T H [+1]

1,1 (z) T H [−1]
1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z)

)
+ ln

(
T H

1,2(z)

T V
2,1(z)

)
. (C.8)

Comparing (C.8) and (C.5) and using (C.4), we find

ln

(
sinh2(B̂ρH(z))/ sinh2(B̂)

sinh2(µ̂ρV(z))/ sinh2(µ̂)

)
= 4u/T+2

∫ 1

−1
disc

[
ln

(
T H [+1]

1,1 (v) T H [−1]
1,1 (v)

T V [+1]
1,1 (v) T V [−1]

1,1 (v)

)]
dv

2πi(v−z)

− disc

[
ln

(
T H [+1]

1,1 (z) T H [−1]
1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z)

)]
. (C.9)
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Notice that the last two terms can be nicely combined as a single principal value integral:

ln

(
sinh2(B̂ρH(z))/ sinh2(B̂)

sinh2(µ̂ρV(z))/ sinh2(µ̂)

)
= 4u/T + 2−

∫ 1

−1
disc

[
ln

(
T H [+1]

1,1 (v)T H [−1]
1,1 (v)

T V [+1]
1,1 (v)T V [−1]

1,1 (v)

)]
dv

2πi(v−z)
.

(C.10)

At this point there are different ways to proceed; perhaps the simplest strategy is to apply√
1− w2−

∫ 1

−1

dv

πi
√

1− v2(v − w)

to both sides of (C.10). Because the integrand on the r.h.s. of (C.10) is a discontinu-

ity of square root type, it can be factorised as
√

1− z2g(z), where g(z) is analytic in a

neighbourhood of the interval (−1, 1) and therefore

1

π2
−
∫ 1

−1

dv√
1− v2(v − w)

−
∫ 1

−1

√
1− z2g(z)

dz

z − v
= −g(w). (C.11)

Thus, we find

−
w
√

1− 1/w2

π
−
∫ 1

−1

dv√
1− v2(v − w)

ln

(
sinh2(B̂ρH(v))/ sinh2(B̂)

sinh2(µ̂ρV(v))/ sinh2(µ̂)

)
(C.12)

= disc

[
ln

(
T H [+1]

1,1 (w) T H [−1]
1,1 (w)

T V [+1]
1,1 (w) T V [−1]

1,1 (w)

)]
.

From the definitions of hH and hV given in (4.25), one can derive

disc

[
ln

(
hH(z)

hV(z)

)]
= −

z
√

1−1/z2

π
−
∫ 1

−1
ln

(
sinh(µ̂ρV(v)/ sinh(µ̂)

sinh(B̂ρH(v))/ sinh(B̂)

)
dv√

1−v2(v−z)
, (C.13)

and the comparison with (C.12) gives

disc

[
ln

(
hH(z)

hV(z)

)]
=

1

2
disc

[
ln

(
T H [+1]

1,1 (z) T H [−1]
1,1 (z)

T V [+1]
1,1 (z) T V [−1]

1,1 (z)

)]
. (C.14)

Together with (C.4), this equation leads to

disc

[
ln

(
T H [±]

1,1 (z)

T V [±]
1,1 (z)

)
+ ln

(
hH(z)

hV(z)

)]
= ±2φ(z), (C.15)

which can be interpreted as the statement that the combination

ln

(
T H

1,1(z)

T V
1,1(z)

)
+ ln

(
h

[+1]
H (z)h

[−1]
H (z)

h
[+1]
V (z)h

[−1]
V (z)

)
− φ[−1](z) + φ[+1](z) (C.16)

= ln

(
TH

1,1(z)

TV
1,1(z)

)
− φ[−1](z) + φ[+1](z), (C.17)

has no cuts in the whole complex plane. Using the asymptotics specified by (4.27), (4.33),

(4.17), we conclude that the expression in (C.17) is precisely zero, proving (4.8) for the node

(1, 1). The gauge matching at the other nodes follows by the structure of the T-system.
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Converse proof. Let us briefly discuss how equation (C.8) can be rederived from the

statement that

ln

(
TH

1,1(z)

TV
1,1(z)

)
− φ[−1](z) + φ[+1](z) = 0, (C.18)

together with the resolvent parametrisation of section 4.3. While this may seem obvious,

we will spell out the details in order to show that the system of nonlinear integral equations

integrated in section 7 are a consequence of (C.18). Just following backwards the steps in

the derivation above and using the asymptotics limz→∞ ln (hH(z)/hV(z)) = −u/T , one can

re-obtain equations (C.10)–(C.15), in particular one recovers

ln

(
sinh2(B̂ρH(z))/ sinh2(B̂)

sinh2(µ̂ρV(z))/ sinh2(µ̂)

)
= 4u/T+2−

∫ 1

−1
disc

[
ln

(
T H [+1]

1,1 (v)T H [−1]
1,1 (v)

T V [+1]
1,1 (v)T V [−1]

1,1 (v)

)]
dv

2πi(v−z)
.

(C.19)

Moreover, adding the two equations (C.15) shows that the two terms in (C.4) are equal.

We can now reverse the logic and define a function Y1,1 satisfying

(
1 + Y1,1(z) e4φ(z)

1 + Y1,1(z)

)
=
T H [+1]

1,1 (z) T̃ H [−1]
1,1 (z)

T H [−1]
1,1 (z) T̃ H [+1]

1,1 (z)

= e4φ(z)
T V [+1]

1,1 (z) T̃ V [−1]
1,1 (z)

T V [−1]
1,1 (z) T̃ V [+1]

1,1 (z)

. (C.20)

As a consequence of (C.20), Y1,1 automatically verifies equations (C.1), (C.2) and (C.5).

Together with (C.19), this proves (C.8).

D Dictionary

In this appendix, we provide a dictionary between the notation of this paper and the ones

of [15]. First, the conventions for the coupling constant and magnetic field are related as

uhere = U ref [15]/4, Bhere = Href [15]/2 . (D.1)

The Quantum Transfer Matrix of [15] is characterised by three parameters: the Trotter

number N̄ ∈ N, the inhomogeneity u and the rapidity v. The Gibbs free energy at tem-

perature T can be obtained by taking the Trotter limit

f = −T lim
N̄→∞

Λ

(
u =

1

TN̄
, v = 0

)
, (D.2)

where Λ is the largest eigenvalue of the QTM. The map between v and the spectral pa-

rameter used in this paper, s, is14

s = i
1

2 tan(v)

(
tan2(v)− 1

tan2(v) + 1

)√
4u2 tan2(v) + (1 + tan2(v))2. (D.3)

In particular, v = 0 corresponds to s→∞.

14Note that, in this section, we use the letter s for the spectral parameter, rather than z as in the rest of

the paper. This is to avoid confusion with the functions z±(λ) defined in (D.6) below.
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The QTM eigenvalue is given by formula (15) in [15] containing the parameters x, w,

z±(x), z±(w), h(x), h(w) defined by

2w = ln(tan(u)), 2x = ln(tan(v)), (D.4)

2h(y) = −arcsinh

(
u

cosh(2y)

)
, z±(y) = e2h(y)±2y. (D.5)

A simple calculation shows that

z±(x) = (tan(v))±1 (1 + tan2(v))/

(
2u tan(v) +

√
(1 + tan2(v))2 + 4u2 tan2(v)

)
, (D.6)

and, using (D.3),

z−(x) = x(s+ iu), z+(x) = 1/x(s− iu), (D.7)

z∓(x)− 1/z∓(x) = −2u± 2is, (D.8)

z∓(x) + 1/z∓(x) = −2φ(s± iu). (D.9)

The Zhukovsky map x(z) is defined in (2.13), has a single short cut and satisfies x̃(s) =

−1/x(s), and x(s) ∼ 2is at large s. Using this dictionary, equation (15) in [15] can be

rewritten as

Λ(u, v)/A2

(
z+(x)

z−(x)

)N̄/2
(D.10)

= eµ̂+B̂

A1/A2 + eµ̂−B̂
N̄/2∏
α=1

(
s− wα − 2iu

wα − s

) N̄∏
j=1

(
1 + 1/(x[+1](s)zj)

−1 + x[−1](s)/zj

)

+ eµ̂−B̂

A4/A2 + e−µ̂+B̂

N̄/2∏
α=1

(
s− wα + 2iu

wα − s

) N̄∏
j=1

(
1 + 1/(x[−1](s)zj)

−1 + x[+1](s)/zj

)
.

The quantities A1, A2 and A4 are defined in [15] as

A1/A2 =

(
(1− z−(w)z+(x))(1− z+(w)z+(x))

(1 + z−(w)z+(x))(1 + z+(w)z+(x))

)N̄/2
, (D.11)

A4/A2 =

(
(1 + z−(w)/z−(x))(1 + z+(w)/z−(x))

(1− z−(w)/z−(x))(−+ z+(w)/z−(x))

)N̄/2
, (D.12)

A2 =
(
− cos2(v) cos2(v − u) cos2(v + u)

) N̄
2

(
z+(x)

z−(x)

)N̄/2
(D.13)

×
(

cos2(u)e2h(w)

(
1− z−(x)

z−(w)

)(
1 +

1

z+(x)z−(w)

))N̄/2
. (D.14)

Using the asymptotics z±(w) ∼ (tan(u))±1 = (tan( 1
TN̄

))±1 for N̄ → ∞, it is possible to

check that

lim
N̄→∞

(−1)N̄/2A1/A2 = e−(z+(x)+1/z+(x))/T = e2φ[−1](s), (D.15)

lim
N̄→∞

(−1)N̄/2A2/A4 = e(z−(x)+1/z−(x))/T = e−2φ[+1](s), (D.16)
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and

lim
N̄→∞

(
cos2(u)e2h(w)

(
1− z−(x)

z−(w)

)(
1 +

1

z+(x)z−(w)

))N̄/2
= e−(z−(x)−1/z+(x))/(2T )−u/T = e

1
2

(φ[+1](s)−φ[−1](s)). (D.17)

Therefore, we can rewrite (D.10) in the limit of large, even N̄ as

Λ(u, v) e−
1
2

(φ[+1](s)−φ[−1](s))
(
cos2(v) cos2(v − u) cos2(v + u)

)−N̄/2
(D.18)

∼ eµ̂+B̂

e2φ[−1]
+ eµ̂−B̂

N̄/2∏
α=1

(
s− wα − 2iu

s− wα

) N̄∏
j=1

(
1 + 1/(x[+1](s)zj)

1− x[−1](s)/zj

)

+ eµ̂−B̂

e−2φ[+1]
+ e−µ̂+B̂

N̄/2∏
α=1

(
s− wα + 2iu

s− wα

) N̄∏
j=1

(
1 + 1/(x[−1](s)zj)

1− x[+1](s)/zj

)
.

The factor
(
cos2(v) cos2(v − u) cos2(v + u)

)−N̄/2
is simply a normalization (divergent in

the N̄ → ∞ limit for v 6= 0, and converging to one for v = 0). We expect that, once this

term is factored out, the limit N̄ → ∞ can be taken in the r.h.s. of (D.18) without first

setting v = 0, giving a well-defined function of v (or, equivalently, of s).

Considering the identifications discussed in section 5,

F+−(s) = e−
i
2

(B̂−µ̂)s/u lim
N̄→∞

N̄/2∏
α=1

(s− wα) , (D.19)

PH
± = e∓

i
2
B̂s/u lim

N̄→∞
CH

N̄∏
j=1

(1 + 1/(x(s)zj)) , (D.20)

zj = x(sj), (D.21)

we find a nice agreement between (D.18) and (5.35), leading to

lim
N̄→∞

Λ(u, v)
(
cos2(v) cos2(v−u) cos2(v + u)

)−N̄/2
= eµ̂+ 1

2
(φ[+1](s)−φ[−1](s))TH

1,1(s). (D.22)
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[53] A. Cavaglià, D. Fioravanti and R. Tateo, Discontinuity relations for the AdS4/CFT3

correspondence, Nucl. Phys. B 877 (2013) 852 [arXiv:1307.7587] [INSPIRE].

[54] J. Balog and A. Hegedus, AdS5 × S5 mirror TBA equations from Y-system and discontinuity

relations, JHEP 08 (2011) 095 [arXiv:1104.4054] [INSPIRE].

[55] I. Krichever, O. Lipan, P. Wiegmann and A. Zabrodin, Quantum integrable systems and

elliptic solutions of classical discrete nonlinear equations, Commun. Math. Phys. 188 (1997)

267 [hep-th/9604080] [INSPIRE].

[56] V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal

field theory. 2. Q operator and DDV equation, Commun. Math. Phys. 190 (1997) 247

[hep-th/9604044] [INSPIRE].

[57] C.-N. Yang and S. Zhang, SO(4) symmetry in a Hubbard model, Mod. Phys. Lett. B 4 (1990)

759.

[58] B.S. Shastry and B. Sutherland, Twisted boundary conditions and effective mass in

Heisenberg-Ising and Hubbard rings, Phys. Rev. Lett. 65 (1990) 243.

[59] M.J. Martins and R.M. Fye, Bethe ansatz results for Hubbard chains with toroidal boundary

conditions, J. Stat. Phys. 64 (1991) 271.
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