
24 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Strong Normalization of the Dual Classical Sequent Calculus

Publisher:

Published version:

DOI:10.1007/11591191_13

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/28867 since 2016-06-30T19:18:34Z

This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

S. GHILEZAN; S. LIKAVEC; P. LESCANNE; D. DOUGHERTY. Strong
Normalization of the Dual Classical Sequent Calculus, in: Lecture Notes in
Computer Science, Springer, 2005, 978-3-540-31650-3, pp: 169-183.

The publisher's version is available at:
http://www.springerlink.com/index/pdf/10.1007/11591191_13

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/28867

Strong normalization of the dual classical sequent
calculus

Daniel Dougherty,1 Silvia Ghilezan,2 Pierre Lescanne3 and Silvia Likavec2,4

1 Worcester Polytechnic Institute, USA,dd@wpi.edu
2 Faculty of Engineering, University of Novi Sad, Serbia,gsilvia@uns.ns.ac.yu

3 ENS Lyon, France,pierre.lescanne@ens-lyon.fr
4 Dipartimento di Informatica, Università di Torino, Italy,likavec@di.unito.it

Abstract. We investigate some syntactic properties of Wadler’s dual calculus, a
term calculus which corresponds to classical sequent logic in the same way that
Parigot’sλµ calculus corresponds to classical natural deduction. Our main result
is strong normalization theorem for reduction in the dual calculus; we also prove
some confluence results for the typed and untyped versions of the system.

1 Introduction

This paper establishes some of the key properties of reduction underlying Wadler’s dual
calculus [30, 31]. The basic system, obtained as a term-assignment system for classi-
cal sequent calculus, is not confluent, inheriting the well-known anomaly of classical
cut-elimination. Wadler recovers confluence by restricting to reduction strategies cor-
responding to (either of) the call-by-value or call-by-name disciplines, indeed these
subcalculi and the duality between them are the main focus of attention in Wadler’s
work.

In this paper we are less interested in call-by-value and call-by-nameper sethan in
the pure combinatorics of reduction itself, consequently we work with as few restric-
tions as possible on the system. We prove strong normalization (SN) for unrestricted
reduction of typed terms, including expansion rules capturing extensionality. We show
that once the obvious obstacle to confluence is removed (the “critical pair” in the re-
duction system) confluence holds in both the typed and untyped versions of the term
calculus. This critical pair (see Section 3) can be disambiguated in two ways but the
proof we give dualizes to yield confluence results for each system, an example of the
“two theorems for the price of one” benefit of duality.

The dual calculus is an embodiment of the “proofs-as-programs” paradigm in the
setting of classical logic, as well as being a clear expression of the relationship between
call-by-name and call-by-value in functional programming. So the fundamental syntac-
tic results given here should play an important role in the currently active investigations
into the relationship between classical logic and computation.

Background The Curry-Howard correspondence expresses a fundamental connection
between logic and computation [18]. In its traditional form, terms in theλ-calculus en-
code proofs in intuitionistic natural deduction; from another perspective the proofs serve
as typing derivations for the terms. Griffin extended the Curry-Howard correspondence

to classical logic in his seminal 1990 POPL paper [16], by observing that classical tau-
tologies suggest typings for certain control operators. This initiated a vigorous line of
research: on the one hand classical calculi can be seen as pure programming languages
with explicit representations of control, while at the same time terms can be tools for
extracting the constructive content of classical proofs [21, 3]. In particular theλµ cal-
culus of Parigot [23] has been the basis of a number of investigations [24, 11, 22, 5, 1]
into the relationship between classical logic and theories of control in programming
languages.

As early as 1989 Filinsky [14] explored the notion that the reduction strategies
call-by-value and call-by-name were dual to each other. Filinski defined a symmetric
lambda-calculus in which values and continuations comprised distinct syntactic sorts
and whose denotational semantics expressed the call-by-name vs call-by-value dual-
ity in a precise categorical sense. Later Selinger [27] modeled the call-by-name and
call-by-value variants of theλµ by dual control and co-control categories.

These two lines of investigation come together nicely in the framework of classical
sequent calculus. In contrast to natural deduction proof systems (upon which Parigot’s
λµ, for example, is based) sequent calculi exhibit inherent symmetries not just at the
level of terms, but of proof structures as well. There are several term calculi based on
sequent calculus. The most relevant to the current study are those in which terms un-
ambiguously encode sequent derivations for which reduction corresponds to cut elimi-
nation. See, for example, [29, 9, 19, 2]. Curien and Herbelin [17, 9] defined the system
λµ̃µ, a sequent calculus-inspired calculus exhibiting symmetries in the syntax, whose
terms represent derivations in the implicational fragment of Gentzen’s system LK [15].
In addition, as described in [9], the sequent calculus basis forλµ̃µ supports an inter-
pretation of the reduction rules of the system as operations of an abstract machine.
In particular, the right- and left-hand sides of a sequent directly represent thecode
andenvironmentcomponents of the machine. This perspective is elaborated more fully
in [8]. See [7] for a discussion of the importance of symmetries in computation. In [2],
a calculus, which interprets directly the implicational sequent logic, is proposed as a
language in which many kinds of other calculi can be implemented, fromλ-calculus to
λµ̃µ through a calculus of explicit substitution andλµ.

The Symmetric Lambda Calculus of Barbanera and Berardi [3], although not based
on sequent calculus, belongs in the tradition of exploiting the symmetries found in clas-
sical logic, in their case with the goal of extracting constructive content from classical
proofs. Barbanera and Berardi [3] proved SN for their calculus using a “symmetric
candidates” technique; Urban and Bierman [29] adapted their technique to prove SN
for their sequent-based system. Lengrand [19] shows how simply-typedλµ̃µ and the
calculus of Urban and Bierman [29] are mutually interpretable, so that the strong nor-
malization proof of the latter calculus yields another proof of strong normalization for
simply-typedλµ̃µ. Polonovski [25] presents a proof of SN forλµ̃µ with explicit sub-
stitutions using the symmetric candidates idea. Pym and Ritter [26] identify two forms
of disjunction for Parigot’s[23]λµ calculus; they prove strong normalization forλµν
calculus (λµ calculus extended with such disjunction). David and Nour [10] give an
arithmetical proof of strong normalization for a symmetricλµ calculus.

The dual calculusWadler’s dual calculus [30] refines and unifies these themes. It is
a term-assignment system based on classical sequent calculus, and a key step is that
implication is not taken as a primitive connective. It turns out that this permits a very
clear expression of the way in which the traditional duality between the left- and right-
hand sides of a sequent reflects the duality between call-by-value and call-by-name.

Unfortunately these beautiful symmetries come at the price of some anomalies in
the behavior of reduction. The unrestricted reduction relation in the dual calculus (as
well as inλµ̃µ) has a critical pair, and indeed this system is not confluent. In [30] Wadler
gives two restricted versions of each reduction rule obtaining subcalculi which naturally
correspond to call-by-value and call-by-name, respectively. He then defines translations
of these systems into the simply-typedλ-calculus; each translation both preserves and
reflects reductions. See Propositions 6.6, 6.9, 6.10 on [30]. (Curien and Herbelin [9]
gave a similar encoding of theirλµ̃µ calculus.)

It was “claimed without proof” in [30], that these call-by-value and call-by-name
reductions are confluent and that the call-by-value and call-by-name reduction rela-
tions (without expansions) are strongly normalizing. But in fact confluence and strong
normalization for each of call-by-value and call-by-name follows from the correspond-
ing results in theλ-calculus by diagram-chasing through the CPS translations into the
simply-typedλ-calculus, given the fact that reductions are preserved and reflected by
the translations.

In [31] the emphasis is on the equational theory of the dual calculus. The equations
of the dual calculus include a group of equations called “η-equations” which express
extensionality properties; these equations play an important role in the relationship be-
tween the dual calculus andλµ. The relationship with Parigot’sλµ is worked out, the
result is a clear notion of duality forλµ.

Summary of results

We prove that unrestricted reduction of typed expressions in the dual calculus is strongly
normalizing. The proof is a variation on the “semantical” method of reducibility, where
types are interpreted aspairs of sets of terms (observe: yet another symmetry). Our
proof technique uses a fixed-point construction similar to that in [3] but the technique
is considerably simplified here (Section 6).

In fact our proof technique also shows the strong normalization for the reduction
system including theη-expansion rules of the dual calculus. Due to space restrictions
we only outline the treatment of the expansions but the machinery is the same as for the
core calculus and filling in the missing details should only be an exercise for the reader.

To our knowledge none of the previous treatments of strong normalization for clas-
sical calculi has addressed extensionality rules.

We prove that if we disambiguate the single critical pair in the system, by giving
priority to either the “left” or to the “right” reductions, the resulting subsystems are
confluent. Furthermore reduction is confluent whether terms are typed or untyped. The
proof is an application of Takahashi’s parallel reductions technique [28]; we prove the
result for one system and are able to conclude the result for the other by duality (Sec-
tion 4).

The relationship between our results and those in [30, 31] is somewhat subtle. Wadler
is motivated by programming language concerns and so is led to focus on sub-calculi of
the dual calculus corresponding to call-by-name and call-by-value reduction; not only
is the critical pair in the system removed but reductions must act on “values” (or “cov-
alues”). In contrast, we are interested in the pure combinatorics of reduction, and so

- in exploring strong normalization we consider unrestricted reduction of typed terms
(as well as incorporating expansions), and

- in exploring confluence we consider reduction of untyped terms, and impose only
the restriction that the critical pair (which demonstrably destroys confluence) be disam-
biguated.

2 Syntax

Following Wadler, we distinguish three syntactic categories:terms, coterms, andstate-
ments. Terms yield values, while coterms consume values. A statement is a cut of a
term against a coterm. We call the expressions in the union of these three categories
D-expressions.

Let r,q range over the setΛR of terms,e, f range over the setΛL of coterms, andc
ranges over statements. Then the syntax of the dual calculus is given by the following:

Term: r,q ::= x | 〈r, q〉 | 〈r〉inl | 〈r〉inr | [e]not | µα .c
Coterm: e, f ::= α | [e, f] | fst[e] | snd[e] | not〈r〉 | µ̃x.c
Statement: c ::= L r • eM

wherex ranges over a set of term variablesVarR, 〈r, q〉 is a pair,〈r〉inl (〈r〉inr) is an
injection on the left (right) of the sum,[e]not is a complement of a coterm, andµα .c is
a covariable abstraction. Next,α ranges over a set of covariablesVarL, [e, f] is a case,
fst[e] (snd[e]) is a projection from the left (right) of a product, not〈r〉 is a complement
of a term, and̃µx.c is a variable abstraction. FinallyL r • e M is a cut. The term vari-
ables can be bound byµ abstraction, whereas the coterm variables can be bound by
µ̃ abstraction. The sets of free term and coterm variables,FvR andFvL, are defined as
usual, respecting Barendregt’s convention [4] that no variable can be both, bound and
free, in the expression. As in [30, 31], angle brackets always surround terms and square
brackets always surround coterms. Also, curly brackets are used for substitution and to
denote holes in contexts.

We decided to slightly alter the notation given by Wadler. First of all, we useµα .c
andµ̃x.c instead of(S).α andx.(S). Furthermore, we useL r • eM for statements, since
from our point of view it is easier to read thanr •e. Finally, the lowercase letters that
we use to denote D-expressions should help to distinguish such expressions from types.

3 Reduction rules

Wadler defines the dual calculus, giving the reductions that respect call-by-value and
call-by-name reduction strategies, respectively. We give the reduction rules for an un-
restricted calculus in Figure 1. Of course the notion of reduction is defined on raw

(βµ̃) L r • µ̃x.c M → c{r/x}
(βµ) L µα .c • eM → c{e/α}
(β∧) L 〈r, q〉 • fst[e] M → L r • eM
(β∧) L 〈r, q〉 • snd[e] M → L q • eM
(β∨) L 〈r〉inl • [e, f] M → L r • eM
(β∨) L 〈r〉inr • [e, f] M → L r • f M
(β¬) L [e]not • not〈r〉 M → L r • eM

Fig. 1.Reduction rules for the dual calculus

expressions, and does not make use of any typing constraints. We use// // to de-
note the reflexive transitive closure of→ (with a similar convention for other relations
denoted by other arrows).

Remark 1.The following observation will be useful later; it is the analogue of the stan-
dardλ-calculus trick of “promoting head reductions.” Specifically, if a reduction se-
quence out of a statement ever does a top-levelµ-reduction, then we can promote the
first such reduction to be the first in the sequence, in the following sense: the reduc-
tion sequenceL µα.c • eM // // L µα.c′ • e′ M // c′{e′/α} can be transformed to the
reduction sequenceL µα.c • eM // c{e/α} // // c′{e′/α}.

The calculus has a critical pairL µα .c1 • µ̃x.c2 M where both the(βµ̃) and(βµ) rules
can be applied ambiguously, producing two different results. For example,

L µα.L y • β M • µ̃x.L z • γ M M→ L y • β M, L µα.L y • β M • µ̃x.L z • γ M M→ L z • γ M

Hence, the calculus is not confluent. But if the priority is given to one of the rules,
we obtain two subcalculiDualR andDualL. Therefore, there are two possible reduction
strategies in the dual calculus that depend on the orientation of the critical pair. The
systemDualL with call-by-value reduction is obtained if the priority is given to(µ)
redexes, whereas the systemDualR with call-by-name reduction is obtained by giving
the priority to(µ̃) redexes.

That is,DualR is defined by refining the reduction rule(βµ) as follows

L µα.c • eM→ c{e/α} providede is a coterm not of the form̃µx.c′

andDualL is defined similarly by refining the reduction rule(βµ̃) as follows

L r • µ̃x.c M→ c{r/x} providedr is a term not of the formµα.c′

Both systemsDualR andDualL are shown to be confluent in Section 4.

Implication, λ-terms, and application

Implication can be defined in terms of other connectives, indeed in two ways:
- under call-by-valueA⊃ B≡ ¬(A∧¬B)
- under call-by-nameA⊃ B≡ ¬A∨B.

Under each of these conventions we can define expressionsλx.r andq@evalidating
the reductionL λx. r • q@e M → L q • µ̃x.L r • eM M in the sense that when⊃ is
defined by call-by-value and the translation ofL λx.r • q@e M is reduced according to
the call-by-value calculus, we get toL q • µ̃x.L r • eM M after several steps (and the same
claim holds for call-by-name).

4 Confluence of the dual calculus

To prove the confluence of the dual calculiDualR andDualL we adopt the technique of
parallel reductions given by Takahashi in [28] (see also [20]). This approach consists
of simultaneously reducing all the redexes existing in an expression and is simpler than
standard Tait-and-Martin-L̈of proof of confluence ofβ-reduction for lambda calculus.
We omit the proofs for the lack of space. The detailed proofs of confluence forλµ̃µ can
be found in [20].

We denote the union of all the reduction relations forDualR by
R

// . Its reflexive

transitive closure and closure by congruence is denoted by
R

// // .

First, we define the notion of parallel reduction⇒R for DualR. Since we will show
that

R
// // is the reflexive and transitive closure of⇒R, in order to prove the confluence

of
R

// // it is enough to prove the diamond property for⇒R. The diamond property for

⇒R follows from the stronger “Star property” for⇒R that we prove.
Applying the duality transformations that Wadler gives, reductions dualize as well,

and in particular aµ-step is dual to ãµ-step. A reduction froms to t under the restriction
that µ-steps have priority over̃µ-steps dualizes to a reduction from the dual ofs to
the dual oft under the restriction that̃µ-steps have priority overµ-steps. So if we prove
confluence for one of these systems, we get confluence for the other by diagram-chasing
a duality argument.

4.1 Parallel reduction for Dual R

The notion of parallel reduction is defined directly by induction on the structure of
D-expressions, and does not need the notion of residual or any other auxiliary notion.

Definition 2 (Parallel reduction for Dual R). The parallel reduction, denoted by⇒R is
defined inductively in Figure 2, where eis a coterm not of the form̃µx.c′.

Lemma 3. For every D-expression D, D⇒R D.

Lemma 4 (Substitution lemma). If x 6= y and x6∈ FvR(r2) then

1. D{r1/x}{r2/y}= D{r2/y}{r1{r2/y}/x};
2. D{e/α}{r/x}= D{r/x}{e{r/x}/α};
3. D{r/x}{e/α}= D{e/α}{r{e/α}/x};
4. D{e1/α}{e2/β}= D{e2/β}{e1{e2/β}/α}.

x⇒R x (pr1R)
c⇒R c′

µα .c⇒R µα .c′
(pr2R)

α⇒R α (pr3R)
c⇒R c′

µ̃x.c⇒R µ̃x.c′
(pr4R)

r⇒R r ′,q⇒R q′

〈r, q〉⇒R〈r ′, q′〉
(pr5R)

r⇒R r ′

〈r〉inl⇒R〈r ′〉inl
(pr6R)

r⇒R r ′

〈r〉inr⇒R〈r ′〉inr
(pr7R)

e⇒R e′, f ⇒R f ′

[e, f]⇒R[e′, f ′]
(pr8R)

e⇒R e′

fst[e]⇒R fst[e′]
(pr9R)

e⇒R e′

snd[e]⇒R snd[e′]
(pr10R)

r⇒R r ′

not〈r〉⇒R not〈r ′〉
(pr11R)

e⇒R e′

[e]not⇒R[e′]not
(pr12R)

r⇒R r ′,e⇒R e′

L r • eM⇒RL r ′ • e′ M
(pr13R)

c⇒R c′,e⇒R e′

L µα .c • eM⇒R c′{e′/α}
(pr14R)

r⇒R r ′,c⇒R c′

L r • µ̃x.c M⇒R c′{r ′/x}
(pr15R)

r⇒R r ′,q⇒R q′,e⇒R e′

L 〈r, q〉 • fst[e] M⇒RL r ′ • e′ M
(pr16R)

r⇒R r ′,q⇒R q′,e⇒R e′

L 〈r, q〉 • snd[e] M⇒RL q′ • e′ M
(pr17R)

r⇒R r ′,e⇒R e′, f ⇒R f ′

L 〈r〉inl • [e, f] M⇒RL r ′ • e′ M
(pr18R)

r⇒R r ′,e⇒R e′, f ⇒R f ′

L 〈r〉inr • [e, f] M⇒RL r ′ • f ′ M
(pr19R)

r⇒R r ′,e⇒R e′

L [e]not • not〈r〉 M⇒RL r ′ • e′ M
(pr20R)

Fig. 2.Parallel reduction

Lemma 5.

1. If D
R

// D′ then D⇒R D′;

2. If D⇒R D′ then D
R

// // D′;

3. If D⇒R D′ and H⇒R H ′, then D{H/x}⇒R D′{H ′/x} and D{H/α}⇒R D′{H ′/α}.

From the points 1. and 2. in Lemma 5 we conclude that
R

// // is the reflexive and

transitive closure of⇒R.

4.2 Confluence ofDual R

Next, we define the D-expressionD∗ which is obtained fromD by simultaneously re-
ducing all the existing redexes of the D-expressionD.

Definition 6. Let D be an arbitrary D-expression ofDualR. The D-expression D∗ is
defined inductively as follows:

(∗1R) x∗ ≡ x (∗2R) (µα .c)∗ ≡ µα .c∗ (∗3R) α∗ ≡ α (∗4R) (µ̃x.c)∗ ≡ µ̃x.c∗

(∗5R) 〈r, q〉∗ ≡ 〈r∗, q∗〉 (∗6R) 〈r〉inl∗ ≡ 〈r∗〉inl (∗7R) 〈r〉inr∗ ≡ 〈r∗〉inr
(∗8R) [e, f]∗ ≡ 〈e∗, f ∗〉 (∗9R) fst[e]∗ ≡ fst[e∗] (∗10R) snd[e]∗ ≡ snd[e∗]
(∗11R) not〈r〉∗ ≡ not〈r∗〉 (∗12R) [e]not∗ ≡ [e∗]not
(∗13R) L r • eM∗ ≡ L r∗ • e∗ M if L r • eM 6= L [e′]not • not〈r ′〉 M and

L r • eM 6= L µα .c • eM andL r • eM 6= L r • µ̃x.c M and
L r • eM 6= L 〈r ′, q〉 • fst[e′] M andL r • eM 6= L 〈r ′, q〉 • snd[e′] M and
L r • eM 6= L 〈r ′〉inl • [e′, f] M andL r • eM 6= L 〈r ′〉inr • [e′, f] M

(∗14R) L µα .c • eM∗ ≡ c∗{e∗/α} (∗15R) L r • µ̃x.c M∗ ≡ c∗{r∗/x}
(∗16R) L 〈r, q〉 • fst[e] M∗ ≡ L r∗ • e∗ M (∗17R) L 〈r, q〉 • snd[e] M∗ ≡ L q∗ • e∗ M
(∗18R) L 〈r〉inl • [e, f] M∗ ≡ L r∗ • e∗ M (∗19R) L 〈r〉inr • [e, f] M∗ ≡ L r∗ • f ∗ M

(∗20R) L [e]not • not〈r〉 M∗ ≡ L r∗ • e∗ M

Theorem 7 (Star property for ⇒R). If D⇒R D′ then D′⇒R D∗.

Now it is easy to deduce the diamond property for⇒R.

Theorem 8 (Diamond property for ⇒R).
If D1 R⇐D⇒R D2 then D1⇒R D′

R⇐D2 for some D′.

Finally, from Lemma 5 and Theorem 8, it follows thatDualR is confluent.

Theorem 9 (Confluence ofDual R).
If D1 oooo

R
D

R
// // D2 then D1 R

// // D′ oooo
R

D2 for some D′.

5 Type assignment system

A complementary perspective to that of considering the dual calculus as term-assignment
to logic proofs is that of viewing sequent proofs as typing derivations for raw expres-
sions. The set of types corresponds to the logical connectives; for the dual calculus the
set of types is given by closing a set ofbase types Xunder conjunction, disjunction, and
negation.

Type: A,B ::= X | A∧B | A∨B | ¬A

Type bases have two components, theantecedent,a set of bindings of the formΓ = x1 :
A1, . . . ,xn : An, and thesuccedentof the form∆ = α1 : B1, . . . ,αk : Bk, wherexi ,α j are
distinct for all i = 1, . . . ,n and j = 1, . . . ,k.

The judgements of the type system are given by the following:

Γ ` ∆,
�� ��r : A

�� ��e : A , Γ ` ∆ c : (Γ ` ∆)

whereΓ is the antecedent and∆ is the succedent. The first judgement is the typing for a
term, the second is the typing for a coterm and the third one is the typing for a statement.
The box denotes a distinguished output or input, i.e. a place where the computation will
continue or where it happened before.

The type assignment system for the dual calculus, introduced by Wadler [30, 31], is
given in Figure 3.

(axR)
Γ,x : A ` ∆,

�� ��x : A
(axL)�� ��α : A , Γ ` α : A,∆�� ��e : A , Γ ` ∆�� ��fst[e] : A∧B , Γ ` ∆

�� ��e : B , Γ ` ∆
(∧L)�� ��snd[e] : A∧B , Γ ` ∆

Γ ` ∆,
�� ��r : A Γ ` ∆,

�� ��q : B
(∧R)

Γ ` ∆,
�� ��〈r, q〉 : A∧B�� ��e : A , Γ ` ∆

�� ��f : B , Γ ` ∆
(∨L)�� ��[e, f] : A∨B , Γ ` ∆

Γ ` ∆,
�� ��r : A

Γ ` ∆,
�� ��〈r〉inl : A∨B

Γ ` ∆,
�� ��r : B

(∨R)
Γ ` ∆,

�� ��〈r〉inr : A∨B�� ��e : A , Γ ` ∆
(¬R)

Γ ` ∆,
�� ��[e]not :¬A

Γ ` ∆,
�� ��r : A

(¬L)�� ��not〈r〉 : ¬A , Γ ` ∆

c : (Γ ` α : A,∆)
(µ)

Γ ` ∆,
�� ��µα.c : A

c : (Γ,x : A ` ∆)
(µ̃)�� ��µ̃x.c : A , Γ ` ∆

Γ ` ∆,
�� ��r : A

�� ��e : A , Γ ` ∆
(cut)

L r • eM : (Γ ` ∆)

Fig. 3.Type system for the dual calculus

6 Strong normalization of typeable D-expressions

Definition 10. A pair is given by two setsT andC with T⊆ ΛR andC⊆ ΛL. If each of
the components of a pair is non-empty we refer to it as anon-trivialpair.

The pair(T,C) is astablepair if each ofT andC is non-empty and for every r∈ T
and every e∈ C, the statementL r • eM is SN.

For example, the pair(VarR,VarL) is stable. Note that the terms and coterms in any
stable pair are themselves SN.

We can use pairs to interpret types; the following technical condition will be crucial.

Definition 11. A pair (T,C) is saturatedif

– T contains all term variables andC contains all coterm variables,
– whenever µα.c satisfies∀e∈ C,c{e/α} is SN then µα.c∈ T, and
– whenever̃µx.c satisfies∀r ∈ T,c{r/x} is SN theñµx.c∈ C.

A pair (T,C) is simpleif no term inT is of the form µα.c and no coterm inC is of the
form µ̃x.c.

We can always expand a pair to be saturated. The next result shows that if the orig-
inal pair is stable and simple, then we may always arrange that the saturated extension
is stable. The technique is similar to the “symmetric candidates” technique as used by
Barbanera and Berardi [3] for the Symmetric Lambda Calculus and further adapted
by Polonovski [25] in his proof of strong normalization forλµ̃µ calculus with explicit
substitutions.

Note that the saturation condition on variables is no obstacle to stability: it is easy
to see that if(T,C) is any stable pair, then the pair obtained by adding all term variables
to T and all coterm variables toC will still be stable.

Lemma 12. Let (T,C) be a simple stable pair. Then there is an extension of(T,C)
which is saturated and stable.

Proof. As observed above, we may assume without loss of generality thatT already
contains all term variables andC already contains all coterm variables.

Define the maps̃ΦC : ΛR → ΛL andΦT : ΛL → ΛR by

Φ̃C(T) = C∪{µ̃x.c | ∀r ∈ T,c{r/x} is SN}
ΦT(C) = T∪{µα.c | ∀e∈ C,c{e/α} is SN}

Each ofΦT and Φ̃C is antimonotone. So the mapΦT ◦ Φ̃C : ΛR → ΛR is monotone
(indeed it is continuous).

Let T∗ be any fixed point of(ΦT ◦ Φ̃C); then takeC∗ to beΦ̃C(T∗). SinceT∗ =
ΦT(Φ̃C(T∗)) we have

T∗ = ΦT(C∗) = T∪{µα.c | ∀e∈ C∗,c{e/α} is SN} and (1)

C∗ = Φ̃C(T∗) = C∪{µ̃x.c | ∀r ∈ T∗,c{r/x} is SN} (2)

It follows easily thatT ⊆ T∗ andC ⊆ C∗ and that(T∗,C∗) is saturated. It remains to
show that(T∗,C∗) is stable.

SinceT is a set of SN terms andC 6= /0, ΦT(C) is a set of SN terms; similarly
Φ̃C(T) is a set of SN coterms. The key fact is that, since(T,C) was simple, a termµα.c
is in T∗ iff ∀e∈ C∗,c{e/α}is SN: this is because aµ-term is inT∗ precisely if it is in
ΦT(C∗)\T. Similarly a coterm̃µx.c is in C∗ if and only if ∀r ∈ T∗,c{r/x} is SN.

So consider any statementL r • eM with r ∈ T∗ ande∈ C∗; we must show that this
statement is SN. If in factr ∈ T ande∈ C thenL r • eM is SN since(T,C) was stable.

So supposer ∈ (T∗ \T) and/ore∈ (C∗ \C), and consider any reduction sequence
out of L r • eM. If no top-level (µ- or µ̃-) reduction is ever done then the reduction must
be finite sincer ande are individually SN. If a top-level reduction is ever done then
(cf Remark 1) we may promote this to be the first step, so that the reduction sequence
beginsL µα.c • eM // c{e/α} or L r • µ̃x.c M // c{r/x}. But we observed above
that in these cases the reduced D-expression is SN by definition of(T∗,C∗) and so our
reduction is finite in length. ut

6.1 Pairs and types

As a preliminary step in building pairs to interpret types we define the following con-
structions on pairs. Script letters will denote pairs, and ifP is a pair,PR andPL denote
its component sets of terms and coterms.

Definition 13. Let P andQ be pairs.

– The pair(P fQ) is given by:

• (P fQ)
R
= {〈r1, r2〉 | r1 ∈ PR, r2 ∈ QR}

• (P fQ)
L
= {fst[e] | e∈ PL}∪{snd[e] | e∈ QL}.

– The pair(P gQ) is given by:

• (P gQ)
R
= {〈r〉inl | r ∈ PR}∪{〈r〉inr | r ∈ QR}.

• (P gQ)
L
= {[e1, e2] | e1 ∈ PL. e2 ∈ QL}

– The pairP ◦ is given by:

• (P ◦)
R
= {[e]not | e∈ PL}

• (P ◦)
L
= {not〈r〉 | r ∈ PR}

Note that each of(P fQ), (P gQ), andP ◦ is simple.

Lemma 14. Let P andQ be stable pairs. Then(P fQ), (P gQ), andP ◦ are each
stable.

Proof. For(P fQ): Let r ∈ (P fQ)
R

ande∈ (P fQ)
L
. We need to show thatL r • eM

is SN. SinceP and Q are stable, it is easy to see that each ofr ande is SN. So to
complete the argument it suffices to show, again by the fact that top-level reductions
can be promoted to be the first step in a reduction sequence, that the result of a top-level
reduction is SN. Consider, without loss of generality,L 〈r1, r2〉 • fst[e] M → L r1 • eM.
Thenr1 ∈ PR ande∈ PL, and sinceP is stableL r1 • eM is SN, as desired.

The arguments for(P gQ) andP ◦ are similar. ut

The following is our notion of reducibility candidates for the dual calculus.

Definition 15. The type-indexed family of pairsS = {ST | T a type} is defined as fol-
lows.

– When T is a base type,ST is any stable saturated extension of(VarR,VarL).
– SA∧B is any stable saturated extension of(SA fSB).
– SA∨B is any stable saturated extension of(SA gSB).
– S¬A is any stable saturated extension of(SA)◦.

The construction of each pairST succeeds by Lemma 12 and Lemma 14. Note that
by definition of saturation eachST contains all term variables and all coterm variables.

6.2 Strong normalization

Strong normalization of typeable D-expressions will follow if we establish the fact that
typeable terms and coterms lie in the candidatesS .

Theorem 16. If term r is typeable with type A then r is inSA
R ; if coterm e is typeable

with type A then e is inSA
L .

Proof. To prove the theorem it is convenient, as usual, to prove a stronger statement.
Say that a substitutionθ satisfiesΓ if

∀(x : A) ∈ Γ, θx∈ SA
R ,

and thatθ satisfies∆ if
∀(α : A) ∈ ∆, θα ∈ SA

L .
Then the theorem follows from the assertion

suppose thatθ satisfiesΓ and∆.
– If Γ `

�� ��r : A ,∆, thenθr ∈ SA
R .

– If Γ,
�� ��e : A ` ∆, thenθe∈ SA

L .

since the identity substitution satisfies everyΓ and∆.
Choose a substitutionθ which satisfiesΓ and∆, and a typeable termr or a coterme;

we wish to show thatθr ∈ ST
R or θe∈ ST

L , as appropriate. We prove the statement above
by induction on typing derivations, considering the possible forms of the typing in turn.
For lack of space we only show a representative sample of cases here.

Case: When the derivation consists of an axiom the result is immediate sinceθ satisfies
Γ and∆.

Case: Suppose the derivation ends with rule(∧L). Without loss of generality we ex-
amine fst[]: �� ��e : A , Γ ` ∆�� ��fst[e] : A∧B , Γ ` ∆

We wish to show thatθfst[e]≡ fst[θe] ∈ SA∧B
L . By induction hypothesisθe∈ SA

L and so
fst[θe] ∈ (SA fSB)L ⊆ SA∧B

L .

Case: Suppose the derivation ends with rule(∧R).

Γ ` ∆,
�� ��r : A Γ ` ∆,

�� ��q : B
(∧R)

Γ ` ∆,
�� ��〈r, q〉 : A∧B

We wish to show thatθ〈r, q〉 ≡ 〈θr, θq〉 ∈ SA∧B
R . By induction hypothesisθr ∈ SA

R and
θq∈ SB

R , and so〈θr, θq〉 ∈ (SA fSB)R ⊆ SA∧B
R .

Case: Suppose the derivation ends with rule(¬L).

Γ ` ∆,
�� ��r : A

(¬L)�� ��not〈r〉 : ¬A , Γ ` ∆

We wish to show thatθnot〈r〉 ≡ not〈θr〉 ∈ S¬A
L . By induction hypothesisθr ∈ SA

R , and
so not〈θr〉 ∈ (SA◦)L ⊆ S¬A

L .

Case: Suppose the derivation ends with rule(µ).

Γ `
�� ��r : T ,α : A,∆ Γ,

�� ��e : T ` α : A,∆
(cut)

L r • eM : (Γ ` α : A,∆)
(µ)

Γ `
�� ��µα.L r • eM : A ,∆

Note that any application of the typing rule(µ) must indeed immediately follow a cut.
We wish to show thatµα.L θr • θeM ∈ SA

R .
SinceSA is saturated, to show this it suffices to show that for eache1 ∈ SA

L

L θr • θeM{e1/α} is SN.

Letting θ′ denote the substitution obtained by augmentingθ with the bindingα 7→
e1, what we want to show is thatL θ′r • θ′eM is SN.

The substitutionθ′ satisfies the basisα : A,∆ by hypothesis and the fact thate1∈ SA
L .

Soθ′r ∈ ST
R andθ′e∈ ST

L by induction hypothesis, soL θ′r • θ′eM is SN.

Case: When the derivation ends with rule(µ̃) the argument is similar to the(µ) case.
The remaining cases are each similar to one of those above. ut

Theorem 17. Every typeable term, coterm, and statement is SN.

Proof. If t is a term [respectively,e is a coterm] typeable with typeA then by Theo-
rem 16 we havet ∈ SA

R [respectively,SA
L], and each of these consists of SN expressions.

If t = c is a typeable statement then it suffices to observe that, takingα to be any co-
variable not occurring inc, the termµα.c is typeable. ut

6.3 Extensionality and expansion rules

The equations of the dual calculus of [31] include a group of equations called “η-equa-
tions” which express extensionality properties. A typical equation for a term of type
A∧B is

(η∧) r = 〈µα.L r • fst[α] M, µβ.L r • snd[β] M〉

and there are similar equations for the other types. In traditionalλ-calculus it has been
found convenient to orient such equations from left to right, i.e. as expansions, as a tool
for analyzing the equality relation.

As with all expansions there are obvious situations which allow immediate infinite
application of the rules (see for example [13] or [6] for a discussion in the setting of
the lambda-calculus). For example, we must forbid application of the above expansion
rule to a term already of the form〈r1, r2〉 to prevent an infinite reduction. Slightly more
subtly, if the termr is already part of a statement whose other side is one of the forms
fst[e] or snd[e] then we can immediately fall into a cycle of(η∧);(β∧) reductions.

But if we forbid only those clearly ill-advised situations, the result is a reduction
relation with all the nice properties one might want. Lack of space forbids a detailed
treatment here but the key points are as follows.

– The constraints on the expansion relation do not change the equalities we can prove,
even under restrictions such as call-by-name or call-by-value, in the sense that if
a termt can be expanded to termt ′ by a “forbidden” expansion, thent ′ can be
reducedto t by one of the “computational” reductions (i.e., those from Figure 1).

– The resulting reduction relation is SN on typed terms.

It is straightforward to verify the first assertion. The second claim is proved by pre-
cisely the same techniques presented in the current section: the notions of saturated
stable pair is robust enough so that there are no conceptual difficulties in accommodat-
ing expansions. Details will appear in the full version of the paper.

7 Conclusion
We have explored some aspects of the reduction relation on raw expressions of the dual
calculus, and proven strong normalization and confluence results for several variations
on the basic system.

An interesting open problem is to find acharacterizationof the SN terms, presum-
ably in the form of an extension of the system of simple types studied here. For tradi-
tional λ-calculus, system of intersection types have been an invaluable tool in studying
reduction properties, characterizing strong-, weak- and head-normalization. As shown
in [12], subtle technical problems arise with the interaction between intersection types
and symmetric calculi, so this promises to be a challenging line of inquiry.

References

1. Z. M. Ariola and H. Herbelin. Minimal classical logic and control operators. InICALP:
Annual International Colloquium on Automata, Languages and Programming, volume 2719
of LNCS, pages 871–885. sv, 2003.

2. S. v. Bakel, S. Lengrand, and P. Lescanne. The languageX : circuits, computations and
classical logic. InICTCS 2005 Ninth Italian Conference on Theoretical Computer Science,
Certosa di Pontignano (Sienna), Italy, 2005.

3. F. Barbanera and S. Berardi. A symmetric lambda calculus for classical program extraction.
Information and Computation, 125(2):103–117, 1996.

4. H. P. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, Amster-
dam, revised edition, 1984.

5. G. M. Bierman. A computational interpretation of theλµ-calculus. InProc. of Symposium
on Mathematical Foundations of Computer Science., volume 1450 ofLNCS, pages 336–345.
Springer-Verlag, 1998.

6. R. D. Cosmo and D. Kesner. Simulating expansions without expansions.Mathematical
Structures in Computer Science, 4(3):315–362, 1994.

7. P.-L. Curien. Symmetry and interactivity in programming.Archive for Mathematical Logic,
2001. to appear.

8. P.-L. Curien. Abstract machines, control, and sequents. InApplied Semantics, International
Summer School, APPSEM 2000, Advanced Lectures, volume 2395 ofLNCS, pages 123–136.
Springer-Verlag, 2002.

9. P.-L. Curien and H. Herbelin. The duality of computation. InProc. of the 5th ACM SIG-
PLAN Int. Conference on Functional Programming (ICFP’00), Montreal, Canada, 2000.
ACM Press.

10. R. David and K. Nour. Arithmetical proofs of strong normalization results for the symmetric
λµ-calculus. InTLCA, pages 162–178, 2005.

11. P. de Groote. On the relation between theλµ-calculus and the syntactic theory of sequential
control. In Springer-Verlag, editor,LPAR’94, volume 822 ofLNCS, pages 31–43, 1994.

12. D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in a lan-
guage with control operators. InSixth ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming PPDP’04, pages 155–166. ACM Press, 2004.

13. D. J. Dougherty. Some lambda calculi with categorical sums and products. In C. Kirchner,
editor,Proc. 5th International Conference on Rewriting Techniques and Applications (RTA),
volume 690 ofLNCS, pages 137–151, Berlin, 1993. Springer-Verlag.

14. A. Filinski. Declarative continuations and categorical duality. Master’s thesis, DIKU, Com-
puter Science Department, University of Copenhagen, Aug. 1989. DIKU Rapport 89/11.

15. G. Gentzen. Unterschungenüber das logische Schliessen, Math Z. 39 (1935), 176–210. In
M. Szabo, editor,Collected papers of Gerhard Gentzen, pages 68–131. North-Holland, 1969.

16. T. Griffin. A formulae-as-types notion of control. InPOPL 17, pages 47–58, 1990.
17. H. Herbelin. Śequents qu’on calcule : de l’interprétation du calcul des séquents comme

calcul deλ-termes et comme calcul de stratégies gagnantes. Thèse, U. Paris 7, Janvier 1995.
18. W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R. Hind-

ley, editors,To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479–490, New York, 1980. Academic Press.

19. S. Lengrand. Call-by-value, call-by-name, and strong normalization for the classical sequent
calculus. In B. Gramlich and S. Lucas, editors,ENTCS, volume 86. Elsevier, 2003.

20. S. Likavec. Types for object oriented and functional programming languages. PhD thesis,
Universit̀a di Torino, Italy, ENS Lyon, France, 2005.

21. C. R. Murthy. Classical proofs as programs: How, what, and why. In J. P. M. Jr. and M. J.
O’Donnell, editors,Constructivity in Computer Science, volume 613 ofLNCS, pages 71–88.
Springer, 1991.

22. C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional computation
with control. InPOPL 24, pages 215–227, 1997.

23. M. Parigot. An algorithmic interpretation of classical natural deduction. InProc. of Int.
Conf. on Logic Programming and Automated Reasoning, LPAR’92, volume 624 ofLNCS,
pages 190–201. Springer-Verlag, 1992.

24. M. Parigot. Proofs of strong normalisation for second order classical natural deduction.The
J. of Symbolic Logic, 62(4):1461–1479, December 1997.

25. E. Polonovski. Strong normalization ofλµµ̃-calculus with explicit substitutions. In
I. Walukiewicz, editor,Foundations of Software Science and Computation Structures, 7th
International Conference, FOSSACS 2004, volume 2987 ofLNCS, pages 423–437. Springer,
2004.

26. D. Pym and E. Ritter. On the semantics of classical disjunction.J. of Pure and Applied
Algebra, 159:315–338, 2001.

27. P. Selinger. Control categories and duality: On the categorical semantics of the lambda-mu
calculus.Mathematical Structures in Computer Science, 11(2):207–260, 2001.

28. M. Takahashi. Parallel reduction inλ-calculus.Information and Computation, 118:120–127,
1995.

29. C. Urban and G. M. Bierman. Strong normalisation of cut-elimination in classical logic. In
Typed Lambda Calculus and Applications, volume 1581 ofLNCS, pages 365–380, 1999.

30. P. Wadler. Call-by-value is dual to call-by-name. InProc. of the 8th Int. Conference on
Functional Programming, pages 189–201, 2003.

31. P. Wadler. Call-by-value is dual to call-by-name, reloaded. InRewriting Technics and Appli-
cation, RTA’05, volume 3467 ofLNCS, pages 185–203, 2005.

