
Shapes as property restrictions
and property-based similarity

Silvia LIKAVEC 1

Dipartimento di Informatica, Unviersità di Torino, Italy

Abstract. In this work we look into the details of modeling shapes in an ontology
as property restrictions on classes. In this way shapes do not have to be categorized
in an exhaustive hierarchy and there is no need to take immediate decisions on how
to group the objects, it is rather possible to individualize some important character-
istics of shapes and use them as the basis for their categorization and comparison.
This approach also makes it possible to use the adequate similarity measure based
on properties which helps find similar shapes in different contexts, depending on
the relevance of the properties in the particular situation.

Keywords. ontology, OWL, shapes, properties, restrictions, similarity

Introduction

In many different areas, from virtual reality to architectural design, from biology to
medicine, from mathematics to computer science, the notion of shape plays a crucial
role. Finding patterns and forms in objects surrounding us, describing them and under-
standing their interaction is essential to human nature. Hence, varied approaches to the
categorization of shapes and forms, as well as their mutual similarity and connectedness,
are of great importance for the development of many scientific fields.

In various domains, there is a raising tendency to use ontologies as powerful for-
malisms for knowledge representation with associated reasoning mechanisms (inheri-
tance, subsumption, classification etc.). Ontologies provide explicit specifications of do-
main concepts and relationships that exist between them [1]. They guarantee exact se-
mantics for each statement and avoid semantic ambiguities. Their usage allows for ex-
tensibility and re-usability, since they are expressed with standard formats and technolo-
gies.

In the domain of shape, form and structure representation, there were some attempts
at modeling shapes ontologically, as an exhaustive hierarchy. In [9] the authors develop
a limited graphics ontology for natural language interfaces, covering the concepts like
“Shape”, “Action” and various features which describe shapes (size, color, position etc.).
In [5] two first-order ontologies for representing 2D and 3D shapes like surfaces and
boxes are introduced. They use only the notions such as part-of and connectedness, rather
than Euclidean geometric relations, such as alignment and length of segments, or the

1Corresponding Author: Silvia Likavec, Dipartimento di Informatica, Corso Svizzera 185, 10149 Torino,
Italy; E-mail: likavec@di.unito.it.

notions of curvature or surface area. In the domain of architectural design, [8] presents
a conceptual “building shape ontology” which sorts building shapes and captures their
meaning and semantics.

In the realm of spatial design and reasoning, authors in [2] explore the role ontolog-
ical formalization plays in modeling of high-level conceptual requirement constraints.
They concentrate on ontological modeling of structural forms from different perspec-
tives. As for architectural design, information that is being used often originates from
various sources. In [6], the authors take a step towards integration of various aspects of
architectural domain (spatial constraints, relations among objects, abstract conceptual-
izations) designing modular ontologies based on the theory of ε-connections. [13] de-
scribes a method for the retrieval of 3-dimensional shapes (in this case furniture models)
based on a mapping between low level features described by the shape descriptor and
ontology concepts. This furniture ontology is used in annotation and key word based
retrieval of furniture models.

As far as similarity among ontological concepts is concerned, three main approaches
can be distinguished. The first one [12] is based on information content of a class in
an IS-A taxonomy, given by the negative logarithm of the probability of occurrence of
the class in a text corpus. The second approach [11] uses the ontology graph structure,
by measuring directly the distance between nodes (usually, the number of edges or the
number of nodes that need to be traversed in order to reach one node from the other). Fi-
nally, the third approach combines the information content approach with edge counting
based approach (see for example [7]). Different notions of similarity and the relationships
among them are tackled in [3]. Starting form Leibnizian relative identity as the only local
form of similarity, they show that more sophisticated notions can be obtained by applying
transformations across heterogeneous logics. They also distinguish between ontological
and epistemic similarities. While ontological similarities stem from the structure of the
world itself, epistemic similarities are used to connect entities in different worlds.

The rest of the paper is organized as follows. Section 1 provides a summary of the
treatment of properties in OWL and the definition of property restrictions on classes. In
Section 2 we discuss some issues concerning modeling of shapes as property restrictions
on classes, followed by some examples of shape definitions. Details of the approach to
calculating similarity of shapes based on properties can be found in Section 3. Section 4
concludes.

1. Properties and property restrictions in OWL

1.1. Properties in OWL

In different contexts, domain knowledge can be represented semantically using ontolo-
gies expressed in OWL2. In an ontology, domain concepts are organized hierarchically
and have their features defined as properties. Two kinds of properties can be distinguished
in OWL: (i) object properties relating individuals among themselves and (ii) data type
properties relating individuals to data type values.

Characteristics of a property are defined with a property axiom, most commonly
defining its domain and range. rdfs:domain links a property to a class description,

2http://www.w3.org/TR/owl-ref

whereas rdfs:range links a property to either a class description or a data range. For
example:

<owl:ObjectProperty rdf:ID="has_curvature">

<rdfs:domain rdf:resource="#Shape"/>

<rdfs:range rdf:resource="#Curvature "/>

</owl:ObjectProperty>

defines the property has curvature which ties the elements of Shape class to the elements
of Curvature class.

Equivalent properties are defined with owl:equivalentProperty.
In the following section we will see how properties are used in OWL to define classes

with property restrictions.

1.2. Defining classes with property restrictions

Properties are used in OWL for defining classes with property restrictions, by means of
local anonymous classes, which are collections of individuals all satisfying certain re-
strictions on certain properties. Two kinds of property restrictions exist: value constraints
and cardinality constraints. A value constraint concerns constraints on the range of the
property when applied to a particular class description. A cardinality constraint imposes
constraints on the number of values a property can take, in the context of a particular
class description.

We start with the brief description of value constraints. There are three ways of
defining value constraints:

• owl:allValuesFrom defines a class for which all the values of the given property
are either members of the specified class or data values within the specified data
range. It is possible not to have any values for the given property. For example:

<owl:Restriction>

<owl:onProperty rdf:resource="#has_angle" />

<owl:allValuesFrom rdf:resource="#RightAngle" />

</owl:Restriction>

describes an anonymous OWL class of all individuals for which the has angle
property only has values of the class RightAngle (for example square or rectan-
gle). In predicate logic, the counterpart of owl:allValuesFrom constraint is the
universal quantifier, i.e. for each instance of the class defined with the restric-
tion, every value for the property must fulfill the constraint and the constraint is
trivially satisfied for an instance that has no value for the specified property.

• owl:someValuesFrom specifies a class for which at least one of the values of the
given property is either a member of the specified class or a data value within the
specified data range (at least one must exist). There might be other values for the
given property. For example:

<owl:Restriction>

<owl:onProperty rdf:resource="#has_angle" />

<owl:someValuesFrom rdf:resource="#RightAngle" />

</owl:Restriction>

describes an anonymous OWL class of all individuals which have at least one right
angle (for example right-angled triangle). In predicate logic, the counterpart of
owl:someValuesFrom constraint is the existential quantifier, i.e. for each instance
of the class defined with the restriction, there exists at least one value for the
property that fulfills the constraint.

• owl:hasValue defines a class for which the specified property has at least one
value semantically equal to the specified value, which can be either an individual
or a data value3. For example:

<owl:Restriction>

<owl:onProperty rdf:resource="#contains" />

<owl:hasValue rdf:resource="#Circle100" />

</owl:Restriction>

describes an anonymous OWL class which contains a specific circle.

On the other hand, cardinality constraints can be expressed by using one of the
following three constraints:

• owl:maxCardinality describes a class with at most max semantically distinct val-
ues for the specified property (max being the value of the cardinality constraint).
For example

<owl:Restriction>

<owl:onProperty rdf:resource="#has_number_of_edges" />

<owl:maxCardinality rdf:datatype="&xsd;nonNegativeInteger">5

</owl:maxCardinality>

</owl:Restriction>

describes an anonymous OWL class of individuals that have at most five edges
(for example polygons with 3 or 4 or 5 edges),.

• owl:minCardinality is defined analogously to maxCardinality, where the class has
at least min semantically distinct values.

• owl:cardinality is defined analogously to maxCardinality, where the class has ex-
actly m semantically distinct values. It is actually a redundant concept, since it
can be defined with the combination of maxCardinality and minCardinality.

From the above we can see that we can consider each of the concepts in our ontology,
to have certain properties defined for it. These properties further describe the concepts in
the ontology and can be used to categorize them and to calculate their mutual similarity.

1.3. Instances and their properties

An instance in the ontology is defined with individual axioms called “facts” which de-
scribe its class membership, property values and individual identity. An instance is re-
lated to the class it belongs to directly with the rdfs:type relation and basically inherits

3For datatypes “semantically equal” means that the lexical representation of the literals maps to the same
value. For individuals it means that they either have the same URI reference or are defined as being the same
individual with owl:sameAs.

the properties of the class it belongs to. Hence, in OWL the properties of the instances
are defined by associating to each property its specific value. For example, the following
describes a red circle with the radius equal to 3 and a dotted outline.

<Circle rdf:ID="Circle100">

<has_radius rdf:datatype="&xsd;positiveInteger">3</has_radius>

<has_outline rdf:resource="#Dotted"/>

<has_color rdf:resource="#Red"/>

</Circle>

2. Shapes defined as class restrictions

Categorization of the world around us is inherent to human perception and reasoning.
Many objects are internalized easier if they are reduced to simpler forms and shapes that
we are familiar with and that we can easily group with other similar objects.

We give some directions on how to model two-dimensional shapes, since they are
the easiest to comprehend and understand.4 The most common categorization of two-
dimensional shapes is according to the kind of edges the shapes contain to curved shapes
and straight line composed shapes (polygons). But another categorization could start
from convex and concave shapes. Or we might want to categorize the shapes based on
the number of edges they have. The possibilities are many.

So instead of forcing this somehow artificial categorization upon the shape world, we
would do the shapes more justice by defining them as property restrictions on classes. We
can start by defining many different properties which would help us precisely describe the
shapes we need. For example, the property has edge kind could be used to define as prop-
erty restrictions the classes CurvedShape and Polygon (shapes composed from straight
lines), whereas the property has curvature would be used to distinguish ConvexShape
class from ConcaveShape class (again defining them as restrictions). In this way, there
is no need to a-priori decide which categorization should happen higher up in the hier-
archy, they can peacefully co-exist together (and not be the only ones). Once the first
level is modeled, we can proceed to model their subclasses. At this point we can have
direct subclasses with additional properties or additional restrictions. So we can include
properties like number of edges, number of equal edges, number of parallel edges etc.
This would also help us compare the shapes having all these properties defined explicitly
for them.

In this light, let us have a look at two shape definitions, namely rhombus and rectan-
gle. A rhombus can be defined as a simple (non-self-intersecting) quadrilateral with four
equal edges, whereas a rectangle can be defined as quadrilateral with four right angles
(and they are both convex). So if we define the Quadrilateral class as a subclass of
Polygon class which has the property has number of sides restricted to 4, we can define
rhombus and rectangle as follows:

<owl:Class rdf:ID="Rectangle">

<rdfs:subClassOf rdf:resource="#Quadrilateral"/>

<rdfs:subClassOf rdf:resource="#ConvexShape"/>

4Three-dimensional and n-dimensional objects are treated similarly.

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#has_angle" />

<owl:allValuesFrom rdf:resource="#RightAngle" />

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#has_number_of_angles"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Rhombus">

<rdfs:subClassOf rdf:resource="#Quadrilateral"/>

<rdfs:subClassOf rdf:resource="#Convex"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#has_number_of_equal_edges"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">4

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Obviously, these are not the only ways to define these two, or any other shape. The
process is versatile and applicable in many different contexts. Above all, it enables very
natural comparison of shapes and establishes their similarity based on properties, as we
will see in the following section.

3. Property-based similarity of shapes

If we define shapes as property restrictions (on values and cardinality), we can find sim-
ilar shapes by comparing their properties. The property-based similarity of two shapes
S 1 and S 2, can be calculated by starting from Tversky’s feature-based model of sim-
ilarity [14], where similarity between objects is a function of both their common and
distinctive features:

simT (S 1,S 2) =
α(ψ(S 1)∩ψ(S 2))

β(ψ(S 1) \ψ(S 2)) +γ(ψ(S 2) \ψ(S 1)) +α(ψ(S 1)∩ψ(S 2))
. (1)

Here ψ(S) is the function which describes all the relevant features of S , and α,β,γ ∈ R
are parameters which permit us to treat differently the various components. For α = 1
maximal importance is assigned to the common features of the two shapes and for β = γ
non-directional similarity measure is achieved. We will use α = β = γ = 1.

Hence, to be able to use Tversky’s model we need to calculate the following:

• common features of S 1 and S 2: cf(S 1,S 2) = ψ(S 1)∩ψ(S 2),
• distinctive features of S 1: df(S 1) = ψ(S 1) \ψ(S 2) and
• distinctive features of S 2: df(S 2) = ψ(S 2) \ψ(S 1).

Putting these values into the formula (1) and taking α = β = γ = 1 we obtain:

simT (S 1,S 2) =
cf(S 1,S 2)

df(S 1) +df(S 2) + cf(S 1,S 2)
. (2)

In order to calculate common and distinctive features for S 1 and S 2, for each prop-
erty p, we calculate cfp, df1p and df2p, which denote how much the property p contributes
to common features of S 1 and S 2, distinctive features of S 1 and distinctive features of
S 2, respectively. In what follows we would see how different ways of defining proper-
ties in OWL influence the calculation of these values. We consider equal the properties
defined with owl:EquivalentProperty.

We start from three kinds of value restriction declarations: (i) owl:allValuesFrom;
(ii) owl:someValuesFrom; (iii) owl:hasValue. Based on how the restrictions on proper-
ties are defined for S 1 and S 2, we can distinguish the following six cases:

1. The property p is defined with owl:allValuesFrom for both S 1 and S 2. Let the
property p be defined for S 1 with

〈owl:allValuesFrom rdf:resource=”#A1”〉
and for S 2 with

〈owl:allValuesFrom rdf:resource=”#A2”〉.
Let a1 (resp. a2) be the number of sub-classes of A1 (resp. A2). If A1 and A2 are
equal classes or declared equivalent with owl:equivalentClass or A1 is a subclass

of A2, then cfp =
1

(a1 + 1)
. Otherwise df1p =

1
a1 + 1

and df2p =
1

a2 + 1
.

2. The property q is defined with owl:someValuesFrom both for S 1 and S 2. Let the
property q be defined for S 1 with

〈owl:someValuesFrom rdf:resource=”#B1”〉
and for S 2 with

〈owl:someValuesFrom rdf:resource=”#B2”〉.
Let b1 (resp. b2) be the number of sub-classes of B1 (resp. B2) and w be the
number of classes in the whole domain. If B1 and B2 are equal classes or
declared equivalent with owl:equivalentClass or B1 is a subclass of B2, then

cfq =
1

(b1 + 1)w
. Otherwise df1q =

1
(b1 + 1)w

and df2q =
1

(b2 + 1)w
.

3. Let property r be defined for S 1 with
〈owl:hasValue rdf:resource=”#V1”〉

and for S 2 with
〈owl:hasValue rdf:resource=”#V2”〉

If V1 and V2 are the same values or declared same with owl:sameAs, then
cfq = 1. Otherwise df1q = 1 and df2q = 1.

4. If the property t is defined for S 1 with
〈owl:hasValue rdf:resource=”#V3”〉

and for S 2 with

〈owl:allValuesFrom rdf:resource=”#A3”〉,
and if V3 is an instance of A3 or one of its subclasses, then cft = 1. Otherwise, if

a3 is the number of sub-classes of A3, then df1t = 1 and df2t =
1

a3 + 1
.

5. If the property x is defined for S 1 with
〈owl:hasValue rdf:resource=”#V4”〉

and for S 2 with
〈owl:someValuesFrom rdf:resource=”#B3”〉

and if V4 is an instance of B3 or one of its subclasses, then cfx = 1. Otherwise,
if b3 is the number of sub-classes of B3 and if w is the number of classes in the

whole domain, then df1x = 1 and df2x =
1

(b3 + 1)w
.

6. If the property y is defined for S 1 with
〈owl:allValuesFrom rdf:resource=”#A4””〉

and for S 2 with
〈owl:someValuesFrom rdf:resource=”#B4””〉

and if a4 (resp. b4) is the number of sub-classes of A4 (resp. B4) and w is the num-

ber of classes in the whole domain, then cfy =
1

(a4 + 1)(b4 + 1)w
,df1y =

1
a4 + 1

and

df2y =
1

(b4 + 1)w
.

Next we consider three kinds of cardinality restriction declarations: (i) minCardinal-
ity; (ii) maxCardinality; (iii) cardinality. We can distinguish the following cases:

1. If the property f is defined with owl:maxCardinality for both S 1 and S 2, and it

has value m in S 1 and value n in S 2, where m ≤ n, then cf f =
1

n−1
,df1f = 0 and

df2f = n−m. The case when m ≥ n is analogous.
2. If the property g is defined with owl:minCardinality for both S 1 and S 2, the values

for this restriction would not contribute to common and distinctive features, since
each of these restrictions can have infinitely many values. It only contributes to
similarity calculation if it is declared together with owl:maxCardinality restric-
tion, which is then the following case.

3. If the property h is defined with owl:cardinality for both S 1 and S 2, and it has
value m in S 1 and value n in S 2, then if m = n cf f = 1. Otherwise, if m < n then
df1f = 0 and df2f = n−m. The case when m > n is analogous.

Of course, the subclass relation should be taken into account, hence providing each
class with the property definitions inherited from parent classes.

Finally, to calculate all common and distinctive features of S 1 and S 2 we repeat the
above process for each property defined for S 1 and S 2, obtaining:

cf(S 1,S 2) = Σ
np
ip=1cfpip

+Σ
nq
iq=1cfqiq

+Σ
nr
ir=1cfrir

+Σ
nt
it=1cftit +Σ

nx
ix=1cfxix

+Σ
ny
iy=1cfyiy

+ Σ
n f
i f =1cf fi f

+Σ
ng
ig=1cfgig

+Σ
nh
ih=1cfhih

df(S 1) = Σ
np
ip=1df

1
pip

+Σ
nq
iq=1df

1
qiq

+Σ
nr
ir=1df

1
rir

+Σ
nt
it=1df

1
tit

+Σ
nx
ix=1df

1
xix

+ Σ
ny
iy=1df

1
yiy

+Σ
n f
i f =1df

1
fi f

+Σ
ng
ig=1df

1
gig

+Σ
nh
ih=1df

1
hih

df(S 2) = Σ
np
ip=1df

2
pip

+Σ
nq
iq=1df

2
qiq

+Σ
nr
ir=1df

2
rir

+Σ
nt
it=1df

2
tit

+Σ
nx
ix=1df

2
xix

+ Σ
ny
iy=1df

2
yiy

+Σ
n f
i f =1df

2
fi f

+Σ
ng
ig=1df

2
gig

+Σ
nh
ih=1df

2
hih

where np (resp. nq,nr,nt,nx,ny,n f ,ng,nh) is the number of properties defined in each
of the possible ways explained above. Finally, we calculate the similarity between two
entities S 1 and S 2 defined with restrictions using the formula (2):

sim(S 1,S 2) =
cf(S 1,S 2)

df(S 1) +df(S 2) + cf(S 1,S 2)
.

Another feature we want to take into account is the presence of equivalent classes,
even though they are not defined as restrictions. We assume that two classes declared
equivalent with owl:equivalentClass have similarity based on properties equal to 1.

As far as individuals are concerned (instances of the classes) we simply compare
the property-value pairs for each instance. If the property p has h′ different values in S 1
and h′′ different values in S 2, and we denote by k the number of times S 1 and S 2 have

the same value for p, then cfp =
k2

h′h′′
,df1p =

h′− k
h′

and df2p =
h′′− k

h′′
. We repeat this for

every property p1, . . . , pk used to describe the given instance. Finally, for instances of
classes we obtain:

cf(S 1,S 2) = Σ
np1
ip1 =1cfpip1

+ . . .+Σ
npk
ipk =1cfpipk

df1(S 1,S 2) = Σ
np1
ip1 =1df

1
pip1

+ . . .+Σ
npk
ipk =1df

1
pipk

df1(S 1,S 2) = Σ
np1
ip1 =1df

2
pip1

+ . . .+Σ
npk
ipk =1df

2
pipk

.

3.1. Relevance of properties

When defining a certain shape, not all the properties have the same importance in differ-
ent contexts. For example, in one context two shapes would be regarded similar if they
have similar number of angles and edges, in another one if they are of similar size or
if they are both concave or convex. In the above presented approach, it is possible to
account for relevance of properties by providing the relevance factors Rp

ip
, ip = 1, . . . ,np,

for each property p. Relevance factors can be either given as a-priori expert values or
gathered as user preferences. In this way, some properties become more important than
the others and the formula for calculating the mutual similarity between shapes S 1 and
S 2 becomes:

simr(S 1,S 2) =
cfr(S 1,S 2)

dfr(S 1) +dfr(S 2) + cfr(S 1,S 2)

where cfr(S 1,S 2) = Σ
np
ip=1Ripcfpip

+ . . .+Σ
nh
ih=1Rihcfhih

and similarly for dfr(S 1) and
dfr(S 2).

4. Conclusions

When using ontologies to represent domain knowledge, not always it is convenient to
represent shapes in an exhaustive hierarchy. It might be desirable to single our certain
properties of shapes and then categorize them having these properties in mind. This is
possible if shapes are defined as property restrictions on classes, both on value and cardi-
nality. Representing shapes as property restrictions makes it possible to introduce a very
natural similarity measure based on properties. This measure changes depending on the
context in which it is being used, making it possible to give more relevance to certain
properties in different situations. Apart from modeling shapes as property restrictions
on classes, this approach would bring new insights into modeling forms and patterns as
well, as it avoids strict categorizations, providing a flexible environment for expressing
various features of complex forms.

The presented technique for calculating property-based similarity was first used
in [4], for propagation of user interests in ontology based user model. It was evaluated
in the context of PIEMONTE project [10]5 which developed a framework based on in-
telligent objects composed from a real and a virtual part coexisting at the same time,
in the context of gastronomy. Although this initial approach did not include cardinality
restrictions it showed satisfying performance w.r.t. to actual reasoning and computation
of similarity and helped improve the recommendation process. A future implementation
of this method would include the cardinality restrictions and show how it handles them,
providing feedback for any necessary adjustments.

References

[1] G. Antoniou and F. van Harmelen, A Semantic Web Primer, second edition. The MIT Press, 2008.
[2] M. Bhatt and J. Hois and O. Kutz and F. Dylla, Modelling functional requirements in spatial design.

in Proc. 29th international conference on Conceptual modeling, ER ’10, pp. 464–470, Springer-Verlag,
2010.

[3] S. Borgo and O. Kutz, A General Framework for Shape Similarity. in Proc. SHAPES 1.0 - The Shape of
Things. Workshop at CONTEXT-11, CEUR-WS, Vol. 812, 2011.

[4] F. Cena and S. Likavec and F. Osborne, Property-based interest propagation in ontology-based user
model. in Proc. 20th Conference on User Modeling, Adaptation, and Personalization UMAP 2012,
Lecture Notes in Computer Science 7379, pp. 38–50, Springer-Verlag, 2012.

[5] M. Grüninger and S. Bouafoud, Thinking Outside (and Inside) the Box. in Proc. SHAPES 1.0 - The
Shape of Things. Workshop at CONTEXT-11, CEUR-WS, Vol. 812, 2011.

[6] J. Hois and M. Bhatt and O. Kutz, Modular Ontologies for Architectural Design. in Proc. 2009 Confer-
ence on Formal Ontologies Meet Industry, pp. 66–77, IOS Press, 2009.

[7] J. Jiang and D. Conrath, Semantic similarity based on corpus statistics and lexical taxonomy. in Proc.
International Conference on Research in Computational Linguistics, pp. 19–33, 1997.

[8] P. Jurewicz. Building Shape Ontology, Organising, Visualising and Presenting Building Shape with Dig-
ital Tools, Diplomarbeit, Technischen Universität Wien, 2005.

5PIEMONTE project: People Interaction with Enhanced Multimodal Object for a New Territory Experience,
financed by Regione Piemonte, in the context of Converging Technologies.

[9] M. Niknam and C. Kemke, Modeling Shapes and Graphics Concepts in an Ontology. in Proc. SHAPES
1.0 - The Shape of Things. Workshop at CONTEXT-11, CEUR-WS, Vol. 812, 2011.

[10] L. Console and F. Antonelli and G. Biamino and F. Carmagnola and F. Cena and E. Chiabrando and V.
Cuciti and M. Demichelis and F. Fassio and F. Franceschi and R. Furnari and C. Gena and M. Geymonat
and P. Grimaldi and P. Grillo and E. Guercio and S. Likavec and I. Lombardi and D. Mana and A.
Marcengo and M. Mioli and M. Mirabelli and M. Perrero and C. Picardi and F. Protti and A. Rapp
and R. Sandon and R. Simeoni and D. Theseider Dupré and I. Torre and A. Toso and F. Torta and F.
Vernero, WantEat: interacting with social netnetworks of intelligent things and people in the world of
gastronomy, ACM Transactions on Interactive Intelligent Systems, Accepted for publication, 2013.

[11] R. Rada and H. Mili and E. Bicknell and M. Blettner, Development and application of a metric on
semantic nets, IEEE Transactions on Systems Management and Cybernetics, 19(1):1730, 1989.

[12] P. Resnik, Semantic similarity in a taxonomy: An information-based measure and its application to
problems of ambiguity in natural language, Journal of Artificial Intelligence Research, 11:95130, 1998.

[13] O. Symonova and M. S. Dao and G. Ucelli and R. De Amicis, Ontology Based Shape Annotation and
Retrieval. in Proc. ECAI06 International Workshop on Contexts and Ontologies: Theory, Practice and
Applications, 2006.

[14] A. Tversky, Features of similarity, Psychological Review, 84(4):327–352, 1977.

