

since

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Kazanskyite, Ba□TiNbNa3Ti(Si2O7)2O2(OH)2(H2O)4, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure

This is the author's manuscript

Availability:

This version is available http://hdl.handle.net/2318/92715

Published version:

DOI:10.1180/minmag.2012.076.3.03

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

This is the author's final version of the contribution published as:

Cámara F; Sokolova E; Hawthorne FC. Kazanskyite, Ba**T**iNbNa3Ti(Si2O7)2O2(OH)2(H2O)4, a Group-III Ti-disilicate mineral from the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure. MINERALOGICAL MAGAZINE. 76 pp: 473-492. DOI: 10.1180/minmag.2012.076.3.03

The publisher's version is available at: http://minmag.geoscienceworld.org/cgi/doi/10.1180/minmag.2012.076.3.03

When citing, please refer to the published version.

Link to this full text: http://hdl.handle.net/2318/92715

This full text was downloaded from iris - AperTO: https://iris.unito.it/

1	Revision R1
2	
3	
4	
5 6	
7	
8	Kazanskyite, Ba□TiNbNa₃Ti(Si₂O⁊)₂O₂(OH)₂(H₂O)₄, a Group-III Ti-disilicate mineral from
9	the Khibiny alkaline massif, Kola Peninsula, Russia: description and crystal structure
10	
11	F. Cámara ^{1,*} , E. Sokolova ^{2,3} and F.C. Hawthorne ²
12	
13 14	¹ Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125 Torino, Italy
15 16 17	² Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
18 19 20 21 22 23	³ Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow, 119017, Russia
24	* Corresponding author, E-mail address: fernando.camaraartigas@unito.it
25	

26 **Abstract**

Kazanskyite, Ba \Box TiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O)₄, is a Group-III TS-block mineral from the 27 Kirovskii mine, Mount Kukisvumchorr, Khibiny alkaline massif, Kola Peninsula, Russia. The 28 mineral occurs as flexible and commonly bent flakes 2-15 μ m thick and up to 330 μ m across. It 29 is colourless to pale tan, with a colourless streak and a vitreous lustre. The mineral formed in a 30 pegmatite as a result of hydrothermal activity. Associated minerals are natrolite. 31 barytolamprophyllite, nechelyustovite, hydroxylapatite, belovite-(La), belovite-(Ce), 32 gaidonnayite, nenadkevichite, epididymite, apophyllite-(KF) and sphalerite. Kazanskyite has 33 perfect cleavage on {001}, splintery fracture and a Mohs hardness of 3. Its calculated density is 34 2.930 g/cm³. Kazanskyite is biaxial positive with α 1.695, β 1.703, γ 1.733 (λ 590 nm), 2V_{meas.} = 35 64.8(7)°, 2V_{calc.} = 55.4°, with no discernible dispersion. It is nonpleochroic. Kazanskyite is 36 triclinic, space group $P\overline{1}$, a 5.4260(9), b 7.135(1), c 25.514(4) Å, a 90.172(4), β 90.916(4), γ 37 89.964(3)°, V 977.61(3) Å³. The strongest lines in the X-ray powder-diffraction pattern 38 [d(Å)(I)(hkl)] are: 2.813(100)(124,122), 2.149(82)(222,220,207,220,222), 3.938(70)(113,112), 39 4.288(44)(111,110,110,111), 2.128(44)(223,221,134,221,223), 3.127(39)(116,115), 40 3.690(36)(114), 2.895(33)(123,121) and 2.955(32)(120,120,122). Chemical analysis by 41 electron microprobe gave Nb₂O₅ 9.70, TiO₂ 19.41, SiO₂ 28.21, Al₂O₃ 0.13, FeO 0.28, MnO 4.65, 42 BaO 12.50, SrO 3.41, CaO 0.89, K₂O 1.12, Na₂O 9.15, H₂O 9.87, F 1.29, O = F -0.54, sum 43 100.07 wt.%, H₂O was determined from structure refinement. The empirical formula is 44 $(Na_{2.55}Mn_{0.31}Ca_{0.11}Fe^{2^{+}}{}_{0.03})_{\Sigma 3}(Ba_{0.70}Sr_{0.28}K_{0.21}Ca_{0.03})_{\Sigma 1.22}(Ti_{2.09}Nb_{0.63}Mn_{0.26}AI_{0.02})_{\Sigma 3}Si_{4.05}O_{21.42}H_{9.45}F_{0.59},$ 45 calculated on 22 (O + F) a.p.f.u., Z = 2. The structural formula of the form $A_{2}^{P}M_{4}^{U}M_{4}^{O}(Si_{2}O_{7})_{2}X_{4}^{O}$ 46 $X^{P}_{M}X^{P}_{A}(H_{2}O)_{n} \text{ is } (Ba_{0.56}Sr_{0.22}K_{0.15}Ca_{0.03}\Box_{0.04})_{\Sigma1}(\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06})_{\Sigma1}(Ti_{0.98}AI_{0.02})_{\Sigma1}(Nb_{0.63}Ti_{0.37})_{\Sigma1}(Nb_{0.63}Ti_{$ 47 $(Na_{2.55}Mn_{0.31}Ca_{0.11}Fe^{2+}_{0.03})_{\Sigma 3}(Ti_{0.74}Mn_{0.26})_{\Sigma 1}(Si_{2}O_{7})_{2}O_{2}(OH_{1.41}F_{0.59})_{\Sigma 2}(H_{2}O)(\Box_{0.74}H_{2}O_{0.26})_{\Sigma 1}(H_{2}O)_{2.74}.$ 48 Simplified and ideal formulae are as follows: Ba(D,Ba)Ti(Nb,Ti)(Na,Mn)₃(Ti,Mn)(Si₂O₇)₂O₂ 49 $(OH,F)_{2}(H_{2}O)_{4}$ and Ba \Box TiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O)₄. The Raman spectrum of the mineral 50

51	contains the following bands: 3462 cm ⁻¹ (broad) and 3545 and 3628 cm ⁻¹ (sharp). The crystal
52	structure was solved by direct methods and refined to an R_1 index of 8.09 %. The crystal
53	structure of kazanskyite is a combination of a TS (titanium silicate) block and an I (intermediate)
54	block. The TS block consists of HOH sheets (H-heteropolyhedral, O-octahedral). The TS block
55	exhibits linkage and stereochemistry typical for Group III (Ti = 3 a.p.f.u.) of Ti-disilicate minerals.
56	The TS block has two different H sheets where (Si_2O_7) groups link to [5]-coordinated Ti and [6]-
57	coordinated Nb polyhedra, respectively. There are two peripheral sites, $A^{P}(1,2)$, occupied mainly
58	by Ba (less Sr and K) at 96 and 26%. There are two I blocks: the I_1 block is a layer of Ba atoms;
59	the I_2 block consists of H_2O groups and $A^P(2)$ atoms. The TS and I blocks are topologically
60	identical to those in the nechelyustovite structure. The mineral is named in honour of Professor
61	Vadim Ivanovich Kazansky (Вадим Иванович Казанский), a prominent Russian ore geologist
62	and an expert in Precambrian metallogeny.
63	

Keywords: kazanskyite, new mineral, Khibiny alkaline massif, Kola Peninsula, Russia, crystal
 structure, Group III, Ti-disilicate, TS block

67 Introduction

Kazanskyite, ideally Ba□TiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O)₄, is a new representative of the Ti-68 disilicate minerals with the TS (titanium silicate) block (Sokolova, 2006). In the crystal structure of 69 kazanskyite, the TS block has the stereochemistry and topology of Group III where Ti + Nb = 3 70 71 a.p.f.u. (atoms per formula unit). In Group III, the TS block exhibits linkage 1 where the (Si_2O_7) groups of two H sheets link to the trans edges of the Ti octahedron of the O sheet. Other Group-72 III minerals are as follows: lamprophyllite, nabalamprophyllite, barytolamprophyllite, epistolite, 73 vuonnemite, bornemanite and nechelyustovite (Table 1). The crystal structure of kazanskyite is a 74 new structure type and does not have any analogues. 75

The name is in honour of Professor Vadim Ivanovich Kazansky (Вадим Иванович 76 Казанский) (b. 1926, Tashkent, USSR), a prominent Russian ore geologist and an expert in 77 Precambrian metallogeny. It is particularly appropriate to name this mineral from the Kola 78 Peninsula after Professor Kazansky, as he has worked in the Kola Peninsula for the last 40 79 years, focusing on the rocks of the Kola superdeep borehole and their relation to the deep 80 structure of ore districts. The new mineral species and its name have been approved by the 81 Commission on New Minerals, Nomenclature and Classification of the International Mineralogical 82 83 Association (IMA 2011-007). The holotype specimen of kazanskyite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskii Pr. 18/2, 117071 Moscow, 84 Russia, catalogue No. 4103/1. 85

86

87 Occurrence and associated minerals

Kazanskyite was discovered in a sample of nechelyustovite (Cámara and Sokolova, 2009) from
the underground Kirovskii mine (+252 m level), Mount Kukisvumchorr, Khibiny alkaline massif,
Kola Peninsula, Russia; this sample is in the mineral collection of Adriana and Renato Pagano,
Milan, Italy (Collezione Mineralogica, sample 10161). Following Nèmeth *et al.* (2009),

nechelyustovite is found in one hydrothermally altered pegmatite body emplaced in nepheline 92 syenites near their contact with ijolite–urtites. The pegmatite is a branching vein 0.1–0.5 m 93 wide with a symmetrical zoned structure: a natrolite core, a microcline zone and a marginal 94 aegirine-dominated external zone with subordinate amounts of microcline, nepheline, 95 96 lamprophyllite and eudialyte. Nechelyustovite (and kazanskyite) is confined to the natrolite core where it forms rosettes up to 1–5 cm in diameter composed of extremely fine (0.01–0.1 mm) 97 bounded flakes and lamellae, embedded in a matrix of natrolite or of carbonate-hydroxylapatite. 98 Other associated are barytolamprophyllite, belovite-(La), belovite-(Ce), gaidonnayite, 99 nenadkevichite, epididymite, apophyllite-(KF) and sphalerite. 100

101

102 Physical and optical properties

The main properties of kazanskyite are presented in Table 2, where they are compared to those 103 of Group-III minerals barytolamprophyllite, bornemanite and nechelyustovite. The mineral forms 104 flakes 2-15 µm thick and up to 330 µm across (Fig. 1). Kazanskyite is colourless to very, very 105 pale tan, with a colourless streak and a vitreous lustre. The mineral is transparent in thin flakes 106 which are flexible and commonly bent. They have a perfect {001} cleavage, splintery fracture 107 and Mohs hardness of 3, and are non-fluorescent under 240-400 nm ultraviolet radiation. The 108 109 density of the mineral could not be measured owing to the very small thickness of the flakes. Its calculated density (using the empirical formula) is 2.930 g/cm³. The mineral is biaxial positive 110 with α 1.695, β 1.703, γ 1.733 (λ 590 nm), all ± 0.002, 2V(meas.) = 64.8(7)°, 2V(calc.) = 55.4°, 111 with no discernible dispersion. It is nonpleochroic. Optical orientation is given in Table 3. A 112 Gladston-Dale calculation gives a compatibility index of 0.015, which is rated as superior. 113 114 The Raman spectra were collected in back-scattered mode with a HORIBA JobinYvon XPLORA spectrometer interfaced with an LabRAM ARAMIS confocal microscope. A 115 magnification of 100x was used with an estimated spot size of 1 µm, a 1200 grating, an 116 excitation radiation of 532 nm, and a laser power between 5 and 12.5 mW. Calibration was 117

done using the 520.7 cm⁻¹ line of a Si metal. In the OH-stretching region, there is a broad 118 asymmetric envelope with a maximum at 3462 cm⁻¹ that may be assigned to various stretches 119 of the H₂O group (Fig. 2). This envelope also has two sharp peaks at 3545 and 3628 cm⁻¹ that 120 may be assigned to the principal O-H stretch of OH groups. The small peaks between 2800 and 121 3000 cm⁻¹ are due to C-H stretching vibrations from the small amount of glue used to attach the 122 crystal to a glass fibre. In the lower frequency region, there is a strong envelope centered on 123 886 cm⁻¹ with maxima at 822, 862 and 935 cm⁻¹ that may be assigned to Si-O stretches, and 124 two sharp bands at 580 and 680 cm⁻¹ that may be assigned to various bending motions of the 125 silicate chain. The lower frequency bands below 480 cm⁻¹ are due to various coupled motions 126 (phonon modes) of the structure. 127

128

129 **Chemical composition**

For the chemical analysis, we used a relatively large platy crystal of kazanskyite with 130 dimensions 0.01 x 0.24 x 0.34 μ m. The chemical composition of kazanskyite was determined 131 with a Cameca SX-100 electron-microprobe in wavelength-dispersion mode with an 132 accelerating voltage of 15 kV, a specimen current of 10 nA, a beam size of 5 µm and count 133 times on peak and background of 2 and 10 s, respectively. The following standards were used: 134 Ba₂NaNb₅O₁₅ (Ba, Nb), SrTiO₃ (Sr) titanite (Ti), diopside (Si, Ca), and alusite (Al), fayalite (Fe), 135 spessartine (Mn), forsterite (Mg), orthoclase (K), albite (Na) and F-bearing riebeckite (F). Ta, Zr, 136 Zn, Mg and Cs were sought but not detected. Data were reduced using the PAP procedure of 137 Pouchou and Pichoir (1985). Under an electron beam, kazanskyite is extremely unstable. The 138 total of ~90 wt% was achieved only for the first point measured, this total being in full agreement 139 with the amount of H₂O calculated from structure refinement. For the next four points, the total 140 increased to ~95 wt%, indicating loss of H_2O . Moreover, attempts to analyze this grain again 141 resulted in much lower values for Na₂O, ~5-6 instead of ~9 wt% for points 1-5 from the first 142

analysis. We conclude that under the electron beam, kazanskyite first loses H_2O , and then Na 143 and K. To calculate the empirical formula of kazanskyite in accord with the structure results, we 144 used Na₂O and K₂O values from point 1. We did not have material sufficient for direct 145 determination of H₂O, but the presence of H₂O was confirmed by Raman spectroscopy (see 146 147 above). H_2O was calculated from the results of the crystal structure analysis on the basis of OH + F = 2 p.f.u. and $H_2O = 4$ p.f.u. (per formula unit). The chemical composition of kazanskyite is 148 given in Table 4. The empirical formula (based on 22 O + F atoms p.f.u.) is 149 $(Na_{2.55}Mn_{0.31}Ca_{0.11}Fe^{2+}{}_{0.03})_{\Sigma 3}(Ba_{0.70}Sr_{0.28}K_{0.21}Ca_{0.03})_{\Sigma 1.22}(Ti_{2.09}Nb_{0.63}Mn_{0.26}Al_{0.02})_{\Sigma 3}Si_{4.05}O_{21.42})_{\Sigma 3}(Si_{0.02}Si_{0.02})_{\Sigma 3}Si_{0.02}Si_{0.02})_{\Sigma 3}(Si_{0.02}Si_{0.02})_{\Sigma 3}(Si_{0.02})_{\Sigma 3}(Si_{0.02}Si_{0.02})_{\Sigma 3}(Si_{0.02}Si_{0.$ 150 $H_{9,45}F_{0.59}$, Z = 2. The structural formula of the form $A_2^P M_2^H M_2^O M_4^O (Si_2O_7)_2 X_4^O X_M^P X_A^P (H_2O)_n$ is 151 $(Ba_{0.56}Sr_{0.22}K_{0.15}Ca_{0.03}\Box_{0.04})_{\Sigma1}(\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06})_{\Sigma1}(Ti_{0.98}AI_{0.02})_{\Sigma1}(Nb_{0.63}Ti_{0.37})_{\Sigma1}$ 152 $(Na_{2.55}Mn_{0.31}Ca_{0.11}Fe^{2+}0.03)_{\Sigma 3}(Ti_{0.74}Mn_{0.26})_{\Sigma 1}(Si_{2}O_{7})_{2}O_{2}(OH_{1.41}F_{0.59})_{\Sigma 2}(H_{2}O)(\Box_{0.74}H_{2}O_{0.26})_{\Sigma 1}(H_{2}O)_{2.74}.$ 153 Simplified and ideal formulae are as follows: Ba(□,Ba)Ti(Nb,Ti)(Na,Mn)₃(Ti,Mn)(Si₂O₇)₂O₂ 154 $(OH,F)_2(H_2O)_4$ and Ba \Box TiNbNa₃Ti $(Si_2O_7)_2O_2(OH)_2(H_2O)_4$. 155 156 X-ray powder diffraction 157 The powder-diffraction pattern for kazanskyite was recorded using a Bruker D8 Discover 158 159 SuperSpeed micro-powder diffractometer with a Hi-Star multi-wire 2D detector at 15 cm from sample and a modified Gandolfi attachment. Table 5 shows the X-ray powder-diffraction data 160 (for CuKa, λ = 1.54178 Å; 50 kV / 60 mA, two 30-min frames merged) together with the refined 161

unit-cell dimensions; the latter are in close agreement with corresponding values determined by
 single-crystal diffraction (Table 6).

164

165 Crystal structure

166 X-ray data collection and structure refinement

All crystals of kazanskyite that we were able to find were twinned. X-ray diffraction data for the 167 crystal of kazanskyite were collected with a Bruker AXS SMART APEX diffractometer with a 168 CCD detector (MoKa radiation). The intensities of 13481 reflections with -6 < h < 6, -8 < k < 8, 169 -30 < I < 30 were collected to $50.05^{\circ} 2\theta$ using 0.1° frame and an integration time of 60 s. The 170 171 refined unit-cell parameters were obtained from 5118 reflections with $l > 10\sigma l$ (Tables 2, 6), and an empirical absorption correction (SADABS, Sheldrick, 2008) was applied. The crystal 172 structure of kazanskyite was tentatively solved in space group $P\overline{1}$ by direct methods using SIR 173 2004 (Burla et al., 2005), which supplied an incomplete model with 48 atoms and an *R*-value of 174 20.1 %. Testing the model with PLATON/twinlat (Spek, 2008) indicated that the crystal of 175 kazanskyite used for structure determination has two components related by the twin matrix (-1 176 0 0, 0 -1 0, 0 1 1). Twinlat was used to obtain an HKLF5 file and with the Bruker SHELXTL 177 Version 5.1 system of programs (Sheldrick, 2008), the structure model was refined to an R_1 178 value of 8.09%, the twin ratio being 0.525(3):0.475(3). According to Nespolo and Ferraris (2004) 179 kazanskyite shows twining by metric merohedry. Some of the Si-O and M^H-O distances 180 obtained from the refined structure were not realistic, and we constrained these to more realistic 181 values to obtain better interatomic distances at adjacent sites. Those constrained Si-O and M^H-182 O distances can be easily detected in the corresponding table as they have an estimated 183 standard deviation of 0.001 Å (non-constrained distances have higher estimated standard 184 deviations). Hence, we chose higher symmetry, space group $P\overline{1}$, to characterize the structure of 185 kazanskvite. Site-scattering values were refined for the $M^{\circ}(1)$ and $M^{H}(1,2)$ sites with the 186 scattering curve of Nb, $M^{\circ}(2)$ site (scattering curve of Na), $M^{\circ}(3,4)$ sites (scattering curve of Ca) 187 and $A^{P}(1,2)$ sites (scattering curve of Ba). For the $M^{O}(2)$ site, refinement converged to an integer 188 value and hence it was subsequently fixed at full occupancy. After refinement of cation 189 occupancies for the $M^{H}(1)$, $M^{O}(3,4)$ and $A^{P}(1,2)$ sites, they were adjusted in accord with the 190 chemical analysis and mean bond lengths, and fixed. For kazanskyite, we observed disorder for 191

192	the X_{A}^{P} and $W(1-7)$ sites, partly occupied by H ₂ O and separated by short distances (1.95-2.45
193	Å). We examined the possibility of H_2O order by refining the structure in lower symmetry.
194	Refinement in space group P1 converged to $R_1 \sim 7$ %, but the structure showed H ₂ O disorder
195	as in the space group $P\overline{1}$. Hence, we chose higher symmetry, space group $P\overline{1}$, to characterize
196	the structure of kazanskyite. Site occupancies for the X_A^P and $W(1-7)$ sites were refined with U_{iso}
197	fixed at 0.05 Å ² (analogous to U_{iso} of the X_{M}^{P} site fully occupied by H ₂ O), and then fixed. At the
198	last stages of the refinement, nine peaks with magnitudes from 1.2 to 3.8 $e/Å^3$ were found in the
199	difference-Fourier map, most of these peaks occurring in the vicinity of the $A^{P}(1,2)$ sites.
200	Occupancies for peaks A^{P} (1A-2B) and 1-3 were refined with the scattering curve of Ba and
201	$M^{H}(1A,1B)$ (Nb) with U _{iso} fixed at 0.02 Å ² . Refined occupancies of these subsidiary peaks vary
202	from 2 to 7 %. Scattering curves for neutral atoms were taken from International Tables for
203	Crystallography (Wilson, 1992). Details of data collection and structure refinement are given in
204	Table 6, final atom parameters are given in Table 7, selected interatomic distances in Table 8,
205	refined site-scattering values and assigned populations for selected cation sites are given in
206	Table 9, and bond valences in Table 10. Tables of structure factors and anisotropic
207	displacement parameters for several atoms have been deposited with the Principal Editor of
208	Mineralogical Magazine and are available from
209	www.minersoc.org/pages/e_journals/dep_mat.html.

211 Site-population assignment

Here we divide the cation sites (Table 7) into 3 groups: M^{O} sites of the O sheet, M^{H} and *Si* sites of the H sheet, and peripheral A^{P} sites; site labeling is in accord with Sokolova (2006). Consider first the Ti- and Nb-dominant sites. We assign cations to these sites based on our knowledge from previous work on Ti-disilicate minerals: (1) Ti- and Nb-dominant sites are always fully occupied; (2) Ti-dominant sites in the O sheet can have a significant content of Mn as in nechelyustovite (Cámara and Sokolova, 2009) and sobolevite,

Na₁₂Ca(NaCaMn)Ti₂(TiMn)(Si₂O₇)₂(PO₄)₄O₃F₃ (Sokolova et al., 2005). Table 4 shows that the 218 $2M^{H}$ and $1M^{O}$ sites are occupied by 2.09 Ti, 0.63 Nb, 0.26 Mn²⁺ and 0.02 Al (78.57 e.p.f.u.), and 219 the aggregate refined scattering at these sites (75.5 e.p.f.u., Table 9) is in close accord with this 220 composition. The refined site-scattering value at the $M^{H}(2)$ site is significantly higher, 32.2 221 e.p.f.u., than that at $M^{O}(1)$ and $M^{H}(1)$ sites, <21.7> e.p.f.u., indicating that the heavier atoms, 222 particularly Nb⁵⁺, must be assigned to the $M^{H}(2)$ site. In accord with our knowledge (see above), 223 we assign all Mn [r = 0.83 Å, Shannon (1976)] to the $M^{\circ}(1)$ site: 0.74 Ti + 0.26 Mn (cf. 0.67 Ti + 224 0.33 Mn in nechelyustovite). We assign Ti with minor AI to the $M^{H}(1)$ site which gives a good 225 match between observed and calculated bond-lengths (Table 9). 226 Consider next the alkali-cation sites in the O sheet, $M^{\circ}(2)-M^{\circ}(4)$. Table 4 gives 2.55 Na 227 + 0.31 Mn + 0.11 Ca + 0.03 Fe^{2+} = 3 a.p.f.u. with a total scattering of 38.78 e.p.f.u. Site 228 scattering for the alkali sites varies from 11 to 14 e.p.f.u. and the total scattering equals 39 229 e.p.f.u. This tells us that Na is the dominant cation species at all sites. The $M^{O}(2)$ site has a 230 mean bond-length of 2.45 Å, whereas the $M^{\circ}(3,4)$ sites have significantly shorter mean bond-231 lengths, 2.33 and 2.29 Å, indicating that the larger Na must be assigned to the $M^{\circ}(2)$ site, and 232 Na plus smaller cations, Mn, Ca and Fe²⁺, must be assigned to the $M^{O}(3,4)$ sites. This 233 suggestion is supported by individual site-scattering values. As the $M^{\circ}(3)$ site has a longer 234 mean bond-length, 2.33 Å, and the $M^{\circ}(4)$ site has a shorter mean bond-length, 2.29 Å, we 235 assign all Ca (r = 1.0 Å) to the $M^{\circ}(3)$ site and more Mn to the $M^{\circ}(4)$ site (r = 0.83 Å) (Table 9). 236 The occurrence of both Na and Mn²⁺ at one site is fairly common in Ti-disilicate minerals; it has 237 been previously described for vuonnemite (Ercit *et al.*, 1998), guadruphite, Na₁₄Ca₂Ti₄(Si₂O₇)₂ 238 $(PO_4)_4O_4F_2$ (Sokolova and Hawthorne, 2001), polyphite, Na₁₀(Na₄Ca₂)₂Ti₄(Si₂O₇)₂(PO₄)₆O₄F₄ 239 (Sokolova et al., 2005), bornemanite (Cámara and Sokolova, 2007) and nechelyustovite 240 (Cámara and Sokolova, 2009). 241 Consider last the peripheral $A^{P}(1,2)$ sites, with refined site-scattering values of 42.9 and 242

11.2 e.p.f.u., respectively (Table 9). The cations to be assigned to these sites are Ba, Sr, K and

244	Ca, with a total scattering 53.83 e.p.f.u. (Table 4). Although the refined site-scattering at the
245	$A^{P}(2)$ site is low, 11.2 e.p.f.u., we cannot consider it partly occupied only by a low scattering
246	species, i.e., K (19 el.) as 0.21 K a.p.f.u. (available from chemical analysis) corresponds to a
247	scattering of only ~4 e.p.f.u. Thus we distribute Ba, Sr, K and Ca between the $A^{P}(1)$ and $A^{P}(2)$
248	sites in the ratio 4:1 in accord with the refined site-scattering. Therefore at the $A^{P}(1)$ and $A^{P}(2)$
249	sites, Ba and vacancy are dominant species, respectively (Table 9).
250	
251	
252	
253	Description of the structure
254	Site nomenclature
255	As stated above, the cation sites are divided into 3 groups: M° sites of the O sheet, M^{H} and Si
256	sites of the H sheet, and peripheral A^{P} sites. Also in accord with Sokolova (2006), we label the X
257	anions: $2X_{M}^{O}$ = common vertices of $3M_{M}^{O}$ and M_{M}^{H} polyhedra; $2X_{A}^{O}$ = common vertices of $3M_{M}^{O}$ and
258	A^{P} polyhedra (where $A^{P}-X^{O}_{A} < 3$ Å); $2X^{P} = X^{P}_{M}$ and $X^{P}_{A} =$ apical anions of M^{H} and A^{P} cations at
259	the periphery of the TS block.
260	
261	Cation sites
262	In the crystal structure of kazanskyite, there is one TS block composed of $H_1 \ O \ H_2$ sheets. We
263	will describe cation sites of the O sheet, H sheets and peripheral A^{P} sites.
264	
265	Osheet
266	There are four cation sites in the O sheet: the Ti-dominant $M^{O}(1)$ site and the alkali-
267	cation M° (2-4) sites (Fig. 3a). The M° (1) site is occupied by 0.74 Ti and 0.26 Mn, and is
268	coordinated by four O atoms and two monovalent X ^O _A anions (see section on Anion sites
269	below) with a $$ distance of 2.00 Å (ϕ = unspecified anion) (Tables 7, 8, 9). The

270	$M^{O}(2)$ site is occupied by Na (Table 9) and is coordinated by six O atoms, with a
271	$<$ M ^O (2)–O> distance of 2.45 Å. The $M^{O}(3)$ and $M^{O}(4)$ sites are occupied ~80% by Na and
272	20% by M^{2+} (= Mn, Ca and Fe ²⁺) (Table 9); they are coordinated by four O atoms and
273	two X^{O}_{A} anions, with $\langle M^{O}(3)-\phi \rangle$ and $\langle M^{O}(4)-\phi \rangle$ distances of 2.33 and 2.29 Å,
274	respectively. For the O sheet, the total of the $4M^{O}$ cations is [(Na _{2.55} Mn _{0.31} Ca _{0.11} Fe ²⁺ _{0.03})
275	$(Ti_{0.74}Mn_{0.26})]_{\Sigma4}$, with simplified and ideal compositions (Na,Mn) ₃ (Ti,Mn) and Na ₃ Ti
276	a.p.f.u., respectively.
277	
278	
279	H sheets
280	In the H_1 and H_2 sheets, there are four tetrahedrally coordinated sites occupied by Si with
281	a <si–o> distance of 1.62 Å (Table 8, Fig. 3b, c). There are two M^{H} sites that occur in</si–o>
282	different H sheets of the TS block. In the H ₁ sheet (Fig. 3b), the [5]-coordinated $M^{H}(1)$
283	site is occupied mainly by Ti (Table 9) and is coordinated by five O atoms, with a
284	$M^{H}(1)$ –O> distance of 1.93 Å; the very short $M^{H}(1)$ – $X^{O}_{M}(1)$ distance of 1.667 Å (Table
285	8) is in accord with the structure topology of Group-III minerals (Sokolova, 2006, Fig.
286	31). In the H ₂ sheet (Fig. 3c), the [6]-coordinated Nb-dominant $M^{H}(2)$ site is coordinated
287	by five O atoms and an H ₂ O group with a $< M^{H}(2)-\phi >$ distance of 1.99 Å (Table 8). The
288	H_2O group is the X^P_{M} anion in the terminology of Sokolova (2006). The shortest $M^H(2)$ -
289	$X^{O}_{M}(2)$ distance is 1.824 Å and the longest $M^{H}(2)-X^{P}_{M}$ distance is 2.240 Å, from the $M^{H}(2)$
290	site to an H_2O group. For the H_1 and H_2 sheets, the total of M^H_2 cations is
291	$[(Ti_{0.98}AI_{0.02})(Nb_{0.63}Ti_{0.37})]_{\Sigma 2}$, with simplified and ideal composition Ti(Nb,Ti) and TiNb
292	a.p.f.u., respectively.
293	
294	Peripheral A ^P sites

In kazanskyite, there are two A^{P} sites. The [10]-coordinated $A^{P}(1)$ site is occupied by 295 $Ba_{0.56}Sr_{0.22}K_{0.15}Ca_{0.03}\Box_{0.04}$ p.f.u. and is coordinated by O atoms, with $\langle A^{P}(1)-O \rangle = 2.83$ 296 Å. The [7]-coordinated $A^{P}(2)$ site is occupied by $\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06}$ p.f.u. (Table 9) and 297 is coordinated by six O atoms and one H₂O group $[X_{A}^{P}]$ anion in the terminology of 298 Sokolova (2006)], with $\langle A^{P}(2)-\phi \rangle = 2.80$ Å. At the $A^{P}(1)$ and $A^{P}(2)$ sites, the dominant 299 species are Ba^{2+} and \Box , respectively, and we write the ideal composition of these sites 300 as Ba a.p.f.u. and p.f.u. To summarize, simplified and ideal compositions of two 301 peripheral sites are $Ba(\Box, Ba)$ and $Ba\Box$ p.f.u., respectively. 302

We write the cation part of the ideal structural formula as the sum of (1) the peripheral sites + (2) two H sheets + (3) O sheet: (1) $Ba\Box$ + (2) TiNb + (3) Na_3Ti = $Ba\Box TiNbNa_3Ti$ with a total charge of 18^+ .

306

307 Anion sites

There are 14 anion sites, O(1-14), occupied by O atoms which form the tetrahedral coordination 308 of the Si atoms (Tables 7, 8, 10). There are two sites, $X^{O}_{M}(1,2)$, which are common anions for 309 the M^H polyhedra and three octahedra of the O sheet (Table 5). These anions receive bond 310 valences of 2.19 and 1.86 v.u., respectively, (Table 10) and hence are O atoms (Table 7). There 311 are two $X^{O}_{A}(1,2)$ sites that are common anions for three octahedra of the O sheet and occur just 312 below the A^P cation. They receive bond valences of 1.23 and 1.08 v.u., respectively (Table 10), 313 and hence are monovalent anions (Table 7). The chemical analysis gives F 0.59 a.p.f.u. and we 314 need 2 –0.59 = 1.41 OH p.f.u. to fill these two sites (Table 4). Therefore, we assign $OH_{1.41}F_{0.59}$ 315 to the two $X^{O}_{A}(1,2)$ sites. Ideally, the two X^{O}_{A} sites give $(OH)_{2}$ p.f.u. There are two X^{P} anions. 316 The X_{M}^{P} is an apical anion for the M^H(2) cation (Tables 8, 9); it receives bond valence of 0.40 317 v.u. (Table 10) and is an H₂O group. The X_A^P anion site coordinates the A^P (2) site which is 318 occupied by Ba, Sr and K at 26% (Tables 8, 9) and the X^{P}_{A} site is occupied by an anion species 319 at 26% (Table 7). The X_{A}^{P} anion receives bond valence of 0.09 v.u. (Table 10) and it is an H₂O 320

group, giving $[\Box_{0.74}(H_2O)_{0.26}]$ p.f.u. There are H₂O groups at the seven W(1-7) sites, that are not 321 bonded to any cation. The W(1-7) sites are partly occupied (Table 7) and give $(H_2O)_{2.74}$ p.f.u. 322 To conclude, we write the anion part of the ideal structural formula as the sum of the 323 anion sites: O_{14} (O atoms of Si₄ tetrahedra) + $O_2 [X^{O}_{M}(1,2)] + (OH)_2 [X^{O}_{A}(1,2)] + (H_2O)_4 [(X^{P}_{M} +$ 324 $X_{A}^{P} + W(1-7)$]. We consider an (Si₂O₇) group as a complex oxyanion and write the anion part of 325 the ideal structural formula as $(Si_2O_7)_2O_2(OH)_2(H_2O)_4$ with a total charge of 18⁻. 326 Based on the SREF results and bond-valence calculations, we write the ideal structural 327

formula of kazanskyite as the sum of the cation and anion components: BaDTiNbNa₃Ti 328 $(Si_2O_7)_2O_2(OH)_2$ (H₂O)₄, sp. gr. $P\overline{1}$, Z = 2. The validity of the ideal formula is supported by the 329

good agreement between the total charges for cations in the ideal and empirical formulae: 5⁺ 330

<u>.</u>.

331 [for Ba
$$\Box$$
Na₃] +13' [Ti₂Nb] = 18' versus 5.66' [(Ba_{0.70}Sr_{0.28}K_{0.21}Ca_{0.03} \Box _{0.78}) +

332
$$(Na_{2.55}Mn^{2+}_{0.31}Ca_{0.11}Fe^{2+}_{0.03})] + 12.09^{+} [(Ti_{2.09}Nb_{0.63}Mn^{2+}_{0.26}Al_{0.02})] = 17.75^{+}.$$

333

Structure topology 334

The TS block 335

In the Ti-disilicate minerals (Sokolova, 2006), the TS block consists of HOH sheets where H is a 336 heteropolyhedral sheet including (Si₂O₇) groups, and O is a trioctahedral close-packed sheet. In 337 kazanskyite, there is one unique TS block which consists of H₁ O H₂ sheets (Fig. 3). The O 338 sheet comprises M⁰(1-4) octahedra (Fig. 3a). There are two distinct H sheets in kazanskyite. In 339 the H₁ sheet, (Si_2O_7) groups and [5]-coordinated Ti-dominant M^H(1) polyhedra share common 340 vertices to form the sheet (Fig. 3b). In the H_2 sheet, (Si₂O₇) groups share common vertices with 341 Nb-dominant M^H(2) octahedra (Fig. 3c). The topology of the two H sheets is identical except for 342 the coordination of the M^{H} sites. In the H₁ and H₂ sheets, the peripheral A^{P} sites are occupied by 343 [10]-coordinated Ba and [7]-coordinated (\Box ,Ba), respectively [see discussion of the (I) block 344 below]. The H and O sheets link *via* common vertices of M^H, Si and M^O polyhedra to form the TS 345 block which is parallel to (001) (Fig.3d). In kazanskyite, the TS block exhibits linkage 1 and a 346

stereochemistry typical of Group III (Sokolova, 2006): (Si₂O₇) groups of two H sheets link to the
 trans edges of the Ti octahedron of the O sheet.

349

350 The I blocks

In kazanskyite, the TS blocks alternate with intermediate (I) blocks, I_1 and I_2 . An I block is always intercalated between two TS blocks, and cations of the I block form close-packed I layers parallel to the TS block, where m = number of those layers (Sokolova, 2006).

A layer of Ba atoms $[A^{P}(1)]$ sites] forms the I_{1} block between adjacent TS blocks (Fig. 4a). In the I_{1} block, Ba atoms are arranged in a close-packed fashion where each atom is surrounded by six others at approximately equal distances of 5 Å. The composition of the I_{1} block is $A^{P}(1)_{2}$ or ideally Ba₂ (= Ba a.p.f.u.).

The I_2 block is composed mainly of H_2O groups and two I layers (m = 2) of cations 358 (mainly Ba) at the 26% occupied $A^{P}(2)$ sites (Fig. 4b). The two I layers of $A^{P}(2)$ atoms are 359 parallel to (001) and are related by an inversion centre. There are two types of H₂O groups in 360 the I_2 block, bonded and non-bonded to cations. H_2O groups at the X_M^P and X_A^P sites are 361 ligands of M^H(2) and A^P(2) cations. The X^{P}_{M} and X^{P}_{A} sites are occupied at 100 and 26%, 362 363 respectively, giving $(H_2O)_{2.52}$ [= $(H_2O)_{1.26}$ p.f.u., ideally (H_2O) p.f.u.]. H_2O groups at the W(1-7)sites (Table 7, Fig. 4b) are not bonded to any cation; they occur in the intermediate space 364 between two TS blocks and give in total $(H_2O)_{5.48}$ [= $(H_2O)_{2.74}$ p.f.u.]. We write the composition of 365 the I₂ block as the sum of two $A^{P}(2)$ sites, the X^{P}_{M} and X^{P}_{A} sites, and seven W sites: 366 $(\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06})_2 + (H_2O)_{2.52} + (H_2O)_{5.48} = (\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06})_2(H_2O)_8$ which corresponds 367 to $(\Box_{0.74}Ba_{0.14}Sr_{0.06}K_{0.06})(H_2O)_4$ p.f.u., with simplified and ideal compositions of $(\Box,Ba)(H_2O)_4$ and 368 \Box (H₂O)₄ p.f.u., respectively. 369

370

371 Hydrogen bonding

372	There is extensive cation and anion disorder in the I_2 block of kazanskyite. The $A^P(2)$ site is 26%
373	occupied mainly by Ba; the X_{A}^{P} and $W(1-7)$ sites are partly, 25-71%, occupied by H ₂ O (Table 7).
374	There is a short distance of 2.04 Å between the $A^{P}(2)$ site and the $W(6)$ site, hence the $W(6)$ site
375	can be occupied by H ₂ O where the $A^{P}(2)$ site is vacant (and vice versa). Table 11 reports O–O
376	distances less than 3.2 Å between O atoms of H ₂ O groups that occupy X_{M}^{P} , X_{A}^{P} and $W(1-7)$
377	sites; short (less than 2.5 Å) distances between partly occupied W sites are given in brackets.
378	However, inspection of Table 11 gives O–O distances from 2.50 to 3.20 Å and these distances
379	are suitable for hydrogen bonds (Fig. 4b).
380	
381	The general structure
382	The crystal structure of kazanskyite (Fig. 5a) consists of TS and I blocks alternating along c .
383	There are two symmetrically equivalent TS blocks and two distinct I blocks, I_1 and I_2 , per c unit-
384	cell parameter. The ${\bf I}_1$ block has two adjacent ${\bf H}_1$ sheets, and the ${\bf I}_2$ block has two adjacent ${\bf H}_2$
385	sheets.
386	
387	The ideal structural formula of kazanskyite

388 Above, we wrote simplified and ideal formulae of kazanskyite based on the occupancies of the cation and anion sites. Here, we write the ideal structural formula of kazanskyite in accord with 389 Sokolova (2006); we use a modified formula of the TS block of Group-III minerals: 390 $A^{P}_{2}B^{P}_{2}M^{H}_{2}M^{O}_{4}(Si_{2}O_{7})_{2}X^{O}_{4}X^{P}_{M}X^{P}_{A}$, where A^{P} and B^{P} are cations at the peripheral (*P*) sites; M^{H} 391 and M^{O} are cations of the H and O sheets; X^{O} are anions of the O sheet; X^{P}_{M} and X^{P}_{A} are apical 392 anions of the M^H and A^P cations at the periphery of the TS block. In kazanskyite, $A_2^P = A^P(1) + A_2^P$ 393 $A^{P}(2) = Ba + \Box = Ba\Box; B^{P}_{2} = 0; M^{H}_{2} = M^{H}(2) + M^{H}(1) = TiNb; M^{O}_{4} = Na_{3}Ti; X^{O}_{4} = O_{2}(OH)_{2}; X^{P}_{M} + O_{2}(OH)_{2}$ 394 X_{A}^{P} = (H₂O) + \Box = (H₂O). Hence, we write the ideal composition of the TS block as follows: 395 ^{A^P}[Ba \Box] ^{M^H}[TiNb] ^{M^O}[Na₃Ti](Si₂O₇)₂ ^{X^O}[O₂(OH)₂] ^{X^P}_M[H₂O] ^{X^P}_A[\Box] = 396

Ba \Box TiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O), Z = 2.

There are two I blocks in kazanskyite. The I_1 block comprises the $A^P(1)$ atoms, which have been already counted in the formula of the TS block. The I_2 block includes the $A^P(2)$ atoms and the $X^P_M + X^P_A$ anions, which have been already counted in the formula of the TS block; and (H₂O) groups at the *W*(1-7) sites, ideally (H₂O)₃ p.f.u.

We sum the TS block and an H₂O component [W(1-7)] of the I₂ block to write the ideal structural formula for kazanskyite: Ba \Box TiNbNa₃Ti(Si₂O₇)₂O₂(OH)₂(H₂O)₄, with Z = 2.

404

406

405 **Related minerals**

407 cámaraite, ideally Ba₃NaTi₄(Fe²⁺,Mn)₈(Si₂O₇)₄O₄(OH,F)₇ (Cámara *et al.*, 2009) and

Kazanskyite is the fourth Ti-disilicate mineral [after bornemanite (Cámara and Sokolova, 2007),

nechelyustovite (Cámara and Sokolova, 2009)] and the third Group-III mineral (after

409 bornemanite and nechelyustovite) with two different types of I block. Kazanskyite is closely

related to nechelyustovite (Fig. 5b). Both minerals contain two I blocks of the same topology and

411 composition (Figs. 5a, b): an I_1 block which is a distorted layer of Ba atoms and an I_2 block

which contains H₂O groups and A^{P} sites which are ~25% occupied by Ba. The chemical

413 compositions of both M^{H} and A^{P} sites of the I blocks are identical in kazanskyite and

nechelyustovite. An I block which is a distorted layer of Ba atoms occurs also in bornemanite.

Nevertheless, nechelyustovite has two different TS-blocks (TS₁ and TS₂; Fig. 5b) while only one

is present in kazanskyite and bornemanite. In addition, in nechelyustovite two TS₂-blocks link

directly without an intermediate block like TS-blocks link in epistolite (Sokolova and Hawthorne,

418

419

420 Acknowledgements

2004).

421 We thank Luca Bindi and one anonymous reviewer, Associate Editor Giancarlo Della Ventura 422 and Joint Principal Editor Peter Williams for useful comments. We are very grateful to Renato

and Adriana Pagano, Milan, Italy, who provided a sample of nechelyustovite from their mineral
collection (Collezione Mineralogica, sample #10161), in which sample kazanskyite was
discovered. FCH was supported by a Canada Research Chair in Crystallography and
Mineralogy, by Discovery and Major Installation grants from the Natural Sciences and
Engineering Research Council of Canada, and by Innovation Grants from the Canada
Foundation for Innovation.

References

431	Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (1995) Handbook of Mineralogy.
432	Silica, Silicates. Mineral Data Publishing, Tucson, Arizona, 2(1), 46, 355.
433	Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and
434	bonding. Pp. 1-30 in: Structure and Bonding in Crystals II (M. O'Keeffe and A.
435	Navrotsky, editors). Academic Press, New York.
436	Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L.,
437	Giacovazzo, C., Polidoria, G. and Spagna, R. (2005) SIR2004: an improved tool for
438	crystal structure determination and refinement. Journal of Applied Crystallography, 38,
439	381-388.
440	Cámara, F. and Sokolova, E. (2007) From structure topology to chemical composition. VI.
441	Titanium silicates: the crystal structure and crystal chemistry of bornemanite, a group-III
442	Ti-disilicate mineral. <i>Mineralogical Magazine</i> , 71 , 593-610.
443	Cámara, F. and Sokolova, E. (2009) From structure topology to chemical composition. X.
444	Titanium silicates: the crystal structure and crystal chemistry of nechelyustovite, a group
445	III Ti-disilicate mineral. Mineralogical Magazine, 73, 887-897.
446	Cámara, F., Sokolova, E. and Nieto, F. (2009) Cámaraite, $Ba_3NaTi_4(Fe^{2+},Mn)_8(Si_2O_7)_4O_4$
447	(OH,F)7. II. The crystal structure and crystal chemistry of a new group-II Ti-disilicate
448	mineral. <i>Mineralogical Magazine</i> , 73 , 855-870.
449	Dudkin, O.B. (1959) On barium lamprophyllite. Zapiski Vsesoyuznogo Mineralogicheskogo
450	<i>Obshchestva</i> , 88 (6), 713-715 (in Russian).
451	Ercit, T.S., Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of vuonnemite,
452	$Na_{11}Ti^{4+}Nb_2(Si_2O_7)_2(PO_4)_2O_3(F,OH)$, a phosphate-bearing sorosilicate of the
453	lomonosovite group. <i>Canadian Mineralogist</i> , 36 , 1311-1320.

454	Ferraris, G., Belluso, E., Gula, A., Soboleva, S.V., Ageeva, O.A. and Borutskii, B.E. (2001) A
455	structural model of the layer titanosilicate bornemanite based on siedozerite and
456	lomonosovite modules. Canadian Mineralogist, 39 , 1665-1673.
457	Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya. A. and Men'shikov,
458	Yu. P. (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the
459	Lovozero alkaline massif, Kola peninsula, Russia. European Journal of Mineralogy, 15,
460	711-718.
461	Men'shikov, Yu.P., Bussen, I.V., Goiko, E.A., Zabavnikova, N.I., Mer'kov, A.N. and Khomyakov,
462	A.P. (1975) Bornemanite - a new silicophosphate of sodium, titanium, niobium and
463	barium. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 104 (3), 322-326 (in
464	Russian).
465	Nèmeth, P., Khomyakov, A.P., Ferraris, G. and Menshikov, Yu.P. (2009) Nechelyustovite, a
466	new heterophyllosilicate mineral, and new data on bykovaite: a comparative TEM study.
467	European Journal of Mineralogy, 21 , 251-260.
468	Nespolo, M. and Ferraris, G. (2004) Applied geminography - Symmetry analysis of twinned
469	crystals and definition of twinning by reticular polyholohedry. Acta Crystallographica,
470	A60 , 89-95.
471	Pouchou, J.L. and Pichoir, F. (1985) 'PAP' $\phi(\rho Z)$ procedure for improved quantitative
472	microanalysis. Pp. 104-106 in: <i>Microbeam Analysis</i> (J.T. Armstrong, editor). San
473	Francisco Press, San Francisco, California, USA.
474	Rastsvetaeva, R.K. and Chukanov, N.V. (1999) Crystal structure of a new high-barium analogue
475	of lamprophyllite with a primitive unit cell. Doklady Chemistry, 368 (4-6), 228-231.
476	Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic
477	distances in halides and chalcogenides. Acta Crystallographica, A32, 751-767.
478	Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.

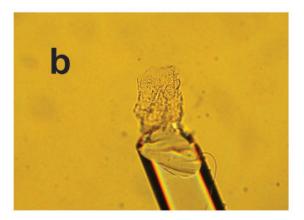
- Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy
 and stereochemistry in titanium disilicate minerals. *Canadian Mineralogist*, 44, 1273 1330.
- 482 Sokolova, E. and Cámara, F. (2008) From structure topology to chemical composition. III.
- 483 Titanium silicates: crystal chemistry of barytolamprophyllite. *Canadian Mineralogist*, **46**,
 484 403-412.
- Sokolova, E. and Hawthorne, F.C. (2001) The crystal chemistry of the [M₃O₁₁₋₁₄] trimeric
 structures: from hyperagpaitic complexes to saline lakes. *Canadian Mineralogist*, **39**,
 1275-1294.
- 488 Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. *Canadian*
- 489 *Mineralogist*, **42**, 797-806.
- Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. IV.
- Titanium silicates: the orthorhombic polytype of nabalamprophyllite from Lovozero
- 492 massif, Kola Peninsula, Russia. *Canadian Mineralogist*, **46**, 1469-1477.
- Sokolova, E., Hawthorne, F.C. and Khomyakov, A.P. (2005) Polyphite and sobolevite: revision
 of their crystal structures. *Canadian Mineralogist*, **43**, 1527-1544.
- Sokolova, E., Cámara, F. and Hawthorne, F.C. (2011) From structure topology to chemical
- 496 composition. XI. Titanium silicates: crystal structures of innelite-1*T* and innelite-2*M* from
- ⁴⁹⁷ Inagli massif, Yakutia, Russia, and the crystal chemistry of innelite. *Mineralogical*
- 498 *Magazine*, **75**, 2495-2518.
- Spek, A.L. (2008) PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht,
 The Netherlands.
- Wilson, A.J.C. (editor) (1992) International Tables for Crystallography. Volume C: Mathematical,
 physical and chemical tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.

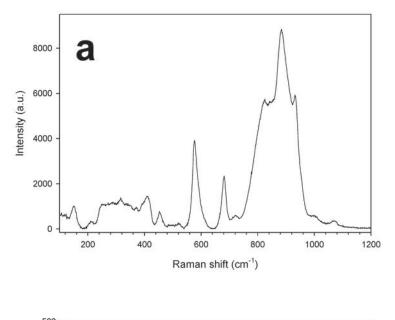
Figure captions

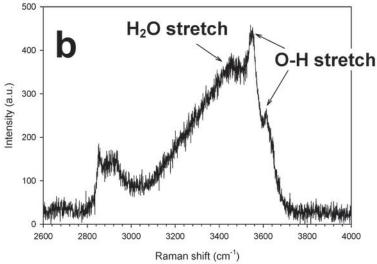
505

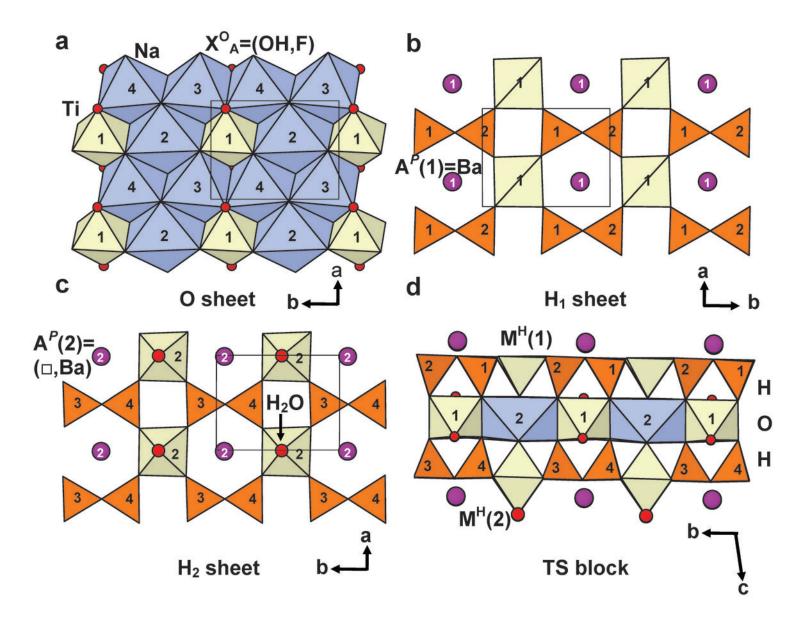
Fig. 1. The crystal of kazanskyite used for measuring optics (~0.015 x 0.090 x 0.175 mm) on a glass fibre in oil, note the platy nature (a) and irregular surface of the crystal (b).

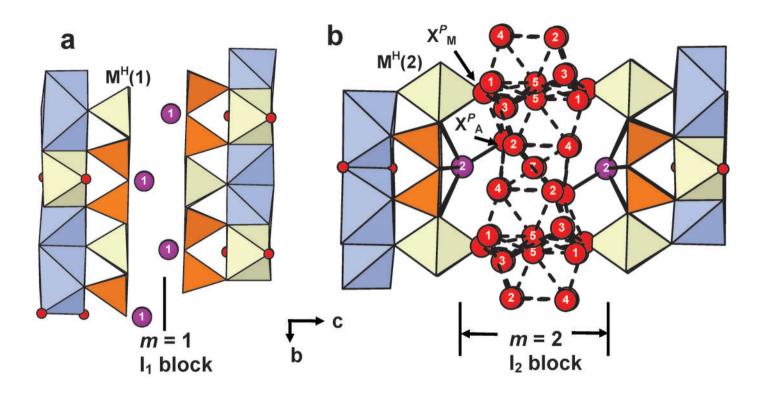
508

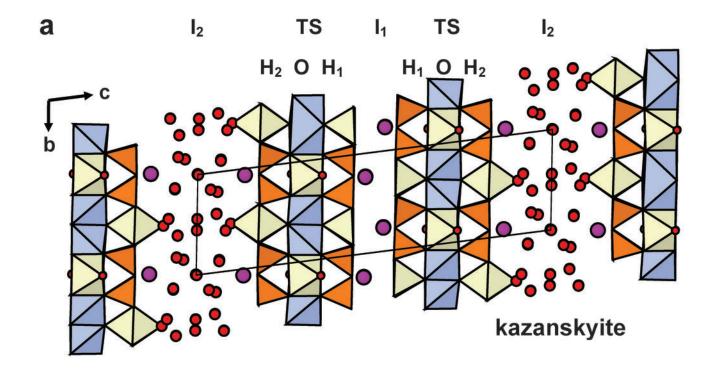

Fig. 2. Raman spectra of kazanskyite in the fingerprint region (a) and the O-H stretching region
(b), obtained with 532 nm laser excitation.

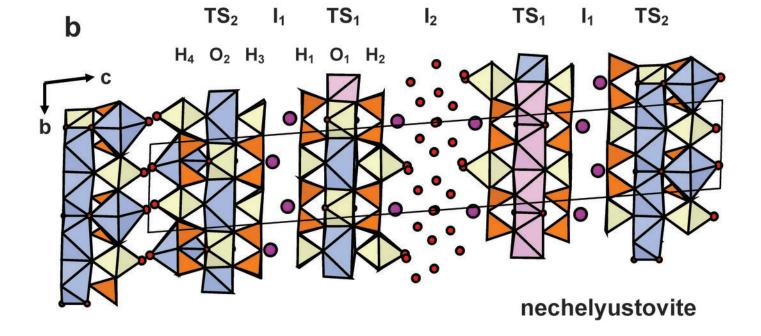

511


Fig. 3. The details of the TS block in the crystal structure of kazanskyite: the close-packed 512 octahedral (O) sheet (a); the heteropolyhedral (H) sheets H_1 (b) and H_2 (c); the TS block (d) 513 viewed down [100]; (SiO₄) tetrahedra are orange, Ti⁴⁺- and Nb⁵⁺-dominant polyhedra are yellow, 514 Na-dominant octahedra are blue, atoms at the A^{P} sites are shown as raspberry spheres which 515 are labeled 1 and 2 and correspond to $A^{P}(1)$ and $A^{P}(2)$ atoms; monovalent X^{O}_{A} anions and H₂O 516 groups are shown as small and large red spheres; in (a), labels 1-4 correspond to M⁰(1-4). 517 respectively; in (b) and (c), labels 1-4 (on orange) correspond to Si(1-4) tetrahedra, respectively, 518 and labels 1 and 2 (on yellow) correspond to $M^{H}(1)$ and $M^{H}(2)$ polyhedra, respectively. 519 520 Fig. 4. Details of linkage of TS blocks in the crystal structure of kazanskyite: the intermediate (I) 521 blocks I_1 (a) and I_2 (b). Legend as in Fig. 3, m = number of cation layers in the I block, solid 522 black lines show the positions of the m layers; bonds from the $A^{P}(2)$ atom to coordinating anions 523 are shown as black lines; in (b), H₂O groups coordinating $M^{H}(2)$ and $A^{P}(2)$ atoms are labeled 524 X_{M}^{P} and X_{A}^{P} , respectively, and H₂O groups at the W(1)-W(7) sites which do not coordinate 525 cations are labeled 1-7, respectively. Distances in the range 2.5-3.2 Å between H₂O groups are 526 shown as black dashed lines and they are possible directions for hydrogen bonds. 527 528


- 529 Fig. 5. The crystal structures of: kazanskyite projected onto (100) (a) and nechelyustovite
- projected onto (100) (b). Legend as in Fig. 3, Mn²⁺ dominant octahedra are pink.







				ld	leal structural form	ula			a (Å)	b (Å)	c (Å)		-	<u> </u>
Mineral		A^{P}_{2}	B^{P}_{2}	M_{2}^{H}	M ^O ₄	$(Si_2O_7)_2$		X ⁰ ₄	α (°)	β (°)	γ (°)	Sp. gr.	Ζ	Ref.
lamprophyllite-2M		(SrNa)		Ti ₂	Na₃Ti	(Si ₂ O ₇) ₂		O ₂ (OH) ₂	19.215 90	7.061 96.797	5.3719 90	C2/m	2	(1)
lamprophyllite-20		(SrNa)		Ti ₂	Na₃Ti	(Si ₂ O ₇) ₂		O ₂ (OH) ₂	19.128 90	7.0799 90	5.3824 90	Pnmn	2	(1)
nabalamprophyllite-2M	1	BaNa		Ti ₂	Na₃Ti	(Si ₂ O ₇) ₂		O ₂ (OH) ₂	19.741 90	7.105 96.67	5.408 90	P2/m	2	(2)
nabalamprophyllite-20		(BaNa)		Ti ₂	Na₃Ti	(Si ₂ O ₇) ₂		O ₂ (OH) ₂	19.564 90	7.1173 90	5.414 90	Pnmn	2	(3)
barytolamprophyllite		(BaK)		Ti ₂	Na₃Ti	(Si ₂ O ₇) ₂		O ₂ (OH) ₂	19.8971 90	7.1165 96.676	5.4108 90	C2/m	2	(4)
innelite-1 <i>T</i>		Ba ₂	Ba₂	Ti ₂	Na₂M ²⁺ Ti	(Si ₂ O ₇) ₂	[(SO ₄)(PO ₄)]	O ₂ [O(OH)]	5.4234 98.442	7.131 94.579	14.785 90.009	<i>P</i> 1	1	(5)
innelite-2M		Ba ₂	Ba₂	Ti ₂	Na₂M²⁺Ti	(Si ₂ O ₇) ₂	[(SO ₄)(PO ₄)]	O ₂ [O(OH)]	5.4206 90	7.125 94.698	29.314 90	P2/c	2	(5)
epistolite		(Na⊡)		Nb ₂	Na₃Ti	(Si ₂ O ₇) ₂		O₂(OH) ₂ (H ₂ O) ₄	5.460 103.63	7.170 96.01	12.041 89.98	<i>P</i> 1	1	(6)
vuonnemite	Na ₆	Na ₂		Nb ₂	Na₃Ti	(Si ₂ O ₇) ₂	(PO ₄) ₂	O ₂ (OF)	5.4984 92.60	7.161 95.30	14.450 90.60	<i>P</i> 1	1	(7)
bornemanite	Na₃	Ва		TiNb	Na₃Ti	(Si ₂ O ₇) ₂	(PO ₄)	O ₂ (OH)F	5.4587 96.790	7.1421 96.927	24.528 90.326	<i>P</i> 1	2	(8)
kazanskyite		Ba□		TiNb	Na₃Ti	(Si ₂ O ₇) ₂		O₂(OH) ₂ (H ₂ O) ₄	5.4260 98.172	7.135 90.916	25.514 89.964	<i>P</i> 1	2	(9)
nechelyustovite		Ba₂□ _{1.5} Na _{0.5}		Ti₃ Nb	(Na₃₅Mn₁₅⊡)Ti₂	(Si ₂ O ₇) ₄		O ₄ (OH) ₃ F (H ₂ O) ₆	5.4468 92.759	7.157 92.136	47.259 89.978	<i>P</i> 1	2	(10)

* For lamprophyllite, nabalamprophyllite and barytolamprophyllite, formulae are from Sokolova (2006). The invariant core of the TS block, $\mathbf{M_2^H} \mathbf{M_4^O}(\mathbf{Si_2O_7})_2 \mathbf{X_4^O}$, is shown in bold: $\mathbf{M^H} =$ cations of the H sheet; $\mathbf{M^O} =$ cations of the O sheet; $\mathbf{X_4^O} =$ anions shared between O and H sheets; $\mathbf{M^{2+}} = \mathbf{Mn}$, $\mathbf{Fe^{2+}}$, Mg, Ca.

References[†]: (1) Krivovichev *et al.* (2003); (2) Rastsvetaeva and Chukanov (1999); (3) Sokolova and Hawthorne (2008); (4) Sokolova and Cámara (2008); (5) Sokolova *et al.* (2011); (6) Sokolova and Hawthorne (2004); (7) Ercit *et al.* (1998); (8) Cámara and Sokolova (2007); (9) this work; (10) Cámara and Sokolova (2009).

[†] The latest reference on the structure.

Table 2. Comparison of kazanskyite, barytolamprophyllite, nechelyustovite and bornemanite.

	kazanskyite	barytolamprophyllite		nechelyustovit	bornemanite			
Reference		(1, 4, 8)*		(7)	(3)	(6)	(2)	
Formula	Ba⊟TiNbNa₃Ti(Si₂O7)₂O2(OH)2(H2O)4	(8): (BaK)Na ₃ Ti ₃ (Si ₂ O ₇) ₂ O ₂ (OH) ₂	(3): Na₄Ba₂Mn	n _{1.5} □ _{2.5} Ti₅Nb(Si₂O	7)4O4(OH)3F(H2O)6	(2): Na₀□BaTi₂Nb(Si₂O ₇)₂(PO ₄)O ₂ (OH)F	
system	triclinic	monoclinic	monoclinic	monoclinic	triclinic	orthorhombic	triclinic	
space group	PĪ	C2/m	P2/m	A2/m	PĪ		PĪ	
a (Å)	5.4260(9)	10.8971	5.37	5.38	5.447	5.48	5.4587	
b	7.135(1)	7.1165	7.00	7.04	7.157	7.10	7.1421	
С	25.514(4)	5.4108	24.05	48.10	47.259	48.2	24.528	
α (°)	98.172(4)	90	90	90	95.759		96.790	
β	90.916(4)	96.676	91.1	91.1	92.136		96.927	
Y	89.964(3)	90	90	90	89.978		90.326	
V (Å ³)	977.61(3)	760.96	910	1821	1831.7	1875.4	942.4	
Z	2	2	2	4	2	4	2	
D _{meas.} (g/cm ³)		3.543	3.32	2-3.42		3.47-3.50		
D _{calc.} (g/cm ³)	2.930	3.521	3.	.20	3.041	3.20	3.342	
Strongest lines in the powder pattern: <i>d</i> _{obs} (Å)(<i>I</i>)	2.813(100), 2.149(82), 3.938(70), 4.288(44), 2.128(44), 3.127(39), 3.690(36)	2.801(100), 2.153(90), 1.482(90), 1.601(80), 3.45(70), 1.790(70), 3.29(50)	24.06(100), 7.05(9), 5.95(97), 3.95(6), 2.828(16), 2.712(19), 2.155(13)			23.80(100), 8.02(92), 3.45(63), 2.705(24), 2.683(41), 2.410(17), 2.772(13)		
Optical character	biaxial (+)	biaxial (+)	biax	ial (+)		biaxial (+)		
α	1.695	1.747	1.1	700		1.682		
β	1.703	1.750	1.	710		1.695		
Y	1.733	1.773	1.1	734		1.720		
2V (°)	64.8 (meas), 55.4 (calc)	39.67 (meas)	66 ((calc)		40 (meas), 66.40 (calc)		
Orientation		$Z \wedge c = 6-7^{\circ}$	Х~с, Ү	~ <i>a,</i> Z ~ b		Z = a, Y = b, X = c		
Color	colorless to very very pale tan	dark brown	creamy with grayish, bluish or yellowish shades			yellowish platy crystals		
Pleochroism	none observed	strong X = light-yellow, Z =brown				weak		
Absorption		Z > Y > X		-		Z > Y = X		
Hardness (Mohs)	3	2-3		3		3.5 - 4		

* barytolamprophyllite: unit-cell parameters, space group and calculated density (8); powder pattern (1); D_{meas} (4); optics (1, 4); bornemanite: powder pattern (5). References: (1) Anthony *et al.* (1995); (2) Cámara and Sokolova (2007); (3) Cámara and Sokolova (2009); (4) Dudkin (1959); (5) Ferraris *et al.*, (2001); (6) Men'shikov *et al.*, (1975); (7) Nèmeth *et al.*, (2009); (8) Sokolova and Cámara (2008).

	kaza	anskyite.	()
	а	b	С
x	87.4	85.2	13.4
Y	92.1	5.1	102.8
Ζ	176.7	91.9	86.0

Table 3. Optical orientation (°) for kazanskyite.

	formula	for kazanskyite.	
Oxide	wt.%	Formula unit	a.p.f.u.
Nb_2O_5	9.70	Si	4.05
TiO ₂	19.41		
SiO ₂	28.21	Na	2.55
AI_2O_3	0.13	Mn ²⁺	0.31
FeO	0.28	Са	0.11
MnO	4.65	Fe ²⁺	<u>0.03</u>
BaO	12.50	Σ3ΜΟ	3.00
SrO	3.41		
CaO	0.89	Ti	2.09
K ₂ O	1.12	Nb	0.63
Na ₂ O	9.15	Mn ²⁺	0.26
H_2O^{**}	9.87	AI	<u>0.02</u>
F	1.29	Σ(2M ^H +M ^O)	3.00
-O=F ₂	0.54		
Total	100.07	Ва	0.70
		Sr	0.28
		K	0.21
		Са	<u>0.03</u>
		$\Sigma 2A^{P}$	1.22
		F	0.59
		OH	<u>1.41</u>
		ΣΧ ^Ο Α	2.00
		H ₂ O	4.02

Table 4. Chemical composition and unit
formula* for kazanskvite.

* calculated on anion basis: O + F = 22 a.p.f.u.;** calculated from structure solution and refinement: $OH + F = 2 a.p.f.u., H_2O = 4 a.p.f.u.$

	Table 5. X-ray powder diffraction data for kazanskyite*.												
I _{obs.}	d _{obs} (Å)	$d_{\rm calc}({ m \AA})$	I _{calc.}	h	k	Ι	I _{obs.}	$d_{\rm obs}({ m \AA})$	$d_{calc}(\text{\AA})$	I _{calc.}	h	k	1
n.o.	n.o.	25.251	15	0	0	1		2.676	2.670		1	1	7
n.o.	n.o	12.626	2	0	0	2	31	2.555	2.559	25	1	$\overline{2}$	6
8	8.413	8.417	8	0	0	3		2.555	2.556		1	2	4
5	5.839	5.834	2	0	1	3	82	2.149	2.155	20	2	2	2
9	5.324	5.322	1	1	0	1		2.149	2.153	36	2	$\overline{2}$	0
8	5.035	5.050	1	0	0	5		2.149	2.151		2	0	7
10	4.599	4.594	2	1	0	3		2.149	2.150		2	2	0
44	4.288	4.300	11	1	1	1		2.149	2.149		2	$\overline{2}$	2
	4.288	4.306		1	1	0	44	2.128	2.134	23	2	2	3
	4.288	4.299		1	1	0		2.128	2.132		2	$\overline{2}$	1
	4.288	4.298		1	1	1		2.128	2.127		1	3	4
70	3.938	3.954	17	1	1	3		2.128	2.124		2	2	1
	3.938	3.952		1	1	2		2.128	2.124		2	$\overline{2}$	3
30	3.714	3.723	12	1	1	3	26	2.043	2.050	19	2	$\overline{2}$	3
36	3.690	3.686	10	1	1	4		2.043	2.050		1	$\overline{2}$	8
20	3.432	3.447	15	1	1	5	22	2.034	2.035	21	2	2	3
	3.432	3.441		1	1	$\overline{4}$		2.034	2.036		2	$\overline{2}$	5
39	3.127	3.128	24	1	1	6		2.034	2.031		0	3	8
	3.127	3.124		1	1	5	17	2.013	2.012	18	2	1	8
32	2.955	2.962	14	1	$\overline{2}$	0		2.013	2.011		2	1	7
	2.955	2.957		1	2	0	11	1.916	1.915	12	2	1	9
	2.955	2.957		1	$\overline{2}$	2		1.916	1.914		2	1	8
33	2.895	2.896	36	1	$\overline{2}$	3	19	1.760	1.765	18	2	3	4
	2.895	2.895		1	2	1		1.760	1.763		2	3	1
100	2.813	2.820	100	1	2	$\overline{4}$		1.760	1.759		2	1	$\overline{1}\overline{1}$
	2.813	2.815		1	$\overline{2}$	$\overline{2}$		1.760	1.759		2	3	4
19	2.707	2.702	20	2	0	1		1.760	1.758		2	3	1
20	2.696	2.693	40	2	0	1		1.760	1.757		2	1	$\overline{1}\overline{0}$
23	2.685	2.688	21	1	$\overline{2}$	5	26	1.608	1.611	54	3	$\overline{2}$	0
	2.685	2.685		1	2	3		1.608	1.609		3	2	0
20	2.676	2.674	21	1	1	8		1.608	1.608		3	$\overline{2}$	2

* Indexed on a = 5.426(3), b = 7.122(5), c = 25.53(2) Å, α = 98.24(6), β = 90.82(5), γ = 89.93(3)°, V = 976.3(8)Å3; d_{calc} , I_{calc} , and *hkl* values are from the powder pattern calculated from single-crystal data. n.o.: not observed (covered by beamstop)

a (Å) 5.4260(9) b 7.135(1) c 25.514(4) a (°) 98.172(4) β 90.916(4) γ 89.964(3) $V(Å^3)$ 977.61(3) Space group $P\overline{1}$ Z 2 Absorption coefficient (mm ⁻¹) 4.20 $P(000)$ 829.2 $D_{calc.}(g/cm^3)$ 2.930 Crystal size (mm) 0.01 x 0.05 x 0.15 Radiation/filter MoK α /graphite 20-range for data 3.22 - 50.05 collection (°) 3.22 - 50.05 Reflections collected 13481 Independent reflections $_{3066}^2$ 3.066 Refinement method Sull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}(%)$ E $[F_0 > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole + 1.841 -1.705 Goodness of fit on F^2 1.090		
c 25.514(4) α (°) 98.172(4) β 90.916(4) γ 89.964(3) γ (Å ³) 977.61(3) Space group $P\overline{1}$ Z 2 Absorption coefficient (mm ⁻¹) 4.20 $F(000)$ 829.2 $D_{calc.}$ (g/cm ³) 2.930 Crystal size (mm) 0.01 x 0.05 x 0.15 Radiation/filter MoK α /graphite 20 52.5 Reflections collected 13481 Independent reflections 3471 3066 Seif Refinement method Full-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}(\%)$ 224 Final $R_{(obs)}(\%)$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hot + 1.841 -1.705	<i>a</i> (Å)	5.4260(9)
α (°) 98.172(4) β 90.916(4) γ 89.964(3) $V(Å^3)$ 977.61(3) Space group $P1$ Z 2 Absorption coefficient (mm ⁻¹) 4.20 $f(000)$ 829.2 $D_{calc.}$ (g/cm ³) 2.930 Crystal size (mm) 0.01 x 0.05 x 0.15 Radiation/filter MoK α /graphite 20-range for data collection (°) 3.22 - 50.05 Reflections collected 13481 Independent reflections $F_0 > 4\sigma F$ 3066 Refinement method Full-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_0^{-2}$ No. of refined parameters 224 Final $R_{(obs)}(%)$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest holoor + 1.841 -1.705	b	7.135(1)
β 90.916(4) γ 89.964(3) $V(Å^3)$ 977.61(3)Space group $P\overline{1}$ Z 2Absorption coefficient (mm ⁻¹)4.20 $F(000)$ 829.2 $D_{calc.}$ (g/cm ³)2.930Crystal size (mm)0.01 x 0.05 x 0.15Radiation/filterMoK α /graphite2 θ -range for data collection (°)3.22 - 50.05 $R(int)$ (%)5.25Reflections collected13481Independent reflections $F_o > 4\sigma F$ 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}$ (%) $(F_0 > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole +1.841 (e Å ⁻³)-1.705	С	25.514(4)
γ 89.964(3) $V(Å^3)$ 977.61(3)Space group $P\overline{1}$ Z 2Absorption coefficient (mm ⁻¹)4.20 $F(000)$ 829.2 $D_{calc.}$ (g/cm ³)2.930Crystal size (mm)0.01 x 0.05 x 0.15Radiation/filterMoK α /graphite2 θ -range for data collection (°)3.22 - 50.05 $R(int)$ (%)5.25Reflections collected13481Independent reflections $F_o > 4\sigma F$ 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}$ (%) $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole + 1.841 (e Å ⁻³)-1.705	α (°)	98.172(4)
V (Å ³) 977.61(3) Space group $P1$ Z 2 Absorption coefficient (mm ⁻¹) 4.20 F(000) 829.2 $D_{calc.}$ (g/cm ³) 2.930 Crystal size (mm) 0.01 x 0.05 x 0.15 Radiation/filter MoK α /graphite 20-range for data collection (°) 3.22 - 50.05 Reflections collected 13481 Independent reflections F^2 , 5066 Second Refinement method Full-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}$ (%) Second $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest holl + 1.841 -1.705	β	90.916(4)
Space group $P1$ Z 2Absorption coefficient (mm ⁻¹) 4.20 $F(000)$ 829.2 $D_{calc.}$ (g/cm ³) 2.930 Crystal size (mm) $0.01 \times 0.05 \times 0.15$ Radiation/filterMoK α /graphite 20 -range for data collection (°) $3.22 - 50.05$ $R(int)$ (%) 5.25 Reflections collected 3471 $Independent reflectionsF_0 > 4\sigma F3066Refinement methodFull-matrix least squares on F^2,fixed weights proportional to 1/\sigma F_0^2No. of refined parameters224Final R_{(obs)} (%)F_0 > 4\sigma F_1[F_0 > 4\sigma F_1]8.09R_19.47wR_220.51Highest peak, deepest hole +1.841(e Å-3)-1.705$	γ	89.964(3)
Z2Absorption coefficient (mm ⁻¹)4.20 $F(000)$ 829.2 $D_{calc.}$ (g/cm ³)2.930Crystal size (mm)0.01 x 0.05 x 0.15Radiation/filterMoK α /graphite2 θ -range for data collection (°)3.22 - 50.05 $R(int)$ (%)5.25Reflections collected13481Independent reflections $F_{o} > 4\sigma F$ 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}$ (%) $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole +1.841 (e Å ⁻³)-1.705	V (Å ³)	977.61(3)
Absorption coefficient 4.20 $F(000)$ 829.2 $D_{calc.} (g/cm^3)$ 2.930 Crystal size (mm) 0.01 x 0.05 x 0.15 Radiation/filter MoK α /graphite 2 θ -range for data 3.22 - 50.05 collection (°) 5.25 Reflections collected 13481 Independent reflections 3471 $\rho_o > 4\sigma F$ 3066 Refinement method Eull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}(%)$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hub-t+1.841 -1.705	Space group	PĪ
(mm ⁻¹)4.20 $F(000)$ 829.2 $D_{calc.} (g/cm^3)$ 2.930Crystal size (mm) $0.01 \times 0.05 \times 0.15$ Radiation/filterMoK α /graphite20-range for data collection (°) $3.22 - 50.05$ $R(int) (\%)$ 5.25 Reflections collected13481Independent reflections $F_o > 4\sigma F$ 3066 Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}(\%)$ $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole +1.841 $(e Å^{-3})$ -1.705	Ζ	2
$D_{calc.}$ (g/cm ³)2.930Crystal size (mm)0.01 x 0.05 x 0.15Radiation/filterMoK α /graphite2 θ -range for data collection (°)3.22 - 50.05 $R(int)$ (%)5.25Reflections collected13481Independent reflections $F_{o} > 4\sigma F$ 3471 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224 $Final R_{(obs)}$ (%) $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole +1.841 $(e Å^3)$ -1.705		4.20
Crystal size (mm) $0.01 \times 0.05 \times 0.15$ Radiation/filterMoK α /graphite 2θ -range for data collection (°) $3.22 - 50.05$ $R(int) (\%)$ 5.25 Reflections collected 13481 Independent reflections $F_o > 4\sigma F$ 3471 3066 Refinement method $Hull-matrix least squares on F^2,fixed weights proportional to 1/\sigma F_o^2No. of refined parameters224Final R_{(obs)}(\%)F_18.09R_19.47wR_220.51Highest peak, deepest heters-1.705$	<i>F</i> (000)	829.2
Radiation/filterMoK α /graphite2 θ -range for data collection (°)3.22 - 50.05 $R(int) (\%)$ 5.25Reflections collected13481Independent reflections $F_o > 4\sigma F$ 3471 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}(\%)$ $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole + 1.841 $(e Å^3)$ -1.705	D _{calc.} (g/cm ³)	2.930
2θ -range for data collection (°) $3.22 - 50.05$ $R(int) (\%)$ 5.25 Reflections collected 13481 Independent reflections $F_o > 4\sigma F$ 3471 3066 Refinement method $Full$ -matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}(\%)$ $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole +1.841 $(e Å^{-3})$ -1.705	Crystal size (mm)	0.01 x 0.05 x 0.15
collection (°) $3.22 - 30.03$ $R(int)$ (%) 5.25 Reflections collected13481Independent reflections 3471 $F_o > 4\sigma F$ 3066 Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters 224 Final $R_{(obs)}$ (%) F_{I} $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole + 1.841 (e Å ⁻³) -1.705	Radiation/filter	MoKα/graphite
Reflections collected13481Independent reflections3471 $F_o > 4\sigma F$ 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}(\%)$ $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole +1.841 $(e Å^{-3})$ -1.705		3.22 - 50.05
Independent reflections $F_o > 4\sigma F$ 3471 3066Refinement methodFull-matrix least squares on F^2 , fixed weights proportional to $1/\sigma F_o^2$ No. of refined parameters224Final $R_{(obs)}(\%)$ $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51Highest peak, deepest hole +1.841 -1.705	<i>R</i> (int) (%)	5.25
$F_{o} > 4\sigma F$ 3066Refinement methodFull-matrix least squares on F^{2} , fixed weights proportional to $1/\sigma F_{o}^{2}$ No. of refined parameters224Final $R_{(obs)}(\%)$ $[F_{o} > 4\sigma F]$ 8.09 R_{1} 9.47 wR_{2} 20.51Highest peak, deepest hole +1.841 $(e Å^{-3})$ -1.705	Reflections collected	13481
Remember methodfixed weights proportional to $1/\sigma F_0^2$ No. of refined parameters224Final $R_{(obs)}(\%)$ 8.09 $[F_0 > 4\sigma F]$ 9.47 wR_2 20.51Highest peak, deepest hole +1.841-1.705		
Final $R_{(obs)}(\%)$ 8.09 $[F_o > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole +1.841 -1.705	Refinement method	
$[F_0 > 4\sigma F]$ 8.09 R_1 9.47 wR_2 20.51 Highest peak, deepest hole +1.841 -1.705	No. of refined parameters	224
wR_2 20.51 Highest peak, deepest hole +1.841 -1.705		8.09
Highest peak, deepest hole +1.841 ($e \text{ Å}^{-3}$) -1.705	R_1	9.47
(e Å ⁻³) -1.705	wR ₂	20.51
Goodness of fit on F^2 1.090		
	Goodness of fit on F^2	1.090

Table 6. Miscellaneous refinement data for kazanskyite.

Atom	Site occupancy	x	У	Z	$U_{\rm iso}$ (Å ²)*
M ⁰ (1)	1	0.3962(4)	0.1432(4)	0.30847(8)	0.0275(7)
M ⁰ (2)	1	0.3811(8)	0.6373(11)	0.30400(17)	0.0325(10)
M ^O (3)	1	0.8873(10)	0.8954(5)	0.3032(2)	0.0126(10)
M ^O (4)	1	0.8860(9)	0.3828(5)	0.3042(2)	0.0115(9)
М ^н (1)	1	0.7444(3)	0.7059(5)	0.41946(13)	0.0143(4)
M ^H (2)	1	0.0172(2)	0.5759(3)	0.18391(5)	0.0174(4)
Si(1)	1	0.2464(8)	0.4164(5)	0.41368(16)	0.0111(8)
Si(2)	1	0.2425(8)	-0.0159(5)	0.41606(17)	0.0114(9)
Si(3)	1	0.5125(8)	0.8740(5)	0.19727(17)	0.0112(9)
Si(4)	1	0.5249(9)	0.2961(6)	0.1986(2)	0.0270(12)
A ^P (1)	0.96	0.74633(11)	0.23498(17)	0.47349(3)	0.0109(2)
A ^P (2)	0.26	0.0134(6)	0.0654(11)	0.13298(17)	0.0337(9)
O(1)	1	0.509(2)	0.9151(15)	0.2592(4)	0.022(3)
O(2)	1	0.5172(14)	0.0709(7)	0.1730(3)	0.0311(18)
O(3)	1	0.772(2)	0.3756(19)	0.1770(6)	0.048(4)
O(4)	1	0.4822(15)	0.5378(13)	0.4403(5)	0.020(3)
O(5)	1	0.2463(10)	0.2149(7)	0.4407(2)	0.0140(13)
O(6)	1	0.4966(17)	0.9104(13)	0.4390(4)	0.009(2)
O(7)	1	-0.001(2)	0.9026(14)	0.4423(5)	0.017(2)
O(8)	1	0.237(2)	0.3665(14)	0.3515(3)	0.021(3)
O(9)	1	0.003(2)	0.5246(13)	0.4364(4)	0.012(2)
O(10)	1	0.237(2)	0.9584(14)	0.3520(4)	0.015(2)
O(11)	1	0.2794(13)	0.7562(12)	0.1739(4)	0.023(2)
O(12)	1	0.538(2)	0.3295(15)	0.2645(4)	0.022(3)
O(13)	1	0.2660(19)	0.3712(15)	0.1753(4)	0.032(3)
O(14)	1	0.7545(18)	0.7683(14)	0.1752(4)	0.023(3)
Х ^о _м (1) О	1	0.7441(12)	0.6633(18)	0.3537(3)	0.0202(16)
Х ^о _м (2) О	1	0.0241(14)	0.6106(19)	0.2562(3)	0.033(2)
X ^O _A (1) OH,F	1	0.6785(12)	0.1640(19)	0.3521(3)	0.0216(16)
X ^O _A (2) OH,F	1	0.0814(12)	0.1146(16)	0.2642(3)	0.0213(17)
X ^P _M H ₂ O	1	0.0061(17)	0.531(3)	0.0952(4)	0.050(3)
X ^P _A H ₂ O	0.26	0.235(8)	0.199(6)	0.0563(18)	0.05
W(1)** H ₂ O	0.71	0.507(3)	0.593(2)	0.0809(6)	0.05
W(2) H ₂ O	0.46	0.511(5)	0.167(4)	0.0370(10)	0.05
W(3) H ₂ O	0.34	0.523(6)	0.416(5)	0.0546(14)	0.05
W(4) H ₂ O	0.29	0.502(8)	0.892(6)	0.0644(16)	0.05
W(5) H ₂ O	0.25	0.145(8)	0.446(6)	0.0001(16)	0.05
W(6) H ₂ O	0.40	-0.013(6)	0.880(4)	0.0644(12)	0.05
W(7) H ₂ O	0.31	0.298(5)	-0.002(9)	-0.0011(11)	0.05

Table 7. Atom coordinates and isotropic temperature parameters for kazanskyite.

	Table 7. continued										
Atom	Site occupancy	x	У	Z	$U_{\rm iso}$ (Å ²)*						
Subsidiary p	eaks**										
A ^P (1A)	0.02	0.734(7)	0.203(10)	0.4236(14)	0.02						
A ^P (1B)	0.02	0.247(7)	0.743(11)	0.4903(19)	0.02						
A ^P (2A)	0.07	0.0138(18)	0.0517(16)	0.1654(5)	0.02						
A ^P (2B)	0.03	0.990(4)	0.110(3)	0.0956(10)	0.02						
M ^H (1A)	0.03	0.758(5)	0.728(8)	0.4486(16)	0.02						
М ^Н (1В)	0.03	0.750(5)	0.676(7)	0.3923(19)	0.02						
1	0.04	0.212(3)	0.443(3)	0.0587(7)	0.02						
2	0.04	0.797(3)	0.436(2)	0.0581(7)	0.02						
3	0.02	0.980(8)	0.636(6)	0.0519(18)	0.02						

* U_{eq} for $M^{O}(1,3,4)$, $M^{H}(2)$, Si(4), $A^{P}(1,2)$; ** for W(1-7) and subsidiary peaks, U_{iso} = 0.05 and 0.02 (fixed), respectively.

Table 0. Calcuted interatornia distances	$(\hat{\mathbf{A}})$ and angular $(\hat{\mathbf{A}})$ for kompany its
Table 8. Selected interatomic distances	(A) and angles () for kazanskylle.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M ^O (1)-X ^O _A (1)	1.873(7)	M ^O (2)-X ^O _M (2)	2.266(9)	M ^O (3)-X ^O _A (2)b	2.24(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M ^O (1)-O(8)	2.01(1)	M ^O (2)-X ^O _M (1)	2.319(8)	M ^O (3)-O(10)c	2.26(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M ⁰ (1)-O(1)a	2.01(1)	M ⁰ (2)-O(12)	2.44(1)	M ^O (3)-X ^O _M (2)c	2.34(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M ^O (1)-O(12)	2.02(1)	M ⁰ (2)-O(1)	2.53(1)	M ^o (3)-O(1)	2.34(1)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M ^O (1)-X ^O _A (2)	2.027(7)	M ⁰ (2)-O(8)	2.55(1)	M ^O (3)-X ^O _M (1)	2.38(1)
$\begin{split} & M^{0}(4)-O(12) & 2.14(1) & Si(1)-O(8) & 1.576(8) & Si(2)-O(6)a & 1.606(8) \\ & M^{0}(4)-O(8)c & 2.25(1) & Si(1)-O(9) & 1.60(1) & Si(2)-O(1)a & 1.62(1) \\ & M^{0}(4)-X^{0}_{A}(2)c & 2.30(1) & Si(1)-O(4) & 1.630(1) & Si(2)-O(7)a & 1.64(1) \\ & M^{0}(4)-X^{0}_{M}(2)c & 2.30(1) & Si(1)-O(5) & 1.680(1) & Si(2)-O(5) & 1.678(5) \\ & M^{0}(4)-X^{0}_{M}(1) & 2.35(1) & $	M ^O (1)-O(10)	2.04(1)	M ⁰ (2)-O(10)	2.51(1)	M ^O (3)-X ^O _A (1)d	2.42(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<Μ ⁰ (1)-φ>	2.00	<m<sup>0(2)-O></m<sup>	2.45	<Μ ⁰ (3)-φ>	2.33
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M ^O (4)-O(12)	2.14(1)	Si(1)-O(8)	1.576(8)	Si(2)-O(6)a	1.606(8)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M ^O (4)-O(8)c	2.25(1)	Si(1)-O(9)	1.60(1)	Si(2)-O(10)a	1.62(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M ^O (4)-X ^O _A (2)c	2.30(1)	Si(1)-O(4)	1.630(1)	Si(2)-O(7)a	1.64(1)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M ^O (4)-X ^O _M (2)c	2.30(1)	Si(1)-O(5)	1.680(1)	Si(2)-O(5)	1.678(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M ^o (4)-X ^o _M (1)	2.35(1)	<si(1)-o></si(1)-o>	1.62	<si(2)-o></si(2)-o>	1.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M ^o (4)-X ^o _A (1)	2.41(1)				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<Μ ^Ο (1)-φ>	2.29	Si(3)-O(1)	1.57(1)	Si(4)-O(3)	1.593(9)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Si(3)-O(11)	1.580(1)	Si(4)-O(13)	1.64(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si(3)a-O(2)-Si(4)	134.5(4)	Si(3)-O(14)	1.59(1)	Si(4)-O(2)	1.647(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Si(1)-O(5)-Si(2)	134.2(4)	Si(3)-O(2)d	1.615(1)	Si(4)-O(12)	1.66(1)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<si-o-si></si-o-si>	134.4	<si(3)-o></si(3)-o>	1.59	<si(4)-o></si(4)-o>	1.64
$\begin{array}{llllllllllllllllllllllllllllllllllll$	М ^н (1)-Х ^о _м (1)	1.667(1)	M ^H (2)-X ^O _M (1)	1.824(8)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	M ^H (1)-O(4)	1.988(9)	M ^H (2)-O(3)e	1.94(1)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M ^H (1)-O(7)c	1.99(1)	M ^H (2)-O(11)	1.963(7)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M ^H (1)-O(9)c	1.99(1)	M ^H (2)-O(13)	1.98(1)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M ^H (1)-O(6)	2.000(9)	M ^H (2)-O(14)e	2.01(1)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	<m<sup>H(1)-O></m<sup>	1.93	M ^H (2)-X ^P _M	2.240(9)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$			<Μ ^H (2)-φ>	1.99		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A [₽] (1)-O(6)a	2.71(1)	A ^P (2)-X ^P _A	2.61(5)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A ^P (1)-O(7)	2.76(1)	A ^P (2)-O(13)	2.66(1)		
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A ^P (1)-O(9)c	2.78(1)	A ^P (2)-O(3)e	2.69(2)		
$A^{P}(1)$ -O(7)f2.83(1) $A^{P}(2)$ -O(2)2.900(8) $A^{P}(1)$ -O(4)f2.84(1) $A^{P}(2)$ -O(11)a2.94(1) $A^{P}(1)$ -O(5)c2.849(6) $< A^{P}(2)$ - $\phi >$ 2.80 $A^{P}(1)$ -O(6)f2.92(1) $< A^{P}(1)$ -O(9)f2.97(1)	A ^P (1)-O(4)	2.81(1)	A ^P (2)-O(14)g	2.89(1)		
$A^{P}(1)$ -O(4)f2.84(1) $A^{P}(2)$ -O(11)a2.94(1) $A^{P}(1)$ -O(5)c2.849(6) $< A^{P}(2)$ - $\varphi >$ 2.80 $A^{P}(1)$ -O(6)f2.92(1)2.97(1)	A ^P (1)-O(5)	2.824(6)	A ^P (2)-O(2)e	2.893(8)		
$A^{P}(1)$ -O(5)c 2.849(6) $< A^{P}(2)$ - $\phi >$ 2.80 $A^{P}(1)$ -O(6)f 2.92(1) 2.97(1)	A ^P (1)-O(7)f	2.83(1)	A ^P (2)-O(2)	2.900(8)		
$A^{P}(1)$ -O(6)f2.92(1) $A^{P}(1)$ -O(9)f2.97(1)	A ^P (1)-O(4)f	2.84(1)	A ^P (2)-O(11)a	2.94(1)		
A ^P (1)-O(9)f 2.97(1)	A ^P (1)-O(5)c	2.849(6)	< Α ^{<i>P</i>} (2)-φ>	2.80		
	A ^P (1)-O(6)f	2.92(1)				
<a<sup>P(1)-O> 2.83</a<sup>		2.97(1)				
	<a<sup>P(1)-O></a<sup>	2.83				

 φ = unspecified anion; a: x, y-1, z; b: x+1, y+1, z; c: x+1, y, z; d: x, y+1, z; e: x-1, y, z; f: -x+1, -y+1, -z+1; g: x-1, y-1, z; h: x+1, y-1, z.

Site	Refined site- scattering (e.p.f.u.)	(a.p.f.u.)	Calculated site-scattering (e.p.f.u.)	<Χ-φ> _{calc.} * (Å)	<Χ-φ> _{obs.} (Å)
M ⁰ (1)**	21.6(2)	0.74 Ti + 0.26 Mn	22.8	2.03	2.00
<i>M</i> ⁰ (2)	11.0	1.0 Na	11.0	2.40	2.45
М ⁰ (3)	14.0***	0.78 Na + 0.11 Ca + 0.11 Mn	13.5	2.37	2.33
<i>M</i> ⁰ (4)	14.0***	0.77Na + 0.20 Mn+ 0.03 Fe ²⁺	14.3	2.34	2.29
^[5] <i>M</i> ^H (1)	21.7(2)	0.98 Ti + 0.02 Al	21.8	1.89	1.93
М ^н (2)	32.2(2)	0.63 Nb + 0.37 Ti	34.0	2.00	1.99
^[10] <i>A^P</i> (1)	42.9***	0.56 Ba + 0.22 Sr + 0.15 K + 0.03 Ca + 0.04	□ 43.2		2.83
^[7] A ^P (2)	11.2***	0.74 □ + 0.14 Ba + 0.06 Sr + 0.06 K	11.3		2.80

Table 9. Refined site-scattering and assigned site-populations for kazanskyite.

X = cation, ϕ = O, OH, F, H₂O;

* calculated by summing constituent ionic radii; values from Shannon (1976), ** coordination number is given only for non-[6]-coordinated sites; *** site scattering was refined, adjusted in accord with chemical analysis (Table 4), and then fixed at the last stages of the refinement (see discussion in text).

Table 10. Bond valences (v.u.) for kazanskyite.

Atom	Si(1)	Si(2)	Si(3)	Si(4)	M ⁰ (1)	M ⁰ (2)	M ^O (3)	M ⁰ (4)	M ^H (1)	M ^H (2)	A ^P (1)	A ^P (2)	Σ
O(1)			1.15		0.56	0.16	0.24						2.11
O(2)			1.02	0.94								0.04, 0.04	2.04
^[3] O(3)				1.08						0.83		0.07	1.98
O(4)	0.98								0.60		0.20, 0.18		1.96
O(5)	0.86	0.86									0.19, 0.18		2.09
O(6)		1.04							0.58		0.25, 0.15		2.02
O(7)		0.95							0.60		0.22, 0.19		1.96
O(8)	1.13				0.56	0.16		0.27					2.12
O(9)	1.06								0.60		0.21, 0.13		2.00
O(10)		1.01			0.52	0.15	0.28						1.96
^[3] O(11)			1.12							0.79		0.04	1.95
O(12)				0.91	0.55	0.19		0.35					2.00
^[3] O(13)				0.95						0.75		0.08	1.78
^[3] O(14)			1.09							0.70		0.04	1.83
Х ^о _м (1)						0.24	0.22	0.23	1.50				2.19
X ⁰ _M (2)						0.26	0.24	0.25		1.11			1.86
^[3] X ^O _A (1)					0.82		0.21	0.20					1.23
^[3] X ^O _A (2)					0.54		0.29	0.25					1.08
^[1] X ^P _M										0.40			0.40
^[1] X ^P _A												0.09	0.09
Total	4.03	3.86	4.38	3.88	3.55	1.16	1.48	1.55	3.88	4.58	1.90	0.40	
Aggregate charge	4.00	4.00	4.00	4.00	3.48	1.00	1.22	1.23	3.98	4.63	1.77	0.46	

* bond-valence parameters are from Brown (1981); coordination numbers are shown for non-[4]-coordinated anions; $X_{A}^{O}(1,2)$: monovalent anions, mainly OH, less F (see Table 7); X_{M}^{P} and X_{A}^{P} : H₂O groups; X_{A}^{P} is 26% occupied by H₂O.

	X ^P M	X ^P A	W(1)	W(2)	W(3)	W(4)	W(5)	W(6)	W(7)
X ^P M		2.74(5)	2.79(2)		3.08(4)		2.54(4)	2.71(3)	
Х ^Р ма			2.77(2)		2.88(4)				
X ^P _M b							2.58(4)		
X ^P A	2.74(5)		3.15(5)	[1.59(5)]			[2.47(6)]		[1.93(7)]
X ^P _A c						2.66(6)		2.68(5)	
$X^{P}_{A} d$									3.15(6)
W(1)	2.79(2)	3.15(5)		3.09(3)	[1.35(4)]	[2.23(4)]	2.91(4)		
W(1)e	2.77(2)								
W(1)f							2.80(4)		
W(2)		[1.59(5)]	3.09(3)		[1.77(4)]		3.04(5)		[1.83(5)]
W(2)d				2.83(5)		10 40(4)			[1.74(5)]
W(2)c						[2.18(4)]			
W(2)f	2 00(4)	[0,00/c)]	[4.05/4]]	[4 77(4)]		2.56(5)	[0, 40/5]		
W(3) W(3)e	3.08(4) 2.88(4)	[2.20(6)]	[1.35(4)]	[1.77(4)]			[2.49(5)]		
W(3)e	2.00(4)						2.58(5)		
W(4)			[2.23(4)]				2.00(0)	2.79(5)	
W(4)g		2.66(6)	[2.20(7)]	[2.18(4)]				2.70(0)	[2.21(6)]
W(4)f		()		2.56(5)					[2.20(6)]
W(4)e								2.64(5)	
W(5)	2.54(4)	[2.47(6)]	2.91(4)	3.04(5)	2.49(5)			()	
W(5)b	2.58(4)		. ,		. ,		[1.75(8)]	2.74(5)	
W(5)f			2.80(4)		2.58(5)				
W(6)	2.71(3)					2.79(5)			
W(6)g		2.68(5)							2.62(5)
W(6)a						2.64(5)			
W(6)b							2.74(5)		[2.47(5)]
W(7)		[1.93(7)]		[1.83(5)]					
W(7)d		3.15(6)		[1.74(5)]					[2.19(6)]
W(7)f						[2.20(6)]			
W(7)c						[2.21(6)]		2.62(5)	
W(7)b	_							[2.47(5)]	

Table 11. The O–O distances^{*} (Å) for H_2O groups in the I_2 block.

a: x+1, y, z; b: -x, -y+1, -z; c: x, y+1, z; d: -x+1, -y, -z; e: x-1, y, z; f: -x+1, -y+1, -z; g: x, y-1, z;

* O-O distances < 2.50 Å are given in [].