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Dextran-shelled oxygen-loaded nanodroplets reestablish a normoxia-like pro-angiogenic
phenotype and behavior in hypoxic human dermal microvascular endothelium.

Running headOxygen nanodroplets in hypoxic dermal endothelium.
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Abstract

In chronic wounds, hypoxia seriously underminesuts repair processes by altering the
balances between pro-angiogenic proteolytic enzy(mestrix metalloproteinases, MMPSs)
and their inhibitors (tissue inhibitors of metaltofeinases, TIMPs) released from
surrounding cells. Recently, we have shown thahuman monocytes hypoxia reduces
MMP-9 and increases TIMP-1 without affecting TIMPs2cretion, whereas in human
keratinocytes it reduces MMP-2, MMP-9, and TIMPw#thout affecting TIMP-1 release.
Provided that the phenotype of the cellular enviment is better understood, chronic wounds
might be targeted by new oxygenating compounds ascthitosan- or dextran-shelled and
2H,3H-decafluoropentane-cored oxygen-loaded nambet (OLNS). Here, we investigated
the effects of hypoxia and dextran-shelled OLNstbe pro-angiogenic phenotype and
behavior of human dermal microvascular endothel{fivEC-1 cell line), another cell
population playing key roles during wound healifgormoxic HMEC-1 constitutively
released MMP-2, TIMP-1 and TIMP-2 proteins, but M} P-9. Hypoxia enhanced MMP-2
and reduced TIMP-1 secretion, without affecting P levels, and compromised cell
ability to migrate and invade the extracellular matwWhen taken up by HMEC-1, nontoxic
OLNs abrogated the effects of hypoxia, restoringmmuxic MMP/TIMP levels and
promoting cell migration, matrix invasion, and fation of microvessels. These effects were
specifically dependent on time-sustained oxygefusidbn from OLN core, since they were
not achieved by oxygen-free nanodroplets or oxygpnrated solution. Collectively, these
data provide new information on the effects of hypoon dermal endothelium and support
the hypothesis that OLNs might be used as effeettj@vant tools to promote chronic wound

healing processes.

Keywords: oxygen; nanodroplet; matrix metalloproteinase (MMHREssue inhibitor of

metalloproteinase (TIMP); human microvascular ehdioal cell (HMEC); skin.



81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

I ntroduction

After injury, skin integrity must be restored protlygpto reestablish the homeostatic
mechanisms, minimize fluid loss, and prevent intect{Greaves et al., 2013]. This is
achieved through wound healing, a complex bioldgicacess where multiple pathways are
simultaneously activated to induce tissue repair r@generation. Traditionally, acute wound
healing is defined as a complex multi-step and ireeltular process, distinguished in four
phases involving different cell types: i) hemostasnvolving platelets; ii) inflammation,
involving neutrophils, monocytes, and macrophages) proliferation, involving
keratinocytes, endothelial cells, and fibroblasssid iv) matrix remodeling, involving
keratinocytes, myofibroblasts, and endothelialcgDiegelmann et al., 2004]. In particular,
during the third and fourth phases, the endothelplays a pivotal role, since wound
microvasculature is rebuilt through angiogenesisrestore the supply of oxygen, blood
constituents and nutrients to the regeneratingigisfielping to promote fibroplasia and
prevent sustained tissue hypoxia [Eming et al.,420MNotably, oxygen represents a key
regulator of normal wound healing since it is reedi for collagen deposition,
epithelialization, fibroplasia, angiogenesis, apdistance to infection [Castilla et al., 2012,
Sen, 2009]. Once complete, these processes mtubelown in a precise order to prevent
exaggerated or delayed responses.

In some cases, the combination of systemic (eabedes, vascular insufficiency, or ageing)
or localized (e.g. bacterial infections and dystatpa proteolysis) factors produce persistent
pathological inflammation resulting in chronic walformation [Diegelmann et al., 2004]. A
chronic wound is defined as a break in skin ep#heontinuity lasting more than 42 days.
Its prevalence varies with age, ranging approxiigdtem 1% in the adult population to 3—

5% in >65 year-old subjects [Greaves et al., 2013]. Apipnately 7 million patients are



106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

affected by chronic wounds in the United Stated, @m estimated $25 billion dollars is spent
annually on the treatment of these wounds [Casil&., 2012].

A typical feature of chronic wounds is unbalancedtgolytic activity, which overwhelms
tissue protective mechanisms [Diegelmann et alQ42@epper, 2001]. Within chronic
wounds, activated cells such as endothelial, emihend immune cells display increased
production of proteases, including cathepsin Gkimase and neutrophil elastase [Greaves et
al., 2013]. Furthermore, pro-inflammatory cytokirsdongly induce the production of matrix
metalloproteinases (MMPs) and down-regulate theel¢evof tissue inhibitors of
metalloproteinases (TIMPSs), thereby creating anrenment with unbalanced MMP/TIMP
ratios [Diegelmann et al., 2004; Pepper, 2001]. Seguaently, wound repair mediators
become targets of proteases, and the resultanixndagradation contributes to the delay in
re-epithelialization, fibroplasia and angiogenefifepper, 2001; Wells et al., 2015].
However, the effects of hypoxia on the secretionMiPs and TIMPs by the cellular
environment of the wound are dramatically differdepending on the considered cell type.
Therefore, it is extremely important to assessfallyethe effects of hypoxia on each single
cell population participating to the wound healprgcess, from monocytes and keratinocytes
to endothelial cells and fibroblasts. In a coupferecent works published by our group
hypoxia was shown to reduce MMP-9 and increase TIMRithout affecting TIMP-2
secretion by human monocytes [Gulino et al.,, 20M@pereas in human keratinocytes
hypoxia was shown to reduce MMP-2, MMP-9, and TIRIRecretion without changing
TIMP-1 levels [Khadjavi et al., 2015]. On the otheand, the effects of hypoxia on the
secretion of gelatinases and their inhibitors byrde microvascular endothelium still needed
further investigation.

Provided the phenotype of the cellular environmainthe milieu of the wound is better

understood, new therapeutic approaches addressipgxia might help to face chronic
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wounds. For this reason, the major role played kygen in essential wound healing
processes has attracted considerable clinicalestt@nd yielded compelling data [Sen, 2009].
Additionally, scientific studies targeting the sajimg pathways underlying oxygen response
within the milieu of the wound tissue are helpirgy etter understand the biochemical
pathways involved in hypoxia sensing/response By&td his appears extremely crucial in
order to exploit new oxygenating treatments tangetiypoxia-response mechanisms within
the healing tissue, thus making them useful inctimcal management of chronic wounds.

So far, hyperbaric oxygen therapy remains a we#dldished, adjunctive treatment for
diabetic lower extremity wounds, when refractorystandard care practices [Sen, 2009].
However, hyperbaric oxygen therapy is expensive andomfortable. Moreover, further
rigorous randomized trials are needed to propalidate the outcomes of hyperbaric oxygen
therapy on chronic wounds associated with othdigbagjies (arterial ulcers, pressure ulcers,
and venous ulcers). Topical oxygen therapy, basedroQ gas emulsion applied to the
superficial wound tissue, represents another priagigpproach to enhance the oxygenation
of wounded tisues [Sen, 2009]. Major advantage®pmital oxygen therapy appear to be its
independence of the wound microcirculation, itsdowost with respect to systemic oxygen
therapy, lower risks of oxygen toxicity, and it¢ateze simplicity of handling and application.
In this context, intensive research is being putsieedevelop new carriers able to release
therapeutically significant amounts of oxygen testies in an effective and time-sustained
manner, such as hemoglobin- or perfluorocarbonébagestems [Cabrales et al., 2013;
Schroeter et al., 2010]. Among the options curyeatider investigation, perfluoropentane
(PFP)-based oxygen-loaded nanobubbles have beponsaw as efficient and biocompatible
ultrasound (US)-responsive tools for oxygen deinvgavalli et al., 2009a; Cavalli et al.,
2009b]. Furthermore, oxygen-loaded nanodroplets N§L constituted by 2H,3H-

decafluoropentane (DFP) as core fluorocarbon andtrate or chitosan as shell
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polysaccharides, have been recently developedactesized, and patented by our group as
innovative and nonconventional platforms of oxygemocarriers, available in formulations
suitable for topical treatment of dermal tissuesafjetto et al., 2014; Prato et al., 2015].
Intriguingly, while keeping all the advantages ahobubbles, OLNs display higher stability
and effectiveness in oxygen storage and releasey lmanufacturing costs and ease of scale-
up. Encouragingly, chitosan-shelled OLNs provededife in counteracting the
dysregulating effects of hypoxia on secretion oflageases and TIMPs by human
keratinocytes [Khadjavi et al., 2015], whereas dexsshelled OLNs abrogated hypoxia-
dependent alteration of MMP-9/TIMP-1 balances imha monocytes [Gulino et al., 2015].
To go beyond the current knowledge on MMP/TIMP dgsiation in the different cell
populations within the milieu of chronic wounds agpand the available evidence on OLN
effectiveness, in the present work we exploredettfiects of hypoxia and OLNs on the pro-
angiogenic phenotype and behavior of human dernateelium. To this purpose, a human
dermal microvascular endothelial cell line (HMECwas culturedn vitro both in normoxic
and hypoxic conditions, in the presence or absehdextran-shelled OLNs. Then, cells were
challenged for their viability, proteolytic phenpty (secretion of gelatinases and their
inhibitors), and wound healing abilities [migratiomvasion of the extracellular matrix

(ECM), and formation of microvessel-like structres
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Methods

Materials

All materials were from Sigma-Aldrich, St Louis, M@side from those listed below. Sterile
plastics were from Costar, Cambridge, UK; MCDB 13ikdium was from Invitrogen,
Carlsbad, CA; foetal calf serum was from HyCloneut® Logan, UT; epidermal growth
factor was from PeproTech, Rocky Hill, NJ; Cultne&s from Trevigen, Gaithersburg, MD;
LDH Cytotoxicity Assay kit was from Biovision, Milfas, CA; enzyme-linked
immunosorbent assay (ELISA) kit for human MMP-2 wlasm Abnova, Taipei City,
Taiwan; ELISA kits for human MMP-9, TIMP-1 and TR42 were from RayBiotech,
Norcross, GA,; electrophoresis reagents and compatedensitometer Geldoc were from
Bio-rad Laboratories, Hercules, CA; Synergy Synefgwicroplate reader was from Bio-Tek
Instruments, Winooski, VT; recombinant proMMP-9 aritiP-9 were produced and kindly
gifted by Prof. Ghislain Opdenakker and Prof. Pipé Van den Steen; ethanol (96%) was
obtained from Carlo Erba (Milan, Italy); culture phants for wound healing assay were from
Ibidi GmbH (Planegg/Martinsried, Germany); Epikur@00® (soya phosphatidylcholine
95%) was from Degussa (Hamburg, Germany); palmattid, DFP, dextran sodium salt (100
kDa), and polyvinylpyrrolidone were from Fluka (Bis; Switzerland); ultrapure water was
obtained using a 1-800 Millipore system (Molsheifatance); Ultra-Turrax SG215
homogenizer was from IKA (Staufen, Germany); Délsao C analyzer was from Beckman
Coulter (Brea, CA); Philips CM10 instrument wasir@hilips (Eindoven, The Netherlands);
XDS-3FL microscope was from Optika (Ponteranicaalylt ECLIPSE Ti inverted

microscope was from Nikon (Amsterdam, The Nethel$an

Dextran-shelled nanodroplet preparation and chaegitation
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OLNs, oxygen-free nanodroplets (OFNs), and oxygdorated solution (OSS) were
prepared as previously described [Prato et al.,5ROBriefly, 1.5 ml DFP, 0.5 ml

polyvinylpyrrolidone and 1.8 ml Epikuron® 200 (setvin 1% w/v ethanol and 0.3 % w/v
palmitic acid solution) were homogenized in 30 mbgphate-buffered saline (PBS) solution
(pH 7.4) for 2 min at 24000 rpm by using Ultra-TakrSG215 homogenizer. For OLNSs, the
solution was saturated with,@r 2 min. Finally, 1.5 ml dextran or fluorescegothiocyanate

(FITC)-labeled dextran solution was added drop-wibkdst the mixture was homogenized at
13000 rpm for 2 min. For OFN and OSS PBS formuletjdOLN preparation protocol was
applied omitting Q@ or dextran/DFP addition, respectively. Immediatafer manufacturing,

nanodroplets were sterilized through ultravioletV{tC ray exposure for 20 min and
characterized for: morphology and shell thickndsg, optical and transmitting electron
microscopy; size, particle size distribution, paobgersity index and zeta potential, by
dynamic light scattering; refractive index by patarg microscopy; viscosity and shell shear
modulus by rheometry; and oxygen content (befoik a&fter UV-C sterilization) through a

chemical assay as previously described [Magnetah ,€2014;Prato et al., 2015].

Cell cultures

A long-term cell line of dermal microvascular erugtal cells (HMEC-1) immortalized by
SV 40 large T antigen [Ades et al., 1992] was kmnplitovided by the Center for Disease
Control, Atlanta, GA. Cells were maintained in MCDB1 medium supplemented with 10%
foetal calf serum, 10 ng/ml of epidermal growthtéac 1 pg/ml of hydrocortisone, 2mM
glutamine, 100 units/ml of penicillin, 1@g/ml of streptomycin and 20 mM Hepes buffer,
pH7.4. Before the experiments, HMEC-1 were seedddacells/0.5 ml per well in 24-well
flat bottom tissue culture clusters and incubated humidified CQair-incubator at 37°C in

complete medium. After overnight incubation to @alloells adhesion, HMEC-1 were treated

10
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for 24 h with/without 10% v/v OLNs, OFNs, and OSS&ther in normoxic (20% £€) or
hypoxic (1% Q) conditions. At the end of each treatment, cefiesnatants were collected

and used for the following analyses.

Evaluation of OLN uptake by HMEC-1

HMEC-1 were plated in 24-well plates on glass celes and incubated in complete
medium for 24 h with/without 10% v/v FITC-labeledL®s in a humidified CQair-
incubator at 37°C both in normoxic and hypoxic dtods. After 4',6-diamidino-2-
phenylindole (DAPI) staining to visualize cells teicfluorescence images were acquired by
a LSM710 inverted confocal laser scanning microsceguipped with a Plan-Neofluar
63x1.4 oil objective, that allowed a field view aifleast 5 cells. Wavelength of 488 nm was
used to detect OLNs, and of 460 nm to detect theldéal nuclei. The acquisition time was

400 ms.

Cytotoxicity studies

The potential cytotoxic effect of OLN and controfrulations was measured as the release
of lactate dehydrogenase (LDH) from HMEC-1 into éxéracellular medium using the LDH
Cytotoxicity Assay kit following the manufactureiitsstructions. LDH was measured both in
the extracellular medium and in the cells pelletiely, cells were incubated for 24 h
with/without 10% v/v OLNs, OFNs or OSS, either iarmoxic (20 % @) or hypoxic (1 %

O,) conditions, in a humidified Cfair-incubator at 37°C. Then, cell supernatantsewer
collected and centrifuged at 13@Pf@r 2 min. Cells were washed with PBS and resudpén

in 0.5 ml of Triton X100 (2% final concentratior) tyse cells. One hundred microliters of
this solution or 100 microliters of supernatant wased with 100 microliters of LDH

reaction mix, containing the LDH substrate, andubated for 10 min at room temperature in

11



251 the dark. Absorbance was then read at 450 nm witetieaence wavelength of 650 nm using
252  Synergy 4 microplate reader.

253

254  Cell viability studies

255 Cell viability was evaluated using 3-(4,5-dimethydizol-2-yl)-2,5-diphenyltetrazolium
256 bromide (MTT) assay. HMEC-1 were incubated in catgpimedium overnight to allow the
257 cells to adhere and then treated for 24 h withitiL10% v/v OLNs, OFNs or OSS, either in
258 normoxic (20 % Q) or hypoxic (1 % @) conditions, in a humidified Cfair-incubator at
259 37°C in serum free medium. Thereafter, i200f 5 mg/mL MTT in PBS were added to cells
260 for 3 additional hours at 37 °C in the dark. Thatgps were then centrifuged, the supernatants
261 discarded and the dark blue formazan crystals Wisdousing 100uL of lysis buffer
262 containing 20 % (w/v) sodium dodecylsulfate, 40 9Nimethylformamide (pH 4.7 in 80
263 % acetic acid). The plates were then read on Synkrgicroplate reader at a test wavelength
264 of 550 nm and at a reference wavelength of 650 nm.

265

266 Measurement of MMP-2, MMP-9, TIMP-1, and TIMP-Bghiction

267 HMEC-1 were incubated overnight in complete mediamd then treated for 24 h
268  with/without 10% v/v OLNs, OFNs or OSS, either iarmoxic (20 % @) or hypoxic (1 %
269 0Oy conditions, in a humidified Cgair-incubator at 37°C in serum-free medium. Thiesa
270 cell supernatants were collected, and the levelsiEP-2, MMP-9, TIMP-1, and TIMP-2
271 were assayed in 10al of HMEC-1 supernatants by specific ELISA. Stamtaalibration
272 curves were generated with rhMMP-2, rh MMP-9, rhTHUPand rhTIMP-2, according to the
273 manufacturer’s instructions. Of note, ELISA kitsufm not distinguish between latent and
274 active forms of MMP-2 and MMP-9. For this reasorm;amplementary analysis by gelatin

275 zymography was performed, as described in theiatig paragraph.
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Measurement of the levels of latent and active $oohgelatinases in cell supernatants

The levels of latent and active forms of gelatisasere evaluated by gelatin zymography in
the cell supernatants as previously described [€8&ndro et al., 2013]. Briefly, HMEC-1
were incubated overnight in complete medium ana tiheatedfor 24 h with/without 10%
vliv OLNs, OFNs or OSS, either in normoxic (20 % Or hypoxic (1 % @) conditions, in a
humidified CQ/air-incubator at 37°C in serum-free medium. Thieza 15 pul cell
supernatants/lane were loaded on 8% polyacrylagetkecontaining 0.1% gelatin under non-
denaturing and non-reducing conditions. Followingcgophoresis, gels were washed at
room temperature for 2 h in milliQ water containidgp% (v/v) Triton-X100 and incubated

for 18 h at 37°C in a collagenase buffer contair{mil): NaCl, 200; Tris, 50; Cag;110; and

0.018% (v/v) Brij 35, pH 7.5, with or without 5 mMthylenediaminetetraacetic acid to
exclude aspecific bands. At the end of the incuipatine gels were stained for 15 min with
Coomassie blue (0.5% Coomassie blue in methantlfeaed/water at a ratio of 3:1:6). The
gels were destained in milliQ water. Densitomeamalysis of the bands, reflecting the total
levels of latent and active forms of gelatinasess wperformed using a computerized

densitometer.

In vitro wound healing assay

In vitro wound healing assay was performed on HMEC-1 eedisg Ibidi’s culture inserts
according to the manufacturer’s instructions. Ounkuce insert per well was placed in a 24-
well plate. Then, 70 pl from a suspension of 5xaélls/ml HMEC-1 cells were plated in
each chamber of Ibidi’s culture inserts with celbwth medium. After 24 h, culture inserts
were detached resulting in two confluent monolayéirsded by a space (scratch) of 500 pm.

Thereafter, cells were washed with PBS and incabatefresh medium for 8 h in the

13
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presence or absence of 10% v/v OLNs or OFNs, eithaormoxic or hypoxic conditions.
For each condition, at least two different culturserts were employed. At the end of the
observational period, scratch images were takenguai Nikon Ti-e eclipse microscope.

Scratches were also measured and normalized wiithec0 scratch (500 pm).

Microvessel-like structures formation

HMEC-1 were evaluated for the ability to spontarstpumigrate and self-organize in
microvessel-like structures when cultured on a lbamanbrane surface [Prato et al., 2011].
Cells were seeded (1x1@ells/well) in a 96-well plate previously coveradth solidified
Cultrex (50u/well), a growth factor-free basemenemmbrane extract from murine
Engelbreth-Holm-Swarm tumor. After 2 h of incubatim the presence or absence of 10%
vl/v OLNs, each well was evaluated by optical micogs/. The formation of microvessel-like
structures was measured as the number of crosdesdme microvessel-like structures

counted in five randomly selected fields by twodpdndent observers.

Statistical analysis.

For each set of experiments, data are shown assme&EM (LDH, MTT, densitometry,
ELISA, and Cultrex assay results) or as a reprasigatimage (confocal microscopy and
gelatin zymography results) of at least three irdelent experiments with similar results. All
data were analyzed by a one-way analysis of vagidABlOVA) followed by Tukey's post-

hoc test (software: SPSS 16.0 for Windows, SPSS$ @iacago, IL) or by Studentisest.
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Results

Characterization of dextran OLN preparations

Before use, all dextran-shelled OLN preparationgewmeticulously characterized for
physico-chemical parameters. Results were alwayménwith published data [Prato et al.,
2015]: OLNSs displayed spherical shapes, 590 nmageediameters, —25 mV zeta potential,
1.33 as refractive index value, 1.59 e-3 Pa-s isgosity value, and 5.43 e-2 mPa as shear
modulus value, calculated at a shear rate vali&afs'. OLNs also showed a good oxygen-
storing capacity of 0.40 mg/ml of oxygen eitherdvefor after 20-min UV-C sterilization,
and such an oxygen amount was comparable withofh@SS. Furthermore, all nanodroplet
preparations proved to be stable over time, asircoedl by long-term checking of these

parameters.

OLN uptake by human dermal microvascular endotheéls

Confocal microscopy analysis was performed to detex whether OLNs were internalized
by endothelial cells. HMEC-1 were incubated witi/d®/v FITC-labeled dextran-shelled
OLNs or OFNs for 24 h in normoxic or hypoxic comalits. As shown in Figure 1, confocal
microscopy confirmed OLN internalization by normoiMEC-1 and their localization in
the cytoplasm. Similar results were also obtaingahuculturing HMEC-1 cells with OLNs in

hypoxic conditions and with OFNs both in normoxichgpoxic conditions (data not shown).
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FIGURE 1. OLN internalization by human dermal microvascular endothelial cells.

HMEC-1 (10 cells/0.5 ml MCDB 131 medium) were left untreatagper panels) or treated
with 10% v/v FITC-labeled OLNs (lower panels) fo# B in normoxia (20 % §). After

DAPI staining, cells were checked by confocal mscapy. Results are shown as
representative images from three independent expets. Left panels: cell nuclei after
DAPI staining. Central panels: FITC-labeled OLNsiglR panels: merged images.

Magnification: 63X.

Effects of hypoxia and OLNs on HMEC-1 viability

After 24 h-incubation of HMEC-1 with or without 10%v OSS, OLNs or OFNs, both in
normoxic (20% @) and hypoxic (1% &) conditions, cytotoxicity and cell viability were
analyzed through LDH and MTT assays, respectiveigure 2). As shown in Panel 2A,

0SS, OLNs or OFNs were not toxic to HMEC-1 bothnormoxic (20% @) and hypoxic
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373

(1% O) conditions. As shown in Panel 2B, hypopir sedetermined an apparent reduction

of the metabolic activity of HMEC-1, however suaheffect was not statistically significant

and in any case was fully counteracted by OLNSs.
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FIGURE 2. Hypoxia and OLN effects on human dermal microvascular endothelial cell

viability. HMEC-1 (1G cells/0.5 ml MCDB 131 medium) were left untreatedreated with

10% v/v OLNs, OFNs or OSS for 24 h in normoxia (20% black bars) or hypoxia (1%0

white bars). After collection of cell supernataatsd lysates, the percentage of cytotoxicity

was measured by the release of LDH (panel A), wasetiee percentage of cell viability was

measured with the MTT assay (panel B). The resaitts the means+SEM from three

independent experiments. Using the ANOVA test, mgniBcant differences between

normoxic or hypoxic control cells or between OLMé&ted and untreated cells were observed

(both panels).
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Hypoxia and OLN effects on gelatinase secretion Hoyman dermal microvascular
endothelial cells

After 24 h-incubation of HMEC-1 with or without 10%44v OSS, OLNs or OFNs, both in
normoxic (20% @) and hypoxic (1% ) conditions, the secretion of gelatinases (MMP-2
and MMP-9) into cell supernatants was evaluated HifSA as well as by gelatin
zymography coupled to densitometry. The resultshoavn in Figure 3. Untreated normoxic
HMEC-1 constitutively secreted400 pg/ml of MMP-2 (Panel A). Notably, HMEC-1 only
secreted the 72 kDa latent form of MMP-2 (proMMPR&hereas the 63 kDa active form was
not detected in the cell supernatants (Panels B3aD).the contrary, neither ELISA (not
shown) nor gelatin zymography analyses detectedvivii?-9 protein amounts in endothelial
cell supernatants. Hypoxia significantly altered MM secretion by almost doubling
proMMP-2 levels in HMEC-1 supernatants. OLNs — bat OFNs or OSS - fully reversed

the effects of hypoxia, restoring a normoxia-likergtion of proMMP-2.
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388
389 FIGURE 3. Effects of hypoxia and OLNs on MMP-2 secretion by human dermal

390 microvascular endothelial cells. HMEC-1 (10 cells/0.5 ml MCDB 131 medium) were left
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391 untreated or treated with 10% v/v OLNs, OFNs or @824 h in normoxia (20% £panels
392 A and C: black bars; panel B: odd lanes) or hypdtis O,; panels A and C: white bars;
393 panel B: even lanes). After collection of cell supgants, MMP-2 protein levels were
394 quantified by ELISA (panel A), whereas MMP-2 |afative forms were analyzed by gelatin
395 zymography (panel B) and subsequent densitometne{pC). For gelatin zymography,
396 recombinant human proMMP-9 (92 kDa) was employed staindard marker (st). Results are
397 shown as means+SEM (panels A and C) or as a repatise gel (panel B) from three
398 independent experiments. ELISA and densitometria deere also evaluated for significance
399 by ANOVA: * vs normoxic control cellsp<0.0001 (panel A)p<0.0001 (panel C); ° vs
400 hypoxic control cellsp<0.0001 (panel A)p<0.0001 (panel C).

401

402 Hypoxia and OLN effects on TIMP secretion by hudammal microvascular endothelial
403 cells and MMP-2/TIMP-2 balances

404 HMEC-1 were incubated for 24 h with or without 16 OSS, OLNs or OFNs, both in
405 normoxic (20% @) and hypoxic (1% ¢) conditions. Thereatfter, the secretion of TIMPAt a
406 TIMP-2 was evaluated by ELISA. As shown in Figure mbrmoxic untreated HMEC-1
407 constitutively released?.2 ng/ml TIMP-1 and 1.6 ng/ml TIMP-2. Hypoxia significantly
408 lowered by almost 20% the secreted levels of TIMRHile TIMP-2 production was not
409 affected. OLNs — but not OFNs and OSS - completdisogated the effects of hypoxia,
410 restoring physiological TIMP-1 amounts also in hyjeaculturing conditions.

411
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FIGURE 4. Effects of hypoxia and OLNs on protein levels of gelatinase inhibitors
(TIMP-1 and TIMP-2) secreted by human dermal microvascular endothelial cells.
HMEC-1 (1C cells/0.5 ml MCDB 131 medium) were left untreatedreated with 10% v/v
OLNSs, OFNs or OSS for 24 h in normoxia (20% ®lack bars, both panels) or hypoxia (1%
O;; white bars, both panels). After collection oflcalipernatants, TIMP-1 (panel A) and
TIMP-2 (panel B) protein levels were quantified WLISA. Results are shown as
means+SEM from three independent experiments. Wata also evaluated for significance
by ANOVA: * vs normoxic control cellgp<0.0001 (panel A) and not significant (panel B);

° vs hypoxic control cellgp<0.0001 (panel A) ang not significant (panel B).

Consequently, the balance between MMP-2 and itiibtoh was calculated. As shown in

Figure 5, hypoxia significantly affected MMP-2/TIMP stoichiometric ratio, which was

almost doubled with respect to cells cultured imnmaxic conditions. OLNs — but not OFNs
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426 or OSS - effectively counteracted the effects qgfdxya, restoring the MMP-2/TIMP-2 ratio
427 to a value similar to that observed in normoxia.

428

0.15

0.10

0.05 -

MMP-2/TIMP-2 stoichiometric ratio

0.0~
ctrl OLNs OFNs oss

429
430 FIGURE 5. Effects of hypoxia and OLNs on MM P-2/TIMP-2 balances upon secretion

431 by dermal microvascular endothelial cells. MMP-2/TIMP-2 stoichiometric ratio was
432 calculated from the ELISA data (see Figures 3-8suRs are shown as means+SEM from
433 three independent experiments. Data were also &ealdor significance by ANOVA: * vs
434  normoxic control cellsp<0.0001; ° vs hypoxic control cellp<0.0001.

435

436 Effects of hypoxia and OLNs on migration and wohedling abilities of human dermal
437 microvascular endothelial cells

438 The ability of HMEC-1 to spontaneously migrate wagestigated through an vitro wound

439 healing assay. As shown in Figure 6, hypoxic HMEG@Gisplayed a lower ability to migrate
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440 compared to normoxic cells. However, the migratanlity of hypoxic HMEC-1 was
441 significantly increased in the presence of OLNsterestingly, OLN effects were not

442 reproduced by OFNs, suggesting a peculiar rolexggen released from the core of OLNSs.

100
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[] hypoxia

80
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60

% migration
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>
w

ctrl OLNs OFNs

443
444 FIGURE 6. Effects of hypoxia and OLNs on migration and wound healing abilities of

445 human microvascular dermal endothelial cells. HMEC-1 were seeded in two confluent
446 monolayers, divided by a space (scratch) of 500 aurd,incubated for 8 h in normoxia (20%
447 O,) or hypoxia (1% @ with/without 10% v/v OLNs or OFNs. Thereafteryatch lengths
448 were measured. A: representative images. B: med&id+8 scratch lengts. Results are from
449 three independent experiments performed in duglicaData were also evaluated for
450 significance by ANOVA: * vs normoxic untreated celp< 0.001; ° vs hypoxic untreated
451 cells:p< 0.001.

452
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Effects of hypoxia and OLNs on abilities of humamuhl microvascular endothelial cells to
invade collagen matrix and form microvessel-likectures

The ability of HMEC-1 to invade a collagen matrixdaform microvessel-like structures was
investigated through aim vitro invasion assay. As shown in Figure 7, hypoxic HMEC

displayed a lower ability to invade matrix and aonga in microvessel-like structures
compared to normoxic cells. However, the invasibility (i.e. the number of crosses) of

hypoxic HMEC-1 was significantly increased in tiregence of OLNSs.

60 - —
»n 50
[0}
w
8 40
3]
S 30
3
= 20
3
<10 -
0 4
Hypoxia - = + +
B OLNs = + - +

NORMOXIA

HYPOXIA

FIGURE 7. Effects of hypoxia and OLNs on matrix invasion ability of human
microvascular dermal endothelial cells. HMEC-1 (1x1G cells/0.5 ml MCDB 131 medium)
were seeded on a Cultrex matrix and incubated forr2normoxia (20% ¢) or hypoxia (1%
0O,) with/without 10% v/v OLNs. Thereafter, microvekhbke structures were checked by
optical microscopy and the number of crosses betwwwe microvessel-like structures was

counted in five fields. A: representative images.nBeans+SEM of numbers of crosses.
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467 Results are from four independent experiments. Bat@ also evaluated for significance by
468 Student's test: * vs hypoxic untreated cel|s< 0.05.

469
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Discussion

During healing processes, the balance betweengmu-anti-angiogenic factors determining
specific endothelial cell behavior and vessel oition must be spatially and temporally
controlled. Among these factors, MMPs appear astpivmolecules. These evolutionarily
conserved and tightly regulated zinc-dependent eps®s are expressed either in a
constitutive or inducible manner by a broad spestraf specialized cells, including
endothelial cells [Vandenbroucke et al., 2014].elRséd as latent zymogens, activated locally
by other proteases and inhibited in a 1:1 stoickioim ratio by their secreted endogenous
inhibitors (TIMPSs) [Brew & Nagase, 2010], MMPs nmly process all the components of
the basement membrane and the ECM, but can alawecleytokines, chemokines, growth
factors, enzymes, and membrane-bound proteins,pifmmoting their activation, inhibition,
degradation or shedding [Cauwe et al.,, 2007]. Ashsuhey play essential roles in cell
survival, proliferation, migration, invasion, henass and inflammation within the cellular
milieu of the wound [Gill & Parks, 2008].

A long-lasting hypoxic environment represents aicai feature of chronic wounds [4-5].
However, the effects of hypoxia on the phenotypel &ime behavior of the cellular
environment of the wound can be dramatically déferdepending on the considered cell
type (monocytes, keratinocytes, endothelial céitspblasts etc). To complement previous
data on hypoxia-dependent dysregulation of MMP/TIM&ances in human monocytes
[Gulino et al., 2015] and keratinocytes [Khadjaviat, 2015], the presenn vitro study
aimed at investigating the effects of hypoxia om pino-angiogenic phenotype and the wound
healing abilities of human dermal microvascular athdlial cells. Furthermore, innovative
and nonconventional dextran-shelled/DFP-cored Oladse challenged for their potential

abilities to counteract the effects of hypoxia.
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Normoxic HMEC-1 constitutively secreted MMP-2, TIMR and TIMP-2 proteins while
MMP-9 was not observed. In particular, cells weyanfd to constitutively release only the
latent 72 kDa form of MMP-2, whereas its 62 kDahated form was not detected. These
results are in line with previous reports on endb#h cells from both micro- and macro-
vascular vessels [Hanemaaijer et al., 1993; Berelresal., 2002; Ben-Yosef et al., 2005;
Bertl et al., 2006]. Exposure of endothelial céigprolonged hypoxia led to enhanced MMP-
2 and diminished TIMP-2 protein levels in cell sumgants, whereas TIMP-1 production
was not altered. The increase of MMP-2 resulteelevated zymogen secretion but not in the
active form of the enzyme. Notably, latent MMP-2dargoes activation mainly through
interactions with membrane-bound MT1-MMP and dp; integrin [Deryugina et al., 2001;
Hofmann et al., 2008]. Additionally, low levels @GiMP-2, the main MMP-2 inhibitor,
participate in MT1-MMP-mediated activation of MMR-&hile high levels of TIMP-2 can
block MMP-2 activation [Brew & Nagase, 2010]. Irgstingly, hypoxia-dependent down-
regulation of MT1-MMP expression was previously agpd for human endothelial cells
[Ben-Yosef et al., 2002]. This might justify thesaimce of the active 62 kDa form of MMP-2
in the present hypoxic model.

HMEC-1 were also challenged under hypoxic condgifor their ability to migrate, invade
the ECM and form tube-like structures. Indeed, E€tklicture and composition provides a
scaffold and signals for cell adhesion and migrataring tissue restoration [Li et al., 2005].
ECM effect on angiogenesis appears highly varialkr time, strictly depending on protein
constituents, protease actions, and ECM abilityseéquester growth factors and bioactive
molecular fragments [Wells et al., 2015]. Signifidtg, MMP-mediated degradation of ECM
can promote endothelial cell migration through estpe of pro-migratory matrix molecule
binding sites [Pepper, 2001; Hangai et al., 206&jwever, in the present work hypoxic

HMEC-1 displayed lower abilities to migrate and mpaie wound healing, as well as to
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invade a collagen matrix and organize in tube-Bkeictures compared to normoxic cells,
despite increased MMP-2 levels. Interestingly, Emiesults were obtained by Ben-Yosef
and colleagues in a previous work using endothebk#s from large caliber vessels, where
hypoxia led concurrently to an increase in proMMBe2retion and to a significant reduction
in the number of tube-like structures spontaneotmiyned in the culture [Ben-Yosef et al.,
2005]. Since specific MMP-2 inhibitors did not @& the normal tube-like formation, the
authors concluded that hypoxia-induced anti-angiageffects responsible for the observed
reduction in tube-like formation were not mediatgd MMP-2. Consistently, in anotham
vitro model, tube-like formation in human microvascuégrdothelial cells was shown to
depend directly on membrane-bound MT1-MMP and mosecreted MMPs such as MMP-2
[Koike et al, 2002]. Therefore, the compromised natign and invasion abilities of HMEC-1
highlighted here might be secondary to hypoxia-gedureduction of MT1-MMP, previously
reported for endothelial cells [Ben-Yosef et a02]. On the other hand, in chronic wounds,
reduced protein levels compared to acute wounds haen described for several growth
factors including FGF, EGF, PDGF, VEGF, and Tg{Fsecondary to trapping by ECM
molecules or excessive degradation by MMPs [Greated., 2013]. Importantly, many of
these growth factors are MMP-2 substrates, incydiGF{3, released after decorin cleavage
[Cauwe et al., 2009; Imai et al., 1997].

Once ascertained that hypoxia hampers HMEC-1 pgiegenic phenotype and behavior by
increasing MMP-2/TIMP-2 stoichiometric ratio anddueing cell migration and ECM
invasion abilities, new dextran-shelled OLNs [Prataal., 2015] were challenged for their
therapeutic potential to counteract the effectshgpoxia. The core structure of these
innovative and nonconventional gas nanocarriercasstituted by DFP, a stable and
biologically inert liquid fluorocarbon which cargemolecular oxygen without actually

binding it, thus favoring gas exchange [Cote et2008]. On the other hand, OLN shell is
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constituted by dextran, a well-known polysaccharaigssified as class 4 (low-toxicity)
substance [Bos et al., 2005]. OLNs are able toaselesignificant amounts of oxygen into
hypoxic environments in a time-sustained manneposipe to OSS, which releases oxygen
only transiently, and to OFNSs, not releasing oxygerall [Prato et al., 2015]. All sterile
nanodroplet preparations employed here displayduergal shapes, nanometric sizes,
negative charges, high stability over time, anddgowygen-storing and -releasing abilities, in
accordance with literature data [Prato et al., 2015

OLNs were internalized by HMEC-1 into the cytoplasmegion, not entering the nuclei.
This evidence complements previous data on thekepth OLNs by other eukaryotic cells,
including human keratinocytes [Prato et al., 20€kBadjavi et al., 2015] and monocytes
[Gulino et al., 2015]. OLNs did not display cytoxatfects on HMEC-1. Even more so, OLNs
fully abrogated hypoxia-dependent dysregulatingeaff on proteolytic activity, restoring
normoxia-like balances between MMP-2 and TIMP-Ii@ anproving migration and ECM
invasion abilities. These effects were specificdipendent on time-sustained oxygen release
from the inner core of OLNS, since they were n@roduced after treatment with OFNs or
OSS. These results are in full agreement with thas&@ined from parallel works with
dextran-shelled OLNSs, able to restore normoxia-MP-9/TIMP-1 ratio in hypoxic human
monocytes [Gulino et al., 2015], and chitosan-glteLNs, effective in abrogating hypoxia-
dependent dysregulation of balances between ge$atin and their inhibitors in human
keratinocytes [Khadjavi et al., 2015]. Therefotes findings proposed here appear extremely
relevant to reach a global vision of the pro-angiug phenotype of the chronic wound, since
endothelial cells play relevant roles during hegalmmocesses in concert with both monocytes
and keratinocytes [Eming et al., 2014].

In conclusion, the present work shows that proldndgypoxia significantly alters the

phenotype and behavior of human dermal microvasemdothelium, enhancing MMP-2 and
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reducing TIMP-1 secretion, and compromising celilittds to migrate, promote wound
healing, invade the ECM and form tube-like struesurThese findings enlarge the available
knowledge on the effects of hypoxia on the pro-agenic profile of single cell populations
actively involved in wound healing processes, thelping to better understand the dynamics
occurring at the milieu of the hypoxic chronic wadurntriguingly, dextran-shelled/DFP-
cored OLNs proved effective in counteracting hypoxieestablishing normoxia-like pro-
angiogenic features in hypoxic microvascular enélahcells. As such, these results support
the proposal that OLNs should be tested as innmjationconventional, cost-effective, and
nontoxic adjuvant therapeutic tools for chronic wdutreatment, in order to promote or
accelerate tissue repair and the regeneration gsese Based on the present vitro
evidence, future preclinical studies to translateNOtechnology to clinical practice are

envisaged.
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