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Abstract  55 

In chronic wounds, hypoxia seriously undermines tissue repair processes by altering the 56 

balances between pro-angiogenic proteolytic enzymes (matrix metalloproteinases, MMPs) 57 

and their inhibitors (tissue inhibitors of metalloproteinases, TIMPs) released from 58 

surrounding cells. Recently, we have shown that in human monocytes hypoxia reduces 59 

MMP-9 and increases TIMP-1 without affecting TIMP-2 secretion, whereas in human 60 

keratinocytes it reduces MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. 61 

Provided that the phenotype of the cellular environment is better understood, chronic wounds 62 

might be targeted by new oxygenating compounds such as chitosan- or dextran-shelled and 63 

2H,3H-decafluoropentane-cored oxygen-loaded nanodroplets (OLNs). Here, we investigated 64 

the effects of hypoxia and dextran-shelled OLNs on the pro-angiogenic phenotype and 65 

behavior of human dermal microvascular endothelium (HMEC-1 cell line), another cell 66 

population playing key roles during wound healing. Normoxic HMEC-1 constitutively 67 

released MMP-2, TIMP-1 and TIMP-2 proteins, but not MMP-9. Hypoxia enhanced MMP-2 68 

and reduced TIMP-1 secretion, without affecting TIMP-2 levels, and compromised cell 69 

ability to migrate and invade the extracellular matrix. When taken up by HMEC-1, nontoxic 70 

OLNs abrogated the effects of hypoxia, restoring normoxic MMP/TIMP levels and 71 

promoting cell migration, matrix invasion, and formation of microvessels. These effects were 72 

specifically dependent on time-sustained oxygen diffusion from OLN core, since they were 73 

not achieved by oxygen-free nanodroplets or oxygen-saturated solution. Collectively, these 74 

data provide new information on the effects of hypoxia on dermal endothelium and support 75 

the hypothesis that OLNs might be used as effective adjuvant tools to promote chronic wound 76 

healing processes. 77 

 78 
Keywords: oxygen; nanodroplet; matrix metalloproteinase (MMP); tissue inhibitor of 79 

metalloproteinase (TIMP); human microvascular endothelial cell (HMEC); skin.80 



 5 

Introduction  81 

 82 

After injury, skin integrity must be restored promptly to reestablish the homeostatic 83 

mechanisms, minimize fluid loss, and prevent infection [Greaves et al., 2013]. This is 84 

achieved through wound healing, a complex biological process where multiple pathways are 85 

simultaneously activated to induce tissue repair and regeneration. Traditionally, acute wound 86 

healing is defined as a complex multi-step and multi-cellular process, distinguished in four 87 

phases involving different cell types: i) hemostasis, involving platelets; ii) inflammation, 88 

involving neutrophils, monocytes, and macrophages; iii) proliferation, involving 89 

keratinocytes, endothelial cells, and fibroblasts; and iv) matrix remodeling, involving 90 

keratinocytes, myofibroblasts, and endothelial cells. [Diegelmann et al., 2004]. In particular, 91 

during the third and fourth phases, the endothelium plays a pivotal role, since wound 92 

microvasculature is rebuilt through angiogenesis to restore the supply of oxygen, blood 93 

constituents and nutrients to the regenerating tissue, helping to promote fibroplasia and 94 

prevent sustained tissue hypoxia [Eming et al., 2014]. Notably, oxygen represents a key 95 

regulator of normal wound healing since it is required for collagen deposition, 96 

epithelialization, fibroplasia, angiogenesis, and resistance to infection [Castilla et al., 2012; 97 

Sen, 2009]. Once complete, these processes must be shut down in a precise order to prevent 98 

exaggerated or delayed responses. 99 

In some cases, the combination of systemic (e.g. diabetes, vascular insufficiency, or ageing) 100 

or localized (e.g. bacterial infections and dysregulated proteolysis) factors produce persistent 101 

pathological inflammation resulting in chronic wound formation [Diegelmann et al., 2004]. A 102 

chronic wound is defined as a break in skin epithelial continuity lasting more than 42 days. 103 

Its prevalence varies with age, ranging approximately from 1% in the adult population to 3–104 

5% in >65 year-old subjects [Greaves et al., 2013]. Approximately 7 million patients are 105 
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affected by chronic wounds in the United States, and an estimated $25 billion dollars is spent 106 

annually on the treatment of these wounds [Castilla et al., 2012].  107 

A typical feature of chronic wounds is unbalanced proteolytic activity, which overwhelms 108 

tissue protective mechanisms [Diegelmann et al., 2004; Pepper, 2001]. Within chronic 109 

wounds, activated cells such as endothelial, epithelial, and immune cells display increased 110 

production of proteases, including cathepsin G, urokinase and neutrophil elastase [Greaves et 111 

al., 2013]. Furthermore, pro-inflammatory cytokines strongly induce the production of matrix 112 

metalloproteinases (MMPs) and down-regulate the levels of tissue inhibitors of 113 

metalloproteinases (TIMPs), thereby creating an environment with unbalanced MMP/TIMP 114 

ratios [Diegelmann et al., 2004; Pepper, 2001]. Consequently, wound repair mediators 115 

become targets of proteases, and the resultant matrix degradation contributes to the delay in 116 

re-epithelialization, fibroplasia and angiogenesis [Pepper, 2001;  Wells et al., 2015]. 117 

However, the effects of hypoxia on the secretion of MMPs and TIMPs by the cellular 118 

environment of the wound are dramatically different depending on the considered cell type. 119 

Therefore, it is extremely important to assess carefully the effects of hypoxia on each single 120 

cell population participating to the wound healing process, from monocytes and keratinocytes 121 

to endothelial cells and fibroblasts. In a couple of recent works published by our group 122 

hypoxia was shown to reduce MMP-9 and increase TIMP-1 without affecting TIMP-2 123 

secretion by human monocytes [Gulino et al., 2015], whereas in human keratinocytes 124 

hypoxia was shown to reduce MMP-2, MMP-9, and TIMP-2 secretion without changing 125 

TIMP-1 levels [Khadjavi et al., 2015]. On the other hand, the effects of hypoxia on the 126 

secretion of gelatinases and their inhibitors by dermal microvascular endothelium still needed 127 

further investigation.  128 

Provided the phenotype of the cellular environment at the milieu of the wound is better 129 

understood, new therapeutic approaches addressing hypoxia might help to face chronic 130 
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wounds. For this reason, the major role played by oxygen in essential wound healing 131 

processes has attracted considerable clinical interest and yielded compelling data [Sen, 2009]. 132 

Additionally, scientific studies targeting the signaling pathways underlying oxygen response 133 

within the milieu of the wound tissue are helping to better understand the biochemical 134 

pathways involved in hypoxia sensing/response systems. This appears extremely crucial in 135 

order to exploit new oxygenating treatments targeting hypoxia-response mechanisms within 136 

the healing tissue, thus making them useful in the clinical management of chronic wounds.  137 

So far, hyperbaric oxygen therapy remains a well-established, adjunctive treatment for 138 

diabetic lower extremity wounds, when refractory to standard care practices [Sen, 2009]. 139 

However, hyperbaric oxygen therapy is expensive and uncomfortable. Moreover, further 140 

rigorous randomized trials are needed to properly validate the outcomes of hyperbaric oxygen 141 

therapy on chronic wounds associated with other pathologies (arterial ulcers, pressure ulcers, 142 

and venous ulcers). Topical oxygen therapy, based on an O2 gas emulsion applied to the 143 

superficial wound tissue, represents another promising approach to enhance the oxygenation 144 

of wounded tisues [Sen, 2009]. Major advantages of topical oxygen therapy appear to be its 145 

independence of the wound microcirculation, its lower cost with respect to systemic oxygen 146 

therapy, lower risks of oxygen toxicity, and its relative simplicity of handling and application.  147 

In this context, intensive research is being pursued to develop new carriers able to release 148 

therapeutically significant amounts of oxygen to tissues in an effective and time-sustained 149 

manner, such as hemoglobin- or perfluorocarbon-based systems [Cabrales et al., 2013;  150 

Schroeter et al., 2010]. Among the options currently under investigation, perfluoropentane 151 

(PFP)-based oxygen-loaded nanobubbles have been proposed as efficient and biocompatible 152 

ultrasound (US)-responsive tools for oxygen delivery [Cavalli  et al., 2009a; Cavalli et al., 153 

2009b]. Furthermore, oxygen-loaded nanodroplets (OLNs), constituted by 2H,3H-154 

decafluoropentane (DFP) as core fluorocarbon and dextran or chitosan as shell 155 
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polysaccharides, have been recently developed, characterized, and patented by our group as 156 

innovative and nonconventional platforms of oxygen nanocarriers, available in formulations 157 

suitable for topical treatment of dermal tissues [Magnetto et al., 2014; Prato et al., 2015]. 158 

Intriguingly, while keeping all the advantages of nanobubbles, OLNs display higher stability 159 

and effectiveness in oxygen storage and release, lower manufacturing costs and ease of scale-160 

up. Encouragingly, chitosan-shelled OLNs proved effective in counteracting the 161 

dysregulating effects of hypoxia on secretion of gelatinases and TIMPs by human 162 

keratinocytes [Khadjavi et al., 2015], whereas dextran-shelled OLNs abrogated hypoxia-163 

dependent alteration of MMP-9/TIMP-1 balances in human monocytes [Gulino et al., 2015].  164 

To go beyond the current knowledge on MMP/TIMP dysregulation in the different cell 165 

populations within the milieu of chronic wounds and expand the available evidence on OLN 166 

effectiveness, in the present work we explored the effects of hypoxia and OLNs on the pro-167 

angiogenic phenotype and behavior of human dermal endothelium. To this purpose, a human 168 

dermal microvascular endothelial cell line (HMEC-1) was cultured in vitro both in normoxic 169 

and hypoxic conditions, in the presence or absence of dextran-shelled OLNs. Then, cells were 170 

challenged for their viability, proteolytic phenotype (secretion of gelatinases and their 171 

inhibitors), and wound healing abilities [migration, invasion of the extracellular matrix 172 

(ECM), and formation of microvessel-like structures].  173 

 174 

175 



 9 

Methods 176 

 177 

Materials  178 

All materials were from Sigma-Aldrich, St Louis, MO, aside from those listed below. Sterile 179 

plastics were from Costar, Cambridge, UK; MCDB 131 medium was from Invitrogen, 180 

Carlsbad, CA; foetal calf serum was from HyClone, South Logan, UT; epidermal growth 181 

factor was from PeproTech, Rocky Hill, NJ; Cultrex was from Trevigen, Gaithersburg, MD; 182 

LDH Cytotoxicity Assay kit was from Biovision, Milpitas, CA; enzyme-linked 183 

immunosorbent assay (ELISA) kit for human MMP-2 was from Abnova, Taipei City, 184 

Taiwan;  ELISA kits for human MMP-9, TIMP-1 and TIMP-2 were from RayBiotech, 185 

Norcross, GA; electrophoresis reagents and computerized densitometer Geldoc were from 186 

Bio-rad Laboratories, Hercules, CA; Synergy Synergy 4 microplate reader was from Bio-Tek 187 

Instruments, Winooski, VT; recombinant proMMP-9 and MMP-9 were produced and kindly 188 

gifted by Prof. Ghislain Opdenakker and Prof. Philippe Van den Steen; ethanol (96%) was 189 

obtained from Carlo Erba (Milan, Italy); culture implants for wound healing assay were from 190 

Ibidi GmbH (Planegg/Martinsried, Germany); Epikuron 200® (soya phosphatidylcholine 191 

95%) was from Degussa (Hamburg, Germany); palmitic acid, DFP, dextran sodium salt (100 192 

kDa), and polyvinylpyrrolidone were from Fluka (Buchs, Switzerland); ultrapure water was 193 

obtained using a 1-800 Millipore system (Molsheim, France); Ultra-Turrax SG215 194 

homogenizer was from IKA (Staufen, Germany); Delsa Nano C analyzer was from Beckman 195 

Coulter (Brea, CA); Philips CM10 instrument was from Philips (Eindoven, The Netherlands); 196 

XDS-3FL microscope was from Optika (Ponteranica, Italy); ECLIPSE Ti inverted 197 

microscope was from Nikon (Amsterdam, The Netherlands). 198 

 199 

Dextran-shelled nanodroplet preparation and characterization 200 
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OLNs, oxygen-free nanodroplets (OFNs), and oxygen-saturated solution (OSS) were 201 

prepared as previously described [Prato et al., 2015]. Briefly,  1.5 ml DFP, 0.5 ml 202 

polyvinylpyrrolidone and 1.8 ml Epikuron® 200 (solved in 1% w/v ethanol and 0.3 % w/v 203 

palmitic acid solution) were homogenized in 30 ml phosphate-buffered saline (PBS) solution 204 

(pH 7.4) for 2 min at 24000 rpm by using Ultra-Turrax SG215 homogenizer. For OLNs, the 205 

solution was saturated with O2 for 2 min. Finally, 1.5 ml dextran or fluorescein isothiocyanate 206 

(FITC)-labeled dextran solution was added drop-wise whilst the mixture was homogenized at 207 

13000 rpm for 2 min. For OFN and OSS PBS formulations, OLN preparation protocol was 208 

applied omitting O2 or dextran/DFP addition, respectively. Immediately after manufacturing, 209 

nanodroplets were sterilized through ultraviolet (UV)-C ray exposure for 20 min and 210 

characterized for: morphology and shell thickness, by optical and transmitting electron 211 

microscopy; size, particle size distribution, polydispersity index and zeta potential, by 212 

dynamic light scattering; refractive index by polarizing microscopy; viscosity and shell shear 213 

modulus by rheometry; and oxygen content (before and after UV-C sterilization) through a 214 

chemical assay as previously described [Magnetto et al., 2014;Prato et al., 2015].  215 

 216 

Cell cultures 217 

A long-term cell line of dermal microvascular endothelial cells (HMEC-1) immortalized by 218 

SV 40 large T antigen [Ades et al., 1992] was kindly provided by the Center for Disease 219 

Control, Atlanta, GA. Cells were maintained in MCDB 131 medium supplemented with 10% 220 

foetal calf serum, 10 ng/ml of epidermal growth factor, 1 µg/ml of hydrocortisone, 2mM 221 

glutamine, 100 units/ml of penicillin, 100 µg/ml of streptomycin and 20 mM Hepes buffer, 222 

pH7.4. Before the experiments, HMEC-1 were seeded at 105 cells/0.5 ml per well in 24-well 223 

flat bottom tissue culture clusters and incubated in a humidified CO2/air-incubator at 37ºC in 224 

complete medium. After overnight incubation to allow cells adhesion, HMEC-1 were treated 225 
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for 24 h with/without 10% v/v OLNs, OFNs, and OSS, either in normoxic (20% O2) or 226 

hypoxic (1% O2) conditions. At the end of each treatment, cell supernatants were collected 227 

and used for the following analyses.  228 

 229 

Evaluation of OLN uptake by HMEC-1 230 

HMEC-1 were plated in 24-well plates on glass coverslips and incubated in complete 231 

medium for 24 h with/without 10% v/v FITC-labeled OLNs in a humidified CO2/air-232 

incubator at 37°C both in normoxic and hypoxic conditions. After 4',6-diamidino-2-233 

phenylindole (DAPI) staining to visualize cells nuclei, fluorescence images were acquired by 234 

a LSM710 inverted confocal laser scanning microscope equipped with a Plan-Neofluar 235 

63×1.4 oil objective, that allowed a field view of at least 5 cells. Wavelength of 488 nm was 236 

used to detect OLNs, and of 460 nm to detect the labeled nuclei. The acquisition time was 237 

400 ms. 238 

 239 

Cytotoxicity studies  240 

The potential cytotoxic effect of OLN and control formulations was measured as the release 241 

of lactate dehydrogenase (LDH) from HMEC-1 into the extracellular medium using the LDH 242 

Cytotoxicity Assay kit following the manufacturer’s instructions. LDH was measured both in 243 

the extracellular medium and in the cells pellet. Briefly, cells were incubated for 24 h 244 

with/without 10% v/v OLNs, OFNs or OSS, either in normoxic (20 % O2) or hypoxic (1 % 245 

O2) conditions, in a humidified CO2/air-incubator at 37°C. Then, cell supernatants were 246 

collected and centrifuged at 13000g for 2 min. Cells were washed with PBS and resuspended 247 

in 0.5 ml of Triton X100 (2% final concentration) to lyse cells. One hundred microliters of 248 

this solution or 100 microliters of supernatant was mixed with 100 microliters of LDH 249 

reaction mix, containing the LDH substrate, and incubated for 10 min at room temperature in 250 
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the dark. Absorbance was then read at 450 nm with a reference wavelength of 650 nm using 251 

Synergy 4 microplate reader. 252 

 253 

Cell viability studies  254 

Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 255 

bromide (MTT) assay. HMEC-1 were incubated in complete medium overnight to allow the 256 

cells to adhere and then treated for 24 h with/without 10% v/v OLNs, OFNs or OSS, either in 257 

normoxic (20 % O2) or hypoxic (1 % O2) conditions, in a humidified CO2/air-incubator at 258 

37°C in serum free medium. Thereafter, 20 µL of 5 mg/mL MTT in PBS were added to cells 259 

for 3 additional hours at 37 °C in the dark. The plates were then centrifuged, the supernatants 260 

discarded and the dark blue formazan crystals dissolved using 100 µL of lysis buffer 261 

containing 20 % (w/v) sodium dodecylsulfate, 40 % N,N-dimethylformamide (pH 4.7 in 80 262 

% acetic acid). The plates were then read on Synergy 4 microplate reader at a test wavelength 263 

of 550 nm and at a reference wavelength of 650 nm. 264 

 265 

Measurement of MMP-2, MMP-9, TIMP-1, and  TIMP-2 production 266 

HMEC-1 were incubated overnight in complete medium and then treated for 24 h 267 

with/without 10% v/v OLNs, OFNs or OSS, either in normoxic (20 % O2) or hypoxic (1 % 268 

O2) conditions, in a humidified CO2/air-incubator at 37°C in serum-free medium. Thereafter, 269 

cell supernatants were collected, and the levels of MMP-2, MMP-9, TIMP-1, and TIMP-2 270 

were assayed in 100 µl of HMEC-1 supernatants by specific ELISA. Standard calibration 271 

curves were generated with rhMMP-2, rhMMP-9, rhTIMP-1, and rhTIMP-2, according to the 272 

manufacturer’s instructions. Of note, ELISA kits could not distinguish between latent and 273 

active forms of MMP-2 and MMP-9. For this reason, a complementary analysis by gelatin 274 

zymography was performed, as described in the following paragraph. 275 
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 276 

Measurement of the levels of latent and active forms of gelatinases in cell supernatants  277 

The levels of latent and active forms of gelatinases were evaluated by gelatin zymography in 278 

the cell supernatants as previously described [D’Alessandro et al., 2013]. Briefly, HMEC-1 279 

were incubated overnight in complete medium and then treated for 24 h with/without 10% 280 

v/v OLNs, OFNs or OSS, either in normoxic (20 % O2) or hypoxic (1 % O2) conditions, in a 281 

humidified CO2/air-incubator at 37°C in serum-free medium. Thereafter, 15 µl cell 282 

supernatants/lane were loaded on 8% polyacrylamide gels containing 0.1% gelatin under non-283 

denaturing and non-reducing conditions. Following electrophoresis, gels were washed at 284 

room temperature for 2 h in milliQ water containing 2.5% (v/v) Triton-X100 and incubated 285 

for 18 h at 37°C in a collagenase buffer containing (mM): NaCl, 200; Tris, 50; CaCl
2
, 10; and 286 

0.018% (v/v) Brij 35, pH 7.5, with or without 5 mM ethylenediaminetetraacetic acid to 287 

exclude aspecific bands. At the end of the incubation, the gels were stained for 15 min  with 288 

Coomassie blue (0.5% Coomassie blue in methanol/acetic acid/water at a ratio of 3:1:6). The 289 

gels were destained in milliQ water. Densitometric analysis of the bands, reflecting the total 290 

levels of latent and active forms of gelatinases, was performed using a computerized 291 

densitometer. 292 

 293 

In vitro wound healing assay 294 

In vitro wound healing assay was performed on HMEC-1 cells using Ibidi’s culture inserts 295 

according to the manufacturer’s instructions. One culture insert per well was placed in a 24-296 

well plate. Then, 70 µl from a suspension of 5x105 cells/ml HMEC-1 cells were plated in 297 

each chamber of Ibidi’s culture inserts with cell growth medium. After 24 h, culture inserts 298 

were detached resulting in two confluent monolayers, divided by a space (scratch) of 500 µm. 299 

Thereafter, cells were washed with PBS and incubated in fresh medium for 8 h in the 300 
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presence or absence of 10% v/v OLNs or OFNs, either in normoxic or hypoxic conditions. 301 

For each condition, at least two different culture inserts were employed. At the end of the 302 

observational period, scratch images were taken using a Nikon Ti-e eclipse microscope. 303 

Scratches were also measured and normalized with a time 0 scratch (500 µm). 304 

 305 

Microvessel-like structures formation  306 

HMEC-1 were evaluated for the ability to spontaneously migrate and self-organize in 307 

microvessel-like structures when cultured on a basal membrane surface [Prato et al., 2011]. 308 

Cells were seeded (1×105 cells/well) in a 96-well plate previously covered with solidified 309 

Cultrex (50µ/well), a growth factor-free basement membrane extract from murine 310 

Engelbreth-Holm-Swarm tumor. After 2 h of incubation in the presence or absence of 10% 311 

v/v OLNs, each well was evaluated by optical microscopy. The formation of microvessel-like 312 

structures was measured as the number of crosses between microvessel-like structures 313 

counted in five randomly selected fields by two independent observers. 314 

 315 

Statistical analysis.  316 

For each set of experiments, data are shown as means + SEM (LDH, MTT, densitometry, 317 

ELISA, and Cultrex assay results) or as a representative image (confocal microscopy and 318 

gelatin zymography results) of at least three independent experiments with similar results. All 319 

data were analyzed by a one-way analysis of variance (ANOVA) followed by Tukey's post-320 

hoc test (software: SPSS 16.0 for Windows, SPSS Inc., Chicago, IL) or by Student’s t test. 321 

 322 

323 
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Results  324 

 325 

Characterization of dextran OLN preparations 326 

Before use, all dextran-shelled OLN preparations were meticulously characterized for 327 

physico-chemical parameters. Results were always in line with published data [Prato et al., 328 

2015]: OLNs displayed spherical shapes, 590 nm average diameters, –25 mV zeta potential, 329 

1.33 as refractive index value, 1.59 e-3 Pa·s  as viscosity value, and 5.43 e-2 mPa as shear 330 

modulus value, calculated at a shear rate value of 150 s-1. OLNs also showed a good oxygen-331 

storing capacity of 0.40 mg/ml of oxygen either before or after 20-min UV-C sterilization, 332 

and such an oxygen amount was comparable with that of OSS. Furthermore, all nanodroplet 333 

preparations proved to be stable over time, as confirmed by long-term checking of these 334 

parameters. 335 

 336 

OLN uptake by human dermal microvascular endothelial cells 337 

Confocal microscopy analysis was performed to determine whether OLNs were internalized 338 

by endothelial cells. HMEC-1 were incubated with 10% v/v FITC-labeled dextran-shelled 339 

OLNs or OFNs for 24 h in normoxic or hypoxic conditions. As shown in Figure 1, confocal 340 

microscopy confirmed OLN internalization by normoxic HMEC-1 and their localization in 341 

the cytoplasm. Similar results were also obtained upon culturing HMEC-1 cells with OLNs in 342 

hypoxic conditions and with OFNs both in normoxic or hypoxic conditions (data not shown).  343 

 344 



 16

 345 

FIGURE 1. OLN internalization by human dermal microvascular endothelial cells. 346 

HMEC-1 (105 cells/0.5 ml MCDB 131 medium) were left untreated (upper panels) or treated 347 

with 10% v/v FITC-labeled OLNs (lower panels) for 24 h in normoxia (20 % O2). After 348 

DAPI staining, cells were checked by confocal microscopy. Results are shown as 349 

representative images from three independent experiments. Left panels: cell nuclei after 350 

DAPI staining. Central panels: FITC-labeled OLNs. Right panels: merged images. 351 

Magnification: 63X. 352 

 353 

Effects of hypoxia and OLNs on HMEC-1 viability 354 

After 24 h-incubation of HMEC-1 with or without 10% v/v OSS, OLNs or OFNs, both in 355 

normoxic (20% O2) and hypoxic (1% O2) conditions, cytotoxicity and cell viability were 356 

analyzed through LDH and MTT assays, respectively (Figure 2). As shown in Panel 2A, 357 

OSS, OLNs or OFNs were not toxic to HMEC-1 both in normoxic (20% O2) and hypoxic 358 
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(1% O2) conditions. As shown in Panel 2B, hypoxia per se determined an apparent reduction 359 

of the metabolic activity of HMEC-1, however such an effect was not statistically significant 360 

and in any case was fully counteracted by OLNs.  361 

 362 

FIGURE 2. Hypoxia and OLN effects on human dermal microvascular endothelial cell 363 

viability. HMEC-1 (105 cells/0.5 ml MCDB 131 medium) were left untreated or treated with 364 

10% v/v OLNs, OFNs or OSS for 24 h in normoxia (20% O2, black bars) or hypoxia (1% O2, 365 

white bars). After collection of cell supernatants and lysates, the percentage of cytotoxicity 366 

was measured by the release of LDH (panel A), whereas the percentage of cell viability was 367 

measured with the MTT assay (panel B). The results are the means+SEM from three 368 

independent experiments. Using the ANOVA test, no significant differences between 369 

normoxic or hypoxic control cells or between OLN-treated and untreated cells were observed 370 

(both panels).  371 

 372 

 373 
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Hypoxia and OLN effects on gelatinase secretion by human dermal microvascular 374 

endothelial cells 375 

After 24 h-incubation of HMEC-1 with or without 10% v/v OSS, OLNs or OFNs, both in 376 

normoxic (20% O2) and hypoxic (1% O2) conditions, the secretion of gelatinases (MMP-2 377 

and MMP-9) into cell supernatants was evaluated by ELISA as well as by gelatin 378 

zymography coupled to densitometry. The results are shown in Figure 3. Untreated normoxic 379 

HMEC-1 constitutively secreted ∼400 pg/ml of MMP-2 (Panel A). Notably, HMEC-1 only 380 

secreted the 72 kDa latent form of MMP-2 (proMMP-2), whereas the 63 kDa active form was 381 

not detected in the cell supernatants (Panels B-C). On the contrary, neither ELISA (not 382 

shown) nor gelatin zymography analyses detected any MMP-9 protein amounts in endothelial 383 

cell supernatants. Hypoxia significantly altered MMP-2 secretion by almost doubling 384 

proMMP-2 levels in HMEC-1 supernatants. OLNs – but not OFNs or OSS – fully reversed 385 

the effects of hypoxia, restoring a normoxia-like secretion of proMMP-2.  386 

 387 
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 388 

FIGURE 3. Effects of hypoxia and OLNs on MMP-2 secretion by human dermal 389 

microvascular endothelial cells. HMEC-1 (105 cells/0.5 ml MCDB 131 medium) were left 390 
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untreated or treated with 10% v/v OLNs, OFNs or OSS for 24 h in normoxia (20% O2; panels 391 

A and C: black bars; panel B: odd lanes) or hypoxia (1% O2; panels A and C: white bars; 392 

panel B: even lanes). After collection of cell supernatants, MMP-2 protein levels were 393 

quantified by ELISA (panel A), whereas MMP-2 latent/active forms were analyzed by gelatin 394 

zymography (panel B) and subsequent densitometry (panel C). For gelatin zymography, 395 

recombinant human proMMP-9 (92 kDa) was employed as a standard marker (st). Results are 396 

shown as means+SEM (panels A and C) or as a representative gel (panel B) from three 397 

independent experiments. ELISA and densitometric data were also evaluated for significance 398 

by ANOVA: * vs normoxic control cells: p<0.0001 (panel A), p<0.0001 (panel C); ° vs 399 

hypoxic control cells: p<0.0001 (panel A), p<0.0001 (panel C). 400 

 401 

Hypoxia and OLN effects on TIMP secretion by human dermal microvascular endothelial 402 

cells and MMP-2/TIMP-2 balances 403 

HMEC-1 were incubated for 24 h with or without 10% v/v OSS, OLNs or OFNs, both in 404 

normoxic (20% O2) and hypoxic (1% O2) conditions. Thereafter, the secretion of TIMP-1 and 405 

TIMP-2 was evaluated by ELISA. As shown in Figure 4, normoxic untreated HMEC-1 406 

constitutively released ∼2.2 ng/ml TIMP-1 and ∼1.6 ng/ml TIMP-2. Hypoxia significantly 407 

lowered by almost 20% the secreted levels of TIMP-1 while TIMP-2 production was not 408 

affected. OLNs – but not OFNs and OSS - completely abrogated the effects of hypoxia, 409 

restoring physiological TIMP-1 amounts also in hypoxic culturing conditions.  410 

 411 
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 412 

FIGURE 4. Effects of hypoxia and OLNs on protein levels of gelatinase inhibitors 413 

(TIMP-1 and TIMP-2) secreted by human dermal microvascular endothelial cells. 414 

HMEC-1 (105 cells/0.5 ml MCDB 131 medium) were left untreated or treated with 10% v/v 415 

OLNs, OFNs or OSS for 24 h in normoxia (20% O2; black bars, both panels) or hypoxia (1% 416 

O2; white bars, both panels). After collection of cell supernatants, TIMP-1 (panel A) and 417 

TIMP-2 (panel B) protein levels were quantified by ELISA. Results are shown as 418 

means+SEM from three independent experiments. Data were also evaluated for significance 419 

by ANOVA: * vs normoxic control cells: p<0.0001 (panel A) and p not significant (panel B); 420 

° vs hypoxic control cells: p<0.0001 (panel A) and p not significant (panel B). 421 

 422 

Consequently, the balance between MMP-2 and its inhibitor was calculated. As shown in 423 

Figure 5, hypoxia significantly affected MMP-2/TIMP-2 stoichiometric ratio, which was 424 

almost doubled with respect to cells cultured in normoxic conditions. OLNs – but not OFNs 425 
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or OSS – effectively counteracted the effects of hypoxia, restoring the MMP-2/TIMP-2 ratio 426 

to a value similar to that observed in normoxia. 427 

 428 

 429 

FIGURE 5. Effects of hypoxia and OLNs on MMP-2/TIMP-2 balances upon secretion 430 

by dermal microvascular endothelial cells. MMP-2/TIMP-2 stoichiometric ratio was 431 

calculated from the ELISA data (see Figures 3-4). Results are shown as means+SEM from 432 

three independent experiments. Data were also evaluated for significance by ANOVA: * vs 433 

normoxic control cells: p<0.0001; ° vs hypoxic control cells: p<0.0001. 434 

 435 

Effects of hypoxia and OLNs on migration and wound healing abilities of human dermal 436 

microvascular endothelial cells 437 

The ability of HMEC-1 to spontaneously migrate was investigated through an in vitro wound 438 

healing assay. As shown in Figure 6, hypoxic HMEC-1 displayed a lower ability to migrate 439 
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compared to normoxic cells. However, the migration ability of hypoxic HMEC-1 was 440 

significantly increased in the presence of OLNs. Interestingly, OLN effects were not 441 

reproduced by OFNs, suggesting a peculiar role for oxygen released from the core of OLNs. 442 

 443 

FIGURE 6. Effects of hypoxia and OLNs on migration and wound healing abilities of 444 

human microvascular dermal endothelial cells. HMEC-1 were seeded in two confluent 445 

monolayers, divided by a space (scratch) of 500 µm, and incubated for 8 h in normoxia (20% 446 

O2) or hypoxia (1% O2) with/without 10% v/v OLNs or OFNs. Thereafter, scratch lengths 447 

were measured. A: representative images. B: means±SEM of scratch lengts. Results are from 448 

three independent experiments performed in duplicates. Data were also evaluated for 449 

significance by ANOVA: * vs normoxic untreated cells: p< 0.001; ° vs hypoxic untreated 450 

cells: p< 0.001. 451 

 452 
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Effects of hypoxia and OLNs on abilities of human dermal microvascular endothelial cells to 453 

invade collagen matrix and form microvessel-like structures  454 

The ability of HMEC-1 to invade a collagen matrix and form microvessel-like structures was 455 

investigated through an in vitro invasion assay. As shown in Figure 7, hypoxic HMEC-1 456 

displayed a lower ability to invade matrix and organize in microvessel-like structures 457 

compared to normoxic cells. However, the invasion ability (i.e. the number of crosses) of 458 

hypoxic HMEC-1 was significantly increased in the presence of OLNs.  459 

 460 

FIGURE 7. Effects of hypoxia and OLNs on matrix invasion ability of human 461 

microvascular dermal endothelial cells. HMEC-1 (1x105 cells/0.5 ml MCDB 131 medium) 462 

were seeded on a Cultrex matrix and incubated for 2 h in normoxia (20% O2) or hypoxia (1% 463 

O2) with/without 10% v/v OLNs. Thereafter, microvessel-like structures were checked by 464 

optical microscopy and the number of crosses between two microvessel-like structures was 465 

counted in five fields. A: representative images. B: means+SEM of numbers of crosses. 466 
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Results are from four independent experiments. Data were also evaluated for significance by 467 

Student’s t test: * vs hypoxic untreated cells: p< 0.05. 468 

469 
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Discussion 470 

 471 

During healing processes, the balance between pro- and anti-angiogenic factors determining 472 

specific endothelial cell behavior and vessel organization must be spatially and temporally 473 

controlled. Among these factors, MMPs appear as pivotal molecules. These evolutionarily 474 

conserved and tightly regulated zinc-dependent proteases are expressed either in a 475 

constitutive or inducible manner by a broad spectrum of specialized cells, including 476 

endothelial cells [Vandenbroucke et al., 2014]. Released as latent zymogens, activated locally 477 

by other proteases and inhibited in a 1:1 stoichiometric ratio by their secreted endogenous 478 

inhibitors (TIMPs) [Brew & Nagase, 2010], MMPs not only process all the components of 479 

the basement membrane and the ECM, but can also cleave cytokines, chemokines, growth 480 

factors, enzymes, and membrane-bound proteins, thus promoting their activation, inhibition, 481 

degradation or shedding [Cauwe et al., 2007]. As such, they play essential roles in cell 482 

survival, proliferation, migration, invasion, hemostasis and inflammation within the cellular 483 

milieu of the wound [Gill & Parks, 2008]. 484 

A long-lasting hypoxic environment represents a critical feature of chronic wounds [4-5]. 485 

However, the effects of hypoxia on the phenotype and the behavior of the cellular 486 

environment of the wound can be dramatically different depending on the considered cell 487 

type (monocytes, keratinocytes, endothelial cells, fibroblasts etc). To complement previous 488 

data on hypoxia-dependent dysregulation of MMP/TIMP balances in human monocytes 489 

[Gulino et al., 2015] and keratinocytes [Khadjavi et al., 2015], the present in vitro study 490 

aimed at investigating the effects of hypoxia on the pro-angiogenic phenotype and the wound 491 

healing abilities of human dermal microvascular endothelial cells. Furthermore, innovative 492 

and nonconventional dextran-shelled/DFP-cored OLNs were challenged for their potential 493 

abilities to counteract the effects of hypoxia.  494 
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Normoxic HMEC-1 constitutively secreted MMP-2, TIMP-1, and TIMP-2 proteins while 495 

MMP-9 was not observed. In particular, cells were found to constitutively release only the 496 

latent 72 kDa form of MMP-2, whereas its 62 kDa activated form was not detected. These 497 

results are in line with previous reports on endothelial cells from both micro- and macro-498 

vascular vessels [Hanemaaijer et al., 1993; Ben-Yosef et al., 2002; Ben-Yosef  et al., 2005; 499 

Bertl et al., 2006]. Exposure of endothelial cells to prolonged hypoxia led to enhanced MMP-500 

2 and diminished TIMP-2 protein levels in cell supernatants, whereas TIMP-1 production 501 

was not altered. The increase of MMP-2 resulted in elevated zymogen secretion but not in the 502 

active form of the enzyme. Notably, latent MMP-2 undergoes activation mainly through 503 

interactions with membrane-bound MT1-MMP and the αvβ3 integrin [Deryugina et al., 2001; 504 

Hofmann et al., 2008]. Additionally, low levels of TIMP-2, the main MMP-2 inhibitor, 505 

participate in MT1-MMP-mediated activation of MMP-2, while high levels of TIMP-2 can 506 

block MMP-2 activation [Brew & Nagase, 2010]. Interestingly, hypoxia-dependent down-507 

regulation of MT1-MMP expression was previously reported for human endothelial cells 508 

[Ben-Yosef et al., 2002]. This might justify the absence of the active 62 kDa form of MMP-2 509 

in the present hypoxic model. 510 

HMEC-1 were also challenged under hypoxic conditions for their ability to migrate, invade 511 

the ECM and form tube-like structures. Indeed, ECM structure and composition provides a 512 

scaffold and signals for cell adhesion and migration during tissue restoration [Li et al., 2005]. 513 

ECM effect on angiogenesis appears highly variable over time, strictly depending on protein 514 

constituents, protease actions, and ECM ability to sequester growth factors and bioactive 515 

molecular fragments [Wells et al., 2015]. Significantly, MMP-mediated degradation of ECM 516 

can promote endothelial cell migration through exposure of pro-migratory matrix molecule 517 

binding sites [Pepper, 2001; Hangai et al., 2002]. However, in the present work hypoxic 518 

HMEC-1 displayed lower abilities to migrate and promote wound healing, as well as to 519 
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invade a collagen matrix and organize in tube-like structures compared to normoxic cells, 520 

despite increased MMP-2 levels. Interestingly, similar results were obtained by Ben-Yosef 521 

and colleagues in a previous work using endothelial cells from large caliber vessels, where 522 

hypoxia led concurrently to an increase in proMMP-2 secretion and to a significant reduction 523 

in the number of tube-like structures spontaneously formed in the culture [Ben-Yosef et al., 524 

2005]. Since specific MMP-2 inhibitors did not restore the normal tube-like formation, the 525 

authors concluded that hypoxia-induced anti-angiogenic effects responsible for the observed 526 

reduction in tube-like formation were not mediated by MMP-2. Consistently, in another in 527 

vitro model, tube-like formation in human microvascular endothelial cells was shown to 528 

depend directly on membrane-bound MT1-MMP and not on secreted MMPs such as MMP-2 529 

[Koike et al, 2002]. Therefore, the compromised migration and invasion abilities of HMEC-1 530 

highlighted here might be secondary to hypoxia-induced reduction of MT1-MMP, previously 531 

reported for endothelial cells [Ben-Yosef et al., 2002]. On the other hand, in chronic wounds, 532 

reduced protein levels compared to acute wounds have been described for several growth 533 

factors including FGF, EGF, PDGF, VEGF, and TGF-β, secondary to trapping by ECM 534 

molecules or excessive degradation by MMPs [Greaves et al., 2013]. Importantly, many of 535 

these growth factors are MMP-2 substrates, including TGF-β, released after decorin cleavage 536 

[Cauwe et al., 2009;  Imai et al., 1997]. 537 

Once ascertained that hypoxia hampers HMEC-1 pro-angiogenic phenotype and behavior by 538 

increasing MMP-2/TIMP-2 stoichiometric ratio and reducing cell migration and ECM 539 

invasion abilities, new dextran-shelled OLNs [Prato et al., 2015] were challenged for their 540 

therapeutic potential to counteract the effects of hypoxia. The core structure of these 541 

innovative and nonconventional gas nanocarriers is constituted by DFP, a stable and  542 

biologically inert liquid fluorocarbon which carries molecular oxygen without actually 543 

binding it, thus favoring gas exchange [Cote et al., 2008]. On the other hand, OLN shell is 544 
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constituted by dextran, a well-known polysaccharide classified as class 4 (low-toxicity) 545 

substance [Bos et al., 2005]. OLNs are able to release significant amounts of oxygen into 546 

hypoxic environments in a time-sustained manner, opposite to OSS, which releases oxygen 547 

only transiently, and to OFNs, not releasing oxygen at all [Prato et al., 2015]. All sterile 548 

nanodroplet preparations employed here displayed spherical shapes, nanometric sizes, 549 

negative charges, high stability over time, and good oxygen-storing and -releasing abilities, in 550 

accordance with literature data [Prato et al., 2015]. 551 

OLNs were internalized by HMEC-1 into the cytoplasmic region, not entering the nuclei. 552 

This evidence complements previous data on the uptake of OLNs by other eukaryotic cells, 553 

including human keratinocytes [Prato et al., 2015, Khadjavi et al., 2015] and monocytes 554 

[Gulino et al., 2015]. OLNs did not display cytoxic effects on HMEC-1. Even more so, OLNs 555 

fully abrogated hypoxia-dependent dysregulating effects on proteolytic activity, restoring 556 

normoxia-like balances between MMP-2 and TIMP-1/2 and improving migration and ECM 557 

invasion abilities. These effects were specifically dependent on time-sustained oxygen release 558 

from the inner core of OLNs, since they were not reproduced after treatment with OFNs or 559 

OSS. These results are in full agreement with those obtained from parallel works with 560 

dextran-shelled OLNs, able to restore normoxia-like MMP-9/TIMP-1 ratio in hypoxic human 561 

monocytes [Gulino et al., 2015], and chitosan-shelled OLNs, effective in abrogating hypoxia-562 

dependent dysregulation of balances between gelatinases and their inhibitors in human 563 

keratinocytes [Khadjavi et al., 2015]. Therefore, the findings proposed here appear extremely 564 

relevant to reach a global vision of the pro-angiogenic phenotype of the chronic wound, since 565 

endothelial cells play relevant roles during healing processes in concert with both monocytes 566 

and keratinocytes [Eming et al., 2014]. 567 

In conclusion, the present work shows that prolonged hypoxia significantly alters the 568 

phenotype and behavior of human dermal microvascular endothelium, enhancing MMP-2 and 569 
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reducing TIMP-1 secretion, and compromising cell abilities to migrate, promote wound 570 

healing, invade the ECM and form tube-like structures. These findings enlarge the available  571 

knowledge on the effects of hypoxia on the pro-angiogenic profile of single cell populations 572 

actively involved in wound healing processes, thus helping to better understand the dynamics 573 

occurring at the milieu of the hypoxic chronic wound. Intriguingly, dextran-shelled/DFP-574 

cored OLNs proved effective in counteracting hypoxia, reestablishing normoxia-like pro-575 

angiogenic features in hypoxic microvascular endothelial cells. As such, these results support 576 

the proposal that OLNs should be tested as innovative, nonconventional, cost-effective, and 577 

nontoxic adjuvant therapeutic tools for chronic wound treatment, in order to promote or 578 

accelerate tissue repair and the regeneration processes. Based on the present in vitro 579 

evidence, future preclinical studies to translate OLN technology to clinical practice are 580 

envisaged. 581 

582 
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