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Germany.

Abstract

A new ansatz for molecular vibronic wave functions based on a superposition
of time-dependent generalized coherent states is developed and analysed.
The methodology is specifically tailored to describe the time evolution of
the wave function of a system in which several interacting electronic states
are coupled to a bath of harmonic oscillators. The equations of motion for
the wave packet parameters are obtained by using the Dirac-Frenkel time-
dependent variational principle. The methodology is used to describe the
quantum dynamical behaviour of a model polaron system and its scaling
and convergence properties are discussed and compared with numerically
exact results.

1. Introduction

One of the simplest ways to describe the motion of nuclei in molecular
systems is based on the use of complex Gaussian wave packets, i.e. co-
herent states. Heller was among the first to recognize the primary role
of such a simple approximation of the nuclear wave function in the study
of chemico-physical problems, mainly focusing his work on semiclassical
theories.[1, 2, 3, 4] At the same time Davydov used coherent states to study
energy transport in biochemical systems, though with a different theoret-
ical approach.[5] Since then a number of extensions of these methods has
been proposed for dealing with multidimensional systems and non-adiabatic
processes, i.e. for the treatment of electronic transitions.

∗Corresponding author
Email address: raffaele.borrelli@unito.it (Raffaele Borrelli)

Preprint submitted to Elsevier May 11, 2016



Among others the Gaussian based-multiconfiguration time-dependent
Hartree (G-MCTDH), the direct dynamics variational multi-configurational
Gaussian (DD-vMGC), and the ab initio multiple spawning (AIMS), are ex-
tremely general and powerful methodologies that utilize, in different ways,
linear combinations of Gaussian wave packets to define a time-dependent
set of orthonormal basis functions which are then used to describe the wave-
function of the entire nuclear system.[6, 7, 8, 9, 10] Coherent states, com-
bined with a time-dependent DVR representation are employed in method-
ologies such as the Local Coherent State Approximation (LCSA)[11], and
the multiconfigurational Ehrenfest (MCE).[12, 13] The so-called Davydov
ansatz and its extensions, which have been extensively used in the study of
polaron and spin-boson dynamics are also based on the use of superposition
of coherent states [14, 15, 16, 17, 18, 19, 20] or multiple coherent states.[21]
Heller was also the first to suggest that a significant improvement of the
semiclassical description based on Gaussian wavepackets could have been
obtained by introducing a polynomial prefactor to the wave function.[1, 2]
Hagedorn later recognized that the natural extension of the description
of quantum dynamics by Gaussian wavepacket was the use of generalized
Gauss-Hermite functions[22, 23, 24, 25] known in the quantum optics liter-
ature as Generalized Coherent States (GCS)[26], and in molecular dynam-
ics as Hagedorn’s wavepackets.[27, 28] A similar technique was developed
later by Billing[29, 30, 31, 32] in the framework of semiclassical mechanics
as well as non-adiabatic transitions.[33] Though a generalized form of non
spreading, i.e. coherent, wave-packets was first introduced by Senitzky in
the fifties[34], as pointed out by other authors,[35] they have not yet received
the due attention.

Here we propose and develop a new type of ansatz to represent the time
evolution of molecular vibronic states using GCSs. Following a very recent
approach for the study of quantum dynamics of chemico-physical systems
[36] we employ the time-dependent Dirac-Frenkel variational principle to
derive a new set of equations in which position and momentum of the co-
herent states are dynamically coupled to the evolution of the expansion
coefficients of the basis functions.

The methodology is applied to the study of a one-dimensional Holstein
polaron model where N electronic sites are coupled to local phonons, and
its results are compared with numerically exact MCTDH calculations.[37]
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2. The Generalized Coherent State method

GCSs where described for the first time in fifties by Senitzky[34] and
later generalized by Nieto[38] in the form of squeezed number states. In
their basic form GCSs can be obtained by applying the translation operator
to any harmonic oscillator eigenstate

∣

∣n
〉

[39]

∣

∣n, α
〉

= D(α)
∣

∣n
〉

(1)

where
D(α) = exp(αa+ − ᾱa),

a and a+ are boson annihilation and creation operators, and α is a complex
number. When n = 0 standard Glauber coherent states are obtained.[40]
Unlike the latter, GCSs are not eigenstates of the annihilation operator. It
can be easily verified that

a
∣

∣n, α
〉

=
√
n
∣

∣n− 1, α
〉

+ α
∣

∣n, α
〉

(2)

a†
∣

∣n, α
〉

=
√
n + 1

∣

∣n+ 1, α
〉

+ ᾱ
∣

∣n, α
〉

. (3)

GCS have the coordinate representation[41]

ϕn(x, q, p) = 2−n/2(n!)−1/2π−1/4e−(x−q)2/2+ip(x−q/2))Hn[(x− q)] (4)

where the two real variables, q, p are related to the complex variable α by

α =
q + ip√

2
.

Finally, it is possible to give the number state expansion of a GCS in
the form

∣

∣n, α
〉

=
e−|α|2/2

(n!)1/2

∞
∑

k=0

(−1)n+k(k!)1/2Ln−k
k (|α2|)(ᾱ)n−k

∣

∣k
〉

(5)

Ln−k
n (·) being the associated Laguerre polynomials of order n. For n = 0,

∣

∣0, α
〉

≡
∣

∣α
〉

, and we recover the formula for Glauber coherent states.[40]
Without loosing any generality we can write the vibronic wave function

in the form
∣

∣Ψ(t)
〉

=
∑

l,K

ClK(t)
∣

∣K,αl(t)
〉
∣

∣l
〉

(6)
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where
∣

∣l
〉

specifies electronic states (l = 1, 2, ..., N), K is a multi-index
K = (k1, k2, ..., kd) ∈ N

d
0, and the

∣

∣K,αl(t)
〉

are a set of time-dependent

GCS defined as the product of d one-dimensional GCS

∣

∣K,αl(t)
〉

≡
∣

∣k1 · · · kd, αl1(t), · · · , αld(t)
〉

=
d
∏

i=1

∣

∣ki, αli(t)
〉

. (7)

It is well known that the number of coefficients of expansion 6 is subject
to an exponential growth, and cannot be used for practical purposes as
such. On the other hand, by introducing an explicit time-dependent basis
functions and using the Dirac-Frenkel variational approach the quantum
dynamical problem is formulated on a Hilbert bundle, and the basis set
is locally adapted to provide the “best" approximation to the Schrödinger
equation on the parameters manifold. It is therefore physically sound that
a truncation of the above expansion to a relatively small subset of states
already provides a good description of the state of the system.

The approach developed in this work is based on the idea of partitioning
the entire Hilbert space in a set of subspaces which differ in the number of
vibrations which are allowed to be simultaneously excited. Thus the entire
Hilbert space H spanned by the Hamiltonian of Eq. 13 can be partitioned
as

H =
⋃

c

Sc

where Sc is the space spanned by the states in which only c basis functions
are simultaneously excited, i.e. have a non-zero value of ki. Of course for any
practical purposes the basis is truncated to a maximum quantum number.
Since in a system with d vibrational degrees of freedom there will be

(

d
c

)

distinct combinations having c excited modes, using such a partition the
wavefunction of Eq. 6 can be written in the form

Ψ(x, t) =
N
∑

l=1







d
∑

c=0

(dc)
∑

i1...iC

wi1
...wic
∑

ki1 ...kic=1

Clki1 ...kic
(t)

∣

∣ki1 , αli1(t)
〉

. . .
∣

∣kic , αlic(t)
〉







∣

∣l
〉

=
N
∑

l=1

[

Cl(t)
∣

∣αl(t)
〉

+
d

∑

i=1

wi
∑

ki=1

Clki(t)
∣

∣ki, αli(t)
〉
∣

∣α′
l(t)

〉

+

(d
2
)

∑

i,j=1

wi
∑

ki=1

wj
∑

kj=1

Clkikj(t)
∣

∣ki, αli(t)
〉
∣

∣kj, αlj(t)
〉
∣

∣α′′
l (t)

〉

+ ...
]

∣

∣l
〉

, (8)
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where we have partitioned the αl as αl = (α′
l, αli) in the first summation

and αl = (α′′
l , αli, αlj) in the second summation. An analogous partition has

been performed for the quantum numbers K, and indices of the expansion
coefficients with value zero are omitted; wi represent the maximum quantum
number on the i-th mode. Using partition 8 it is possible to reduce the size of
the basis set by limiting its combinatorial explosion. Indeed, if each mode is
allowed to have w basis functions then a combination with c simultaneously
excited modes will introduce wc new basis states, and since there are

(

d
c

)

such combinations the dimension of the Sc subspace will be
(

d
c

)

wc. Thus,
for c = 1 we will have d possible combinations and dw basis states, for
c = 2 we will have

(

d
2

)

w2 states and so on. This type of partitioning has
been recently applied by the authors, to the study of electron superxchange
in molecular chains.[42]

Numerical convergence can, in principle, be tested by letting c vary
until no significant variations of the properties of interest (i.e. electronic
population or coherences) are observed. However, our main purpose is to
study the result of low order approximations up to c = 2, which are the most
appealing for treating systems with a large number of degrees of freedom.
Therefore, in the following we will restrict our discussion to the ansatz 8
truncated to the excitation levels c = 1, 2.

More specifically in the following we will refer to the equations 9 and 10
below

ΨGCS1(x, t) =
N
∑

l=1

[

Cl(t)
∣

∣αl(t)
〉

+
d

∑

i=1

wi
∑

ki=1

Clki(t)
∣

∣ki, αli(t)
〉
∣

∣α′
l(t)

〉

]

∣

∣l
〉

(9)

ΨGCS2(x, t) =

N
∑

l=1

[

Cl(t)
∣

∣αl(t)
〉

+

d
∑

i=1

wi
∑

ki=1

Clki(t)
∣

∣ki, αli

〉
∣

∣α′
l(t)

〉

+

(d
2
)

∑

i,j=1

wi
∑

ki=1

wj
∑

kj=1

Clkikj(t)
∣

∣ki, αli(t)
〉
∣

∣kj , αlj(t)
〉
∣

∣α′′
l (t)

〉

]

∣

∣l
〉

(10)

as GCS-1 and GCS-2 approximation respectively.
It is worth noticing that the so called Davydov D1 ansatz correspond to

truncating the above expansion at the excitation level c = 0. The equations
of motion for the parameters (ClK(t), qli(t), pli(t)) can be derived by using
the standard machinery of the Dirac-Frenkel time-dependent variational
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principle with the Lagrangian

L =
i

2
[〈Ψ|Ψ̇〉 − 〈Ψ̇|Ψ〉]−

〈

Ψ
∣

∣H
∣

∣Ψ
〉

.

In the following we adopt a mathematical formulation in which all the pa-
rameters of the wave function are real hence we split each coefficient in its
real and imaginary part, ClK(t) = rlK(t) + islK(t). This leads to the set of
differential equations[43, 44, 45]

∑

j

ηij ẏj = ∂yiH (11)

where y denotes the set of parameters (rlK , slK , qli, pli), ηij is a real anti-
symmetric tensor, and H is the Hamiltonian function:

ηij = i[〈∂yiΨ|∂yjΨ〉 − 〈∂yjΨ|∂yiΨ〉] = −2 Im 〈∂yiΨ|∂yjΨ〉 (12)

H =
〈

Ψ
∣

∣H
∣

∣Ψ
〉

= H(rlK , slK , qli, pli). (13)

After carrying out the calculations (see appendix A) the tensor η can be
written in the form

ηrlKsmJ
= −2δlmδKJ (14a)

ηrlKqmh
= δlm[plhrlK −

√
2
(

sl(K−1h)

√

kh − sl(K+1h)

√

kh + 1
)

] (14b)

ηslKqmh
= δlm[plhslK +

√
2
(

rl(K−1h)

√

kh − rl(K+1h)

√

kh + 1
)

] (14c)

ηrlKpmh
= −δlm[qlhrlK +

√
2
(

rl(K−1h)

√

kh + rl(K+1h)

√

kh + 1
)

] (14d)

ηslKpmh
= −δlm[qlhslK +

√
2
(

sl(K−1h)

√

kh + sl(K+1h)

√

kh + 1
)

] (14e)

ηqljpmh
= −δlmδhj

∑

K

(r2lK + s2lK). (14f)

From the above metric tensor the final equations of motion take the form
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of the implicit system

2ṙlK +
d

∑

i

ηslKqli q̇li +
d

∑

i

ηslKpli ṗli = ∂slKH (15a)

2ṡlK −
d

∑

i

ηrlKqli q̇li −
d

∑

i

ηrlKpli ṗli = −∂rlKH (15b)

q̇li
∑

K

(r2lK + s2lK)−
∑

K

ηrlKpli ṙlK −
∑

K

ηslKpli ṡlK = ∂pliH (15c)

ṗli
∑

K

(r2lK + s2lK) +
∑

K

ηrlKqli ṙlK +
∑

K

ηslKqli ṡlK = −∂qliH (15d)

with K = 1, ..., Kmax i = 1, ..., d l = 1, ..., N

We notice that the metric tensor, η, does not directly couple the variables
of two different electronic states because the electronic wavefunction is not
parametrized, however, the equations are coupled by the “quantum forces”
∂yiH. On the other hand the metric directly couples the (qli, pli) variables
of the GCS with the coefficients of the expansion. Equations 15a-15d con-
stitutes a set of 2

∑N
l (Nl + d) differential equations where N is the number

of electronic states, Nl is the size of the basis set in the electronic state l,
and d is the number of nuclear degrees of freedom.

The numerical solution of the set of differential equations 15 is not an
easy task. Indeed, when the number of variables is small a pseudo-inverse
of the tensor η can be computed, e.g. by singular value decomposition, and
the system can be solved using standard methods for ordinary differential
equations. On the other hand for problems with a large number of degrees
of freedom computing a pseudo-inverse of η is not feasible and methods
for implicit differential equations[46] must be used. Here we have used a
specifically tailored approach which combines a Newton-Raphson method,
and an explicit fourth-order Runge-Kutta integration. Details about the
numerical implementation will be given elsewhere.

3. Numerical applications: polaron dynamics

One of the simplest theoretical model describing a set of electronic states
interacting with environmental phonons is certainly the so-called Holstein
polaron Hamiltonian. Its widespread applications in the study of charge
and energy transport in solids and soft matter make it an excellent test for
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the GCS methodology. Here we focus on the study of the one-dimensional
Holstein polaron Hamiltonian[47, 48]

H =
N
∑

i

ǫic
†
ici − J

∑

i

(c†i+1ci +H.c.) +
N
∑

i

ωia
†
iai + g

N
∑

i

c†ici(ai + a†i ) (16)

where a†i , ai and c†i , ci are boson and fermion creation and annihilation oper-
ators, g is is the strength of the electron-phonon coupling, ωi are the boson
frequencies and ǫi are the site energies. We notice that in this case the
number of electronic states N is equal to the number of vibrational degrees
of freedom d and are both labelled as N . Furthermore in our model system
the first and last sites are coupled, i.e. we consider a molecular ring.

In the following, for the sake of simplicity, we will assume that all the
bosons have the same optical frequency ω, and all the sites have the same
energy (ǫi = 0). We will describe the site population dynamics both in the
non-adiabatic regime (|J/ω| < 1) and in the adiabatic regime (|J/ω| > 1),
and as a function of the electron-phonon coupling strength g.

Using the properties of GCSs described in appendix A we can easily
compute the Hamiltonian function, H, as

H(p, q, r, s) = H◦ + V

where (see appendix B)

H◦ =
∑

l,i,K

{[

ǫl +
ω

2
(p2li + q2li) + gqli + ωki

]

(r2lK + s2lK)
}

+
∑

l,i,K

(ωqli + g)
√

2(ki + 1)(rlK+1irlK + slK+1islK)

+
∑

l,i,K

ωpli
√

2(ki + 1)(rlKslK+1i − rlK+1islK)

V = 2J Re{
∑

l>m,K,J

C̄lKCmJ〈K,αl|J, αm〉}.

The derivatives ∂yiH can be obtained analytically as described in appendix
B.

The zero-th order Hamiltonian H◦ includes a classical-like energy part
that depends explicitly on the wavepacket positions and momenta (qli(t), pli(t)),
and a purely quantum contribution that depends on the quantum numbers
(k1, ..., kd). The terms 〈K,αl|J, αm〉 appearing in the potential energy V are
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Franck-Condon type integrals and depend on time through the variables
(qli(t), pli(t)). Their evaluation is a critical step of the time propagation
and can be performed analytically using the recurrence relations described
in the appendix. In all the calculations reported below the initial conditions
are Cl(0) = δl1, i.e. the exciton is localized on one site.

Figure 1a shows the population dynamics in the non-adiabatic regime
for g/ω = 0.5. In this case the zero-th order model (i.e. the Davydov D1
ansatz ) is accurate only for the first 100 fs, and cannot reproduce the beat-
ings which characterize the dynamics between 100 and 300 fs. The addition
of single mode excitations, i.e. the GCS-1 ansatz, provides almost exact re-
sults, as can be seen by comparison with converged MCTDH calculations.
This result if of major importance since from a numerical perspective adding
single mode excitations increases only marginally the overall computational
cost. It is also worth noticing that the description of the wave function
using MCTDH requires about 85000 expansion coefficients, while the GCS-
1 methodology requires only 1200 variables. With this set of parameters
the results of the GCS-1 and GCS-2 ansätze are practically undistinguish-
able. Increasing the coupling strength the differences between the different
levels of approximations become more evident (see figure 1b). The D1
ansatz becomes quite inaccurate both at short and long times. The GCS-1
approach provides a significant improvement over the D1. The results are
almost quantitative, and show a somewhat larger deviation only after 500
fs. The GCS-2 results are in quantitative agreement with numerically exact
MCTDH.

Figures 2a-b show the population dynamics when J = 1.5ω that is in
the adiabatic regime for two different values of the coupling strength. For
g = 0.5ω the D1 ansatz cannot reproduce the correct behaviour of the
population dynamics, showing large deviations from the exact results after
the very first initial decay (about 5 fs). The GCS-1 ansatz provides a good
description of the dynamics though the overall accuracy worsen after the
first 50 fs. In this regime GCS-2 dynamics is in quantitative agreement with
the exact MCTDH. Upon increasing the electron-phonon coupling strength
the D1 ansatz becomes quite inaccurate. The GCS-1 ansatz, while not
quantitative, allows to reproduce most of the dynamical features of the
systems, although the overall agreement with the exact results worsen at
longer times. The GCS-2 population dynamics is almost exact for the first
50 fs, and in qualitatively agreement with MCTDH for longer times.
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Figure 1: Population of the initial electronic state as a function of time in a molecular
ring with 11 electronic states. The parameters of the model are J = 100 cm−1, ω = 1000

cm−1; a) g = 0.2ω, b) g = ω. The number of bath modes is N = 11; the maximum
number of state per mode is w = 4 in both GCS-1 and GCS-2. Dash-dotted line (−·)
excitation levels of the N electronic states c = 0 (D1); dashed line (- -) c = 1; full line
(–) c = 2; (×) MCTDH result.
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Figure 2: Population of the initial electronic state as a function of time in a molecular
ring with 11 electronic states. The parameters of the model are J = 1500 cm−1, ω = 1000

cm−1; a) g = 0.2ω, b) g = ω. The number of bath modes is N = 11; the maximum
number of state per mode is w = 4 in both GCS-1 and GCS-2. Dash-dotted line (−·)
excitation levels of the N electronic states c = 0 (D1); dashed line (- -) c = 1; full line
(–) c = 2; (×) MCTDH result.
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4. Discussion and conclusion

The GCS methodology provides a new ansatz for the vibronic wave
function of a molecular system with electronic inter-state couplings. The
partitioning of the Hilbert space into subspaces with different levels of exci-
tations appears quite effective in selecting the active space. Increasing the
number of simultaneously excited vibrations allows to achieve, at least in
principle, converged results, however this procedure can be applied only to
small systems and more advanced truncation schemes must be developed.

In the cases considered here GCS-1 and GCS-2 methodologies provide a
significant improvement over the widely used D1 ansatz. On the basis of the
results discussed in the preceding section the GCS-1 methodology is ideal to
study systems in the non-adiabatic or intermediate regime even with large
electron-phonon coupling strengths. GCS-2 can be used to have quantitative
results both in the non-adiabatic and in the adiabatic regime, and for a wider
range of coupling-strength. This result is of primary importance since the
computational cost of the GCS-1 method is not much higher that the D1. It
is worth mentioning that very recently Zhao Yang and coworkers
have suggested a generalisation of the D1 ansatz using multiple
coherent states which provides a significant improvement over the
D1 approach, and extend its applicability range.[17, 21]

On the other hand, as in any basis set methodology the number of in-
dependent coefficients in the wave function expansion is of main concern.
While we have not yet investigated the possibility of contraction or projec-
tion schemes[49, 50, 51] the methodology could be easily extended to handle
such techniques.

From a numerical point of view, the evaluation of the derivatives of
the potential energy is the most crucial step of the numerical integration
scheme. Indeed, it requires the calculation of Franck-Condon type integrals
between pairs of time-dependent basis functions. Here we have developed
new recurrence formulae to efficiently compute this type of integrals, that
are akin to the well-known recurrence relations for FC integrals between
harmonic oscillators wavefunctions.[52, 53, 54, 55, 56] Furthermore, the ex-
plicit time-dependent basis and the multi-set formulation allows to strongly
reduce the number of primitive functions in the calculations, which, from a
numerical perspective, implies very low computer memory requirements.
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Appendix A. The metric tensor

The determination of the metric tensor η requires the evaluation of the
derivatives of the wavefunction Ψ(x, t) and its complex conjugate Ψ∗(x, t)
with respect to the set of real parameters {rlK , slK, qli, pli, K ∈ N

d}. The
derivatives of Ψ with respect to the expansion coefficients are straight-
forward and not reported here. Starting from the properties of the one-
dimensional displacement operator D(α)

∂

∂α
D(α) = a†D(α)− ᾱ

2
D(α) = D(α)a† +

ᾱ

2
D(α) (A.1)

∂

∂ᾱ
D(α) = −aD(α) +

α

2
D(α) = −D(α)a− α

2
D(α) (A.2)

we easily obtain

∂

∂q
D(α) =

(a† − a)√
2

D(α) + i
p

2
D(α) = D(α)

(a† − a)√
2

− i
p

2
D(α) (A.3)

∂

∂p
D(α) = i

(a† + a)√
2

D(α)− i
q

2
D(α) = iD(α)

(a† + a)√
2

+ i
q

2
D(α) (A.4)

and

∂

∂q
D†(α) = −(a† − a)√

2
D†(α) + i

p

2
D†(α) =

( ∂

∂q
D(α)

)†

(A.5)

∂

∂p
D†(α) = −i

(a† + a)√
2

D†(α)− i
q

2
D†(α) =

( ∂

∂p
D(α)

)†

(A.6)
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from which we derive the relations

∂qlhΨ = −i
plh
2

∑

K

ClK

∣

∣K,αl

〉

+
∑

K

ClK

[

√

kh + 1

2

∣

∣K + 1h, αl

〉

−
√

kh
2

∣

∣K − 1h, αl

〉

]

(A.7a)

∂plhΨ = i
qlh
2

∑

K

ClK

∣

∣K,αl

〉

+ i
∑

K

ClK

[

√

kh + 1

2

∣

∣K + 1h, αl

〉

+

√

kh
2

∣

∣K − 1h, αl

〉

]

.

(A.7b)

where we remind that qlh =
√
2Reαlh, plh =

√
2 Imαlh, and ∂qlh = (∂αlh

+
∂ᾱlh

)/
√
2, ∂plh = i(∂αlh

− ∂ᾱlh
)/
√
2.

Using the above rule for the derivatives of the displacement operator
deriving explicit formulae for the metric tensor elements is quite easy. Here
we outline the derivation of the ηqilphm element. First of all we notice that
ηqilphm = 0 if l 6= m. From the definition of the metric tensor we have

ηqilphl = −2 Im
∑

KJ

C̄lK

〈

K
∣

∣∂qilD
†(αl)∂phlD(αl)

∣

∣J
〉

ClJ (A.8)

The expression above is the imaginary part of a quadratic form and is the
anti-Hermitian part of the operator

X = ∂qilD
†(αl)∂phlD(αl) = −i

(a†i − ai)(a
†
h + ah)

2
−i

a†i − ai

2
√
2

qi−ph
(ah + a†h)

2
√
2

−qiph
4

(A.9)
which has been derived by using formulae A.5 and A.4, whence

ηqilphl = −
∑

KJ

C̄lK

〈

K
∣

∣X −X†
∣

∣J
〉

ClJ . (A.10)

If i 6= h the operator X is Hermitian thus the corresponding metric tensor
element is zero. If i = h it can be easily verified that X −X† = [ai, a

†
i ] = 1.

Thus, considering the orthonormality relation 〈K|J〉 = δKJ , we have

ηqilpil = −
∑

K

|ClK|2 = −
∑

K

(r2lK + s2lK). (A.11)

The term ηqilpil represents the overall population of the l-th electronic state
with negative sign.
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Appendix B. The Hamiltonian function

The Hamiltonian function H can be easily obtained by using the unitary
transformations

D†(α)ωia
†
iaiD(α) = ωia

†
iai + ωi|αi|2 + ωi(αia

†
i + ᾱiai) (B.1)

D†(α)giqiD(α) = D†(α)
gi√
2
(a†i + ai)D(α) =

gi√
2
(a†i + ai) +

gi√
2
(ᾱi + αi)

(B.2)

from which, using the orthonormality of the basis functions
∣

∣K,αl

〉

, we have

H =
∑

miK

{[

ǫm + ω(|αmi|2 + ki) +
g√
2
(ᾱmi + αmi)

]

|CmK |2
}

(B.3)

+
∑

miK

[ωαmi +
g√
2
]
√

ki + 1C̄mK+1iCmK

+
∑

miK

[ωᾱmi +
g√
2
]
√

kiC̄mK−1iCmK

+ J
∑

lmKJ

C̄lKCmJ〈K,αl|J, αm〉+ H.c..

Splitting each parameter into its real and imaginary component, the Hamil-
tonian can be rewritten in the form

H = H◦ + V (B.4)

with

H◦ =
∑

miK

{[

ǫm + ω(p2mi + q2mi)/2 + ωki + gqmi

]

(r2mK + s2mK)
}

(B.5)

+
∑

miK

(ωqmi + g)
√

2(ki + 1)(rmK+1irmK + smK+1ismK)

+
∑

miK

ωpmi

√

2(ki + 1)(rmK+1ismK − smK+1irmK)

V = J
∑

lmKJ

C̄lKCmJ〈K,αl|J, αm〉 = 2J
∑

JK

∑

m>l

[

(rlKrmJ + slKsmJ) Re 〈K,αl|J, αm〉

(B.6)

− (rlKsmJ − slKrmJ) Im 〈K,αl|J, αm〉
]
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The integrals 〈K,αl|J, αm〉 are complex numbers, that can be evaluated by
using the recurrence relations described in appendix C. The calculation of
the derivatives of the Hamilton function with respect to (rlK , slK , qli, pli)
follows from standard differentiation rules

∂slKH = 2
{

ǫl +
∑

i

[ω

2
(p2li + q2li) + gqli + ωki

]}

slK (B.7a)

+
∑

i

√

2(ki + 1)[(ωqli + gli)slK+1i − ωplirlK+1i]

+
∑

i

√

2ki[(ωqli + g)slK−1i + ωplirlK−1i] + ∂slKV

∂rlKH = 2
{

ǫl +
∑

i

[ω

2
(p2li + q2li) + gqli + ωki

]}

rlK (B.7b)

+
∑

i

√

2(ki + 1)[(ωqli + g)rlK+1i + ωplislK+1i]

+
∑

i

√

2ki[(ωqli + g)rlK−1i − ωplislK−1i] + ∂rlKV

∂pliH = ωpli
∑

K

(r2lK + s2lK) +
∑

K

ω
√

2(ki + 1)(rlKslK+1i − rlK+1islK) + ∂pliV

(B.7c)

∂qliH = (ωqli + g)
∑

K

(r2lK + s2lK) +
∑

K

ω
√

2(ki + 1)(rlK+1irlK + slK+1islK) + ∂qliV.

(B.7d)

The calculation of the derivatives of V is quite lengthy but straightforward.
By rewriting the overalp integrals between GCSs in the form

〈K,αl|J, αm〉 =
〈

K
∣

∣D(−αl)D(αm)
∣

∣J
〉

(B.8)
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and using equations A.3 and A.4 we obtain

∂qni
V = 2

∑

lKJ

Vln(rlKrnJ + slKsnJ)×

[

√

ji + 1

2
Re〈K,αl|J+1i, αn〉−

√

ji
2
Re〈K,αl|J−1i, αn〉+

pni
2

Im〈K,αl|J, αn〉
]

− 2
∑

lKJ

Vln(rlKsnJ − slKrnJ)×

[

√

ji + 1

2
Im〈K,αl|J+1i, αn〉−

√

ji
2
Im〈K,αl|J−1i, αn〉−

pni
2

Re〈K,αl|J, αn〉
]

(B.9)

and

∂pni
V = −2

∑

lKJ

Vln(rlKrnJ + slKsnJ)×

[

√

ji + 1

2
Im〈K,αl|J+1i, αn〉+

√

ji
2
Im〈K,αl|J−1i, αn〉+

qni
2

Im〈K,αl|J, αn〉
]

+ 2
∑

lKJ

Vln(rlKsnJ − slKrnJ)×

[

√

ji + 1

2
Re〈K,αl|J+1i, αn〉+

√

ji
2
Re〈K,αl|J−1i, αn〉+

qni
2

Re〈K,αl|J, αn〉
]

(B.10)

Appendix C. Franck-Condon integrals

The one-dimensional Franck-Condon integrals 〈K,αl|J, αm〉 can be com-
puted by recurrence formulae.[54, 56, 55] Indeed we first observe that

〈K,αl|J, αm〉 =
〈

K
∣

∣D†(αl)D(αm)
∣

∣J
〉

= eIm(ᾱlαm)
〈

K
∣

∣D(γ)
∣

∣J
〉

(C.1)

where γ = αm − αl, then, using the generating function[57]

G(ρ̄, τ) =
∑

m,n

Dmn(γ)
ρ̄mτn√
m!n!

= exp(−|γ|2/2) exp(ρ̄τ + ρ̄γ − τ γ̄) (C.2)

and applying well known mathematical procedures[54, 56, 55, 58, 59, 52] it
is possible to derive the recurrence formulae

√
m+ 1Dm+1,n = γDmn +

√
nDm,n−1 (C.3)

√
n + 1Dm,n+1 = −γ̄Dmn +

√
mDm−1,n, (C.4)
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with
D00(γ) = exp(−|γ|2/2), (C.5)

which allow to compute FC integrals for any pair of quantum numbers.[60,
52]
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