
09 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Vibronic couplings and coherent electron transfer in bridged systems

Published version:

DOI:10.1039/c5cp01190f

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1583192 since 2021-08-25T19:17:03Z



This full text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Institutional Repository

This is the author's final version of the contribution published as:

Borrelli, Raffaele; Capobianco, Amedeo; Landi, Alessandro; Peluso, Andrea.
Vibronic couplings and coherent electron transfer in bridged systems.
PHYSICAL CHEMISTRY CHEMICAL PHYSICS. 17 (46) pp:
30937-30945.
DOI: 10.1039/c5cp01190f

The publisher's version is available at:
http://xlink.rsc.org/?DOI=C5CP01190F

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/1583192



Vibronic Couplings and Coherent Electron Transfer in Bridged Sys-

tems

Raffaele Borrelli„ b Amedeo Capobianco,b Alessandro Landi,b and Andrea Peluso∗b

Received Xth XXXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX

First published on the web Xth XXXXXXXXXX 200X

DOI: 10.1039/b000000x

A discrete state approach to the dynamics of coherent electron transfer processes in bridged systems, involving three or more

electronic states, is presented. The approach is based on a partition of the Hilbert space of the time independent basis functions

in subspaces of increasing dimensionality, which allows for checking the convergence of the time dependent wave function.

Vibronic coupling are determined by Duschinsky analysis carried out over the normal modes of the redox partners obtained at

high DFT computational level.

Introduction

Electron transfer reactions are ubiquitous in chemistry and

biochemistry. The first mechanistic insights of ET processes

were provided by Franck and Libby, who realized that ET

rates are regulated by the nuclear motions both of the two

molecules which exchange an electron and of the surrounding

environment.1 In analogy with radiative transitions, they as-

serted that the Franck-Condon principle holds also for thermal

ET reactions in solutions, so that ET rates are determined by

the overlap between the vibrational states of the initial and fi-

nal electronic states. The seminal works of Lax and Kubo, and

of Marcus, who pioneered the quantitative description of the

solvent effects, provided powerful theoretical means for com-

puting Franck-Condon factors, posing the fundamentals for

modeling ET reactions in condensed phases.2–5 Apart from

b Department of Chemistry and Biology, University of Salerno, I-10125 Fis-

ciano (SA), Italy E-mail: apeluso@unisa.it
a Department of Agricultural, Forestry and Food Science, University of

Torino, Via Leonardo da Vinci 44, I-10095 Grugliasco, Italy;

vibrational contributions, the second crucial factor which con-

trol ET rates is the electronic coupling term. Works on sys-

tems in which the two redox centers are rigidly spaced by an

ET inert bridge, i.e. a system whose unoccupied electronic

levels are too high in energy for being accessible to a trans-

ferring electron, made it rapidly clear that the electroniccou-

pling term must involve not only the direct interactions be-

tween the electronic clouds of the two redox partner but also

their offresonance couplings with the virtual electronic states

of the bridging system.6–8 That bridged mediated ET mech-

anism, analogue to resonance Raman scattering in radiative

transitions and to magnetic interactions in solids, was called

superexchange mechanism.

Since bridged systems are of outstanding importance in bio-

chemistry, ET via superexchange has been the subject of sev-

eral theoretical works; coherent quantum dynamics as well as

dissipative models have been developed in the past to explore

ET dynamics in three-electronic states system.9–22 Herein we

report a theoretical approach based on numerical solution of
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the time dependent Schrödinger equations for systems charac-

terized by three or more electronic states, each of them mod-

eled in the harmonic approximation using parameters obtained

by highly reliable density functional theory (DFT) computa-

tions. Combining the results of DFT orab-initio computa-

tions with quantum dynamics simulations of ET rates is stilla

challenging task,23–28 which hopefully can lead to a deeper

understanding of the mechanisms of ET reaction occurring

in biochemical systems as well as in nanoelectronic devices.

Here we will apply the formalism to coherent hole transfer

processes in DNA, mimicking hole transfer between two gua-

nines separated by one or more adenine and thymine units.

1 The Hamiltonian matrix

Let us consider a supramolecular system characterized byL

weakly interacting molecular sites in which a charge, an elec-

tron or a hole, has been injected. In such a supramolecular

assembly each molecular unit,i, can be found either in its

neutral,
∣

∣iN
〉

, or charged state,
∣

∣iC
〉

, giving rise toL low ly-

ing diabatic electronic states, each of them correspondingto

the additional electron or hole fully localized on one molecu-

lar site. Let
∣

∣l
〉

denote the electronic state in which the charge

is localized on thel-th site; because the electronic coupling is

weak,
∣

∣l
〉

can be well represented by the direct product of the

eigenstates of the non-interacting molecular units:

∣

∣l
〉

=
∣

∣lC
〉

L

∏
i 6=l

∣

∣iN
〉

(1)

with:

H(el)
iX

∣

∣iX
〉

=UiX (QiX )
∣

∣iX
〉

, X =C,N i = 1,2...L.

(2)

whereH(el)
iX is the electronic Hamiltonian operator of the iso-

latedi-th molecular unit in its redox stateX =C/N, UiX (QiX )

is the electronic energy of the isolatedi-th molecular unit, and

QiX its normal modes of vibration.

Throughout this paper we will adopt harmonic approxima-

tion for theUiX ’s:

UiX = E0
iX +

1
2

Q†
iX ω2

iX QiX (3)

whereωiX is the diagonal matrix of the vibrational frequencies

of the normal modes of thei-th unit in its X electronic state

(X =C,N).

The Hamiltonian operator of the wholeL-site system can

then be written:13

H =
L

∑
l,m

∣

∣l
〉

Hlm
〈

m
∣

∣, (4)

with:

Hlm =
〈

l
∣

∣TN +Hel
∣

∣m
〉

. (5)

whereTN andHel include all the nuclear and electronic coor-

dinates of the whole molecular assembly.

The total time-dependent wavefunction is expanded over a

set of Born-Oppenheimer product wavefunctions:

Ψ(t) = ∑
l,v̄l

C(l)
v̄l
(t)

∣

∣l, v̄l
〉

. (6)

in which the vibrational basis functions
∣

∣v̄l
〉

for the l-th elec-

tronic state are given by the direct product of the vibrational

states of each molecular unit and the expansion coefficientsare

determined by solving the time-dependent Schrödinger equa-

tion:

−ih̄

















.
C
(1)
v̄1

.

.
.
C
(L)
v̄L

















=

















H11 H12 . . H1L

. . .

. . .

H†
1L H†

2L . . HLL

































C(1)
v̄1

.

.

C(L)
v̄L

















,

(7)

with initial conditions specifying the initial state of thesystem.

EachHlm in equation 7 is a matrix whose size depends on the

sizes of the vibrational basis sets chosen for each electronic

statesl andm.
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The computation of the diagonal blocks of the Hamiltonian

matrix, is straightforward; indeed theHll are diagonal matri-

ces, whose elements are simply given by the eigen-energies of

multidimensional harmonic oscillators. By denoting withn(α)
i,lk

the vibrational quantum number of theα-th normal mode of

the i-th molecular unit in thelk-th vibronic state, the diagonal

elements take the form:

Hlk,lk =
L

∑
i=1

[

∑
α

h̄n(α)
i,lk ω(α)

i,l

]

+El , (8)

whereEl is the electronic energy of thel-th electronic state;

the indexi runs over all the molecular units andα over the

normal modes of thei-th unit. The zero point energy does not

appear in the eq 8 because its contribution can be conveniently

included in the electronic energy term.

After integration over the electronic coordinates, neglect-

ing the weak dependence of the electronic couplings on the

nuclear coordinates, the coupling terms between the vibronic

states of
∣

∣l
〉

and
∣

∣m
〉

are given by:

Hlv̄l ,mv̄m = Hlm ·
〈

v̄ml
∣

∣v̄mm
〉〈

v̄ll
∣

∣v̄lm
〉

· ∏
i 6=l,m

δv̄il ,v̄im , (9)

whereHlm =
〈

l
∣

∣H el
∣

∣m
〉

is the electronic coupling term, and
〈

v̄ml
∣

∣v̄mm
〉

and
〈

v̄ll
∣

∣v̄lm
〉

are the multidimensional Franck-

Condon integrals over the normal modes of the two molecular

units involved in thel → m non-radiative transition.

The basic ingredients to build up the Hamiltonian matrix

which determines the time evolution of the system are there-

fore: i) the relative energy of theL vibronic ground states (in-

cluding the zero point contribution);ii) the normal modes of

each electronic states, which according to the above assump-

tions can be evaluated separately for each molecular compo-

nent,c.f. eq 2;iii) the electronic coupling termHlm andiv) the

Franck-Condon integrals.

In any discrete state approach to quantum dynamics, the se-

lection of the vibrational states to be used in the time evolution

is probably the most important problem to deal with. Different

strategies to reduce the size of the vibronic basis set have been

proposed in the literature.29 The approach we will use here

is based on the idea of partitioning the entire Hilbert spacein

a set of subspaces which differ in the number of vibrations

which are allowed to be simultaneously excited. Thus the en-

tire Hilbert space H spanned by the Hamiltonian of eq. 7 can

be partitioned as

H =
⋃

c

Sc

whereSc is the space spanned by the states in which onlyc

vibrations are simultaneously excited, with a given maximum

quantum number for each of them. Using such a partition the

wavefunction of eq. 6 can be more specifically written as:

Ψ(t) =
L

∑
l





N

∑
c=1

(N
c)

∑
i1...iC

∑
vi1 ...vic

Cvi1 ...vic
(t)

∣

∣vi1...vic

〉





∣

∣l
〉

=

∑
l



C(l)
0 (t)

∣

∣0
〉

+
N

∑
i

∑
vi

C(l)
vi (t)

∣

∣vi
〉

+
(N

2)

∑
i j

∑
viv j

C(l)
viv j(t)

∣

∣viv j
〉

+ ...





∣

∣l
〉

(10)

where for sake of simplicity we have dropped the indexl in

the vibrational basis set.

This partition of the Hilbert space stems from the observa-

tion that in molecular systems the larger the number of ex-

cited modes the smaller the Franck-Condon integrals associ-

ated to a specific electronic transitions. In the field of molec-

ular spectroscopy this approach has been exploited by San-

toro et al. and formalised by Janckowiacket al..30,31 Since

in our methodology the coupling between two vibronic states

is directly proportional to the corresponding FC integrals, it

is expected that the effect of states with a significant num-

ber of excited vibrations on the overall dynamics. will only

be marginal. This heuristic approach allows to significantly

restrict the active space of the problem and the associated nu-

merical complexity still retaining the most important features

of the dynamical behaviour of the system.
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As concerns the choice of the active vibrational modes,i.e.

modes which are allowed to change their quantum number

during the transition, they can be determined by the affine

Duschinsky’s transformation:32

Ql = JQm +K , (11)

whereQl andQm are the normal mode vectors of
∣

∣l
〉

and
∣

∣m
〉

,

J is the rotation matrix andK the displacement vector.

The rotation matrixJ and the displacement vectorK can

be easily determined once the equilibrium geometries and the

normal modes of the two electronic states are known.33–38.

In order to further reduce the overall computational costs,

the computation of the FC integrals has been carried out by

using the separate-mode approximation, which allows factor-

ization of the multidimensional FC integrals into the product

of one-dimensional integrals.39 It is an approximate method

for fast FC computations, which corresponds roughly to ne-

glecting the off diagonal terms of the Duschinsky transforma-

tion but taking into account the changes of the vibrational fre-

quencies of the vibrational modes.

2 Coherent hole transfer in DNA

Long distance hole transfer (HT) in DNA is of outstanding

importance; the chemico-physical properties of DNA under

oxidative stress,40? as well as the possibility of using DNA

in molecular electronics and molecular computing,41–45 de-

pend on the efficiency with which an electron hole can move

along a strand. Steady state photocleavage analyses and

time resolved spectroscopical methods have shown that HT

can cover distances up to 200 Å before irreversible oxida-

tion takes place.46–60 Oxidation preeminently occur at gua-

nine (G), the nucleobase with the lowest oxidation poten-

tial,61–65 particularly at sites comprising sequences of mul-

tiple GC base pairs,66–73 but oxidative damages at adenine

(A) and thymine (T) have also been found,74,75 showing that

HT in DNA is a very complex phenomenon, in which several

chemico-physical factors play a role.

Time resolved spectroscopy and steady state oxidative dam-

age analyses point toward an incoherent multistep hopping

mechanism,49,60,76–82in which the hole migrates essentially

by hopping between G neighboring sites,59 with the possibil-

ity of tunnelling over short distances, when two G sites are

separated by two or almost three A and/or T sites. The hop-

ping process is in most of the cases slow, thus limiting po-

tential applications to nano-scale electronic devices,83,84 but

since significant enhancements of HT rates have been ob-

served both by including in the strand modified nucleobases,

with a lower oxidation potentials than natural ones, or by using

sequences consisting of blocks of homopurine sequences,85,86

research in the field is still very active.83,84,87–90

Many theoretical studies at very high level of sophistication

have been performed in the past concerning the mechanism of

HT in DNA. 76,79,87,91–99Herein, we focus on coherent ET pro-

cess taking place between two G separated by up to three A or

T units, a problem which has been experimentally addressed

by Giese, who measured the ratios of the oxidative damages

occurring at two G:C steps, as a function of the interposed A:T

steps.100 Our numerical simulation of HT in short DNA tracts

starts from the analysis of the equilibrium position displace-

ments upon oxidation of the redox half-pairs G/G+, A/A+,

T/T+. The components of theK vectors, c.f. Eq, 11, which are

by far the quantities which play a major role in determining the

value of the effective couplings between vibronic states, are

reported in Tab. 1 for the three redox half-pair G/G+, A/A+,

and T/T+, together with their contribution to the total reorga-

nization energy, evaluated by using harmonic approximation.

Planarization of the exocyclic amino group is the most im-

portant geometrical change caused by oxidation of A and G

nucleobases.101 In the case of neutral G, the computed values
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of the out-of-plane bending of the two exocyclic amino hydro-

gens is 27.8 degrees whereas in the oxidized form the amino

group is almost planar. For A+ the exocyclic amino group

is also planar, whereas in the neutral form the out-of-plane

bending is 13.2 degrees. The predominat role played by the

planarization of the amino group is confirmed by MP2 com-

putations of the optimum geometries of neutral and oxidized

nucleobases, which yield a slightly higher degree of distortion

than DFT; more details about geometry change for the pairs

A/A+ and G/G+ can be found in ref99. As concerns T/T+ re-

dox half-pair, the most significant geometrical changes upon

oxidation concern C-C and C-N ring bonds and ring valence

bending coordinates; the displacements are small, see tab.2,

notwithstanding the computed B3LYP reorganization energy

amounts to 1935 cm−1, comparable to those of the other two

nucleobases: 1622 and 2294 cm−1 for A and G, respectively.

Inspection of tab. 2 show that more than 80% of the reorga-

nization energy arises from a subset of 13, 8 and 5 normal

modes of G, A, and T, respectively. Thus a model includ-

ing only those modes should provide a qualitatively correct

picture of the HT dynamics.102,103 Furthermore, due to the

high frequency of the most displaced vibrations with respect

to the thermal quantum at room temperature, we can neglect

any temperature effect and assume that the system is initially

in its vibrational ground state.

Before considering HT in bridged systems we have first

studied the hole-hopping in the pairGA+ with the aim of

checking the convergence properties of the proposed method-

ology. The 21 degrees of freedom of tab. 2 have been used

in computations; the energy difference between the initialand

final diabatic states have been set to 0.4 eV from the observed

oxidation potentials, whereasVAG has been set to 0.1 eV, an

average value taken from the results of voltammetric measure-

ments and DFT computations,88–90 see below for further de-

tails.

The results are reported in Fig.??, where the population

decay of the initial state, corresponding to the hole completely

localized on the A moiety, are reported as a function of time

for different choices of the Hilbert subspaces, defined in Eq.

10. When the vibrational basis set included states with at

most three vibrations simultaneously excited the results pro-

vide a qualitatively good description of the process. Adding

the states with four simultaneously excited vibrations provides

an almost converged result, since at higher excitation level the

population decay of the initial state does not show any sig-

nificant variation. The transition time for such ultrafast ET

process is about 20 fs, very similar to that predicted by using

the Fermi Golden Rule, dashed blach line in Fig.??, using the

density of states evaluated at 298 K including the whole set of

normal modes of both redox partners.27,99,104.

The results of fig. ?? demonstrate that the proposed

methodology has good scaling properties, indeed we have ob-

tained a converged dynamics by using only 1.5 105 basis func-

tion. A complete tensor product basis set would have required

a number of the order of magnitude on 109, i.e. comprised be-

tween 217 and 2110. The favourable scaling properties of the

methodology obviously lead to an increased algorithmic com-

plexity, mainly due to the necessity of computing the proper

FC integrals on-the-fly during the dynamics.

We have then considered hole dynamics for GAG and GTG

triads, GAAG, GAGG, and GTTG tetrads, and GAAAG,

GAAGG, GTTGG, and GTTTG pentads.

The parameters used in dynamics are the following:EG = 0,

EA = 0.4, ET = 0.5, VAA =0.3,VAG = VGG = 0.1, andVTT =

0.08 eV.

The energy differences between diabatic states have been

taken from oxidation potentials of nucleobases in solu-

tion,61–64 whereas electronic couplings have been estimated

as the best parameters to reproduce within the limit of a sim-

ple tight binding approximation the results of voltammetric

1–11 | 5



Table 1Frequencies (ω, cm−1), intramolecular reorganization energies (Er, cm−1), and equilibrium position displacements (K , Å uma−1/2)

of the most displaced normal modes of G/G+, A/A+, and T/T+ redox pairs.

G/G+ A+/A T+/T

ω Er K ω EG K ω Er K

338 76 -0.211 724 88 -0.106 387 88 0.00

435 223 -0.282 1328 83 5.62E-002 549 132 0.112

477 80 0.154 1143 83 -6.55E-002 739 74 0.112

521 166 -0.203 1353 204 8.66E-002 1375 289 -0.132

528 78 -0.137 1367 84 -5.52E-002 1425 233 0.00

1230 75 -5.79E-002 1510 424 0.112 1503 155 -1.9E-002

1366 85 -5.53E-002 1622 109 5.29E-002 1688 732 -0.134

1403 121 6.42E-002 1639 167 -6.47E-002 1735 187 -3.7E-002

1435 90 -5.43E-002

1477 259 8.95E-002

1526 80 4.82E-002

1639 488 -0.111

1742 160 -5.96E-002
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0 20 40 60 80 100

t (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
(t
)

Fig. 1 Population decay of theA+G tract computed using different

Hilbert subspaces: N(A+G)=1, N(AG+)=3 dashed red line;

N(A+G)=2, N(AG+)=3 red line; N(A+G)=1, N(AG+)=4 blue line;

N(A+G)=1, N(AG+)=5 black line. The exponential decay predicted

by the Fermi Golden Rule, dashed black line, is also reported for

comparison.

measurements of A and G rich oligonucleotides,89,90,105with-

out considering vibrational overlap effects, so that they should

be considered as a lower limit estimates.

The results of all dynamics simulations are collected in Tab.

??. We started by completely neglecting vibrational effects;

that approximation leads to a very facile HT by tunnelling:

for GAG, GAAG, and GTG, HT between the two ending Gs

occurs on subpicosecond timescales, whereas for GAAAG,

GTTG, and GTTTG transition times are significantly longer.

Particularly intriguing is the case of GAAAG, where the com-

paratively longer transition time is due to the establishment

of a delocalized domain, comprising all the five nucleobases;

only in that case the electronic states of the brige are popu-

lated in dynamics. The establishment of delocalized domains

in DNA is a very important issue, we will be back later on that

important point.

Inclusion of vibrational effects at the lowest level of approx-

imation, i.e. considering only the vibronic ground state ofeach

electronic state, has a strong effect on the computed transition

times, which increase of more than one order of magnitude

in the case of A bridging units and even more for T ones.

Noteworthy coeherence effects are loss in the case of GTTTG,

where HT transition time is longer than 1 ns.

Increasing the dimension of the Hilbert subspaces used in

dynamics lead as expected to shorter transition times. The

effect is comparatively smaller in the case of A bridges, be-

cause of the significanly higher electronic coupling term be-

tween consecutive As. In the case of GAG, we have obtained

convergent transition times using double excitation on theA

bridge (NA=2). At this exploratory stage, we have used used

the smallest Hilbert subspaces for G units (NG=1), inasmuch

in coherent superexchange mechanism the excited states of the

bridge are expected to play the major role.

The time evolutions of the populations of the initial states,

corresponding to a hole fully localized on a single G, together

with those of the bridge states (summed over all vibronic states

of the bridge) for GAG and GAAG are reported in Fig. 2.

The model Hamiltonians for GAG and GAAG include all the

modes reported in tab. 2, i.e. 34 and 42 vibrational degrees of

freedom for GAG and GAAG, respectively. The population of

the initial state in which the charge is initially fully localized

on a guanine site halves in about 200 fs for GAG and slightly

longer for GAAG; the transfer mechanism is clearly a coherent

superexchange, inasmuch the bridge states exhibit negligible

populations at all the times, see dashed lines in Fig. 2.

As concerns HT trough thymine bridges, tunnelling is pre-

dicted to be quite efficient in GTG and GTTG tracts, provided

that a sufficient number of vibronic states are considered indy-

namics, whereas for GTTTG tunnelling occurs on nanosecond

timescale, which, apart from problem concerning coherence

on such long time intervals, is more or less comparable with

the transition times predicted for the hopping mechanism.99

1–11 | 7



Table 2Transition times (τ, ps) at different level of approximation for HT between the ending Gs inGAG, GAAG, GAAAG, GTG, GTTG,

and GTTTG.

Ni Nb Nf GAG GAAG GAAAG GTG GTTG GTTTG

no FC 0.042 0.021 0.68 0.066 0.47 3.0

0 0 0 0.67 4.6 31.0 5.6 267.0 > 1000

1 1 1 0.52 0.68 0.72 0.88 12 152

1 2 1 0.46 0.48 0.36 0.64 6

1 3 1 0.46 0.62

0 100 200 300 400 500

t (fs)

0.0

0.2

0.4

0.6

0.8

1.0

P
(t
)

P (G+

1 AG2)

P (G+

1 AAG2)

Fig. 2 Hole-transfer dynamics inG+AG (black) and GAAG (red)

tracts. Full lines refer to population decay of the initial state, dashed

lines to the total population of the bridge vibronic states.

Giese has shown that hole transfer between guanines in du-

plexes can take place both by a coherent superexchange mech-

anism and by a thermally induced hopping process; the effi-

ciency of the tunnelling mechanism decreases rapidly as the

number of the bridging T:A steps increases, the bridge influ-

ence vanishes completely for three or more intervening T:A

steps. Those results were attributed to a shift in the HT mech-

anism from coherent superexchange at short distances to ther-

mally induced hopping at long distances.100 Our results are

in substantial good agreement with those experimental find-

ings for bridges consisting of thymine tracts. Noteworthy,

in Giese’s experiment intrastrand HT involve T homo-bases

tracts, whereas of course A tracts would be involved in in-

terstrand HT. As concerns intrastrand HT along A tracts, our

results predict that HT efficiency does not significantly depend

on the number of intervening As, up to three consecutive As.

We attribute that peculiar behavior

There is indeed growing experimental and theoretical evi-

dence that sequences consisting of two or more consecutive

homobases can form delocalized domains, in which the hole

is stabilized by resonance,50,60,66–73,88–90,106–109, but the ques-

tion about their real establishment is still under vivid debate

3 Computational details

Equilibrium geometries, normal modes, and vibrational fre-

quencies of G and A in their neutral and cationic form were

obtained at DFT level using the standard B3LYP functional

with the 6-311++G(d,p) basis set. Solvent (water) effects have

been estimated by using the polarizable continuum model

(PCM);110 the G09 package have been used for all electronic

wavefunction computations.111 Franck-Condon integrals and

the density of states used in the evaluation of the Fermi Golden

Rule rate constant have been computed by using a develop-

ment version of the MolFC package,37,112 Full details about

8 | 1–11



implementation of the generating function approach can be

found in ref.s27,104,113,114. In all FC calculations, the curvi-

linear coordinate representation of the normal modes has been

adopted to prevent that a large displacement of an angular co-

ordinate could reflect into large shifts of the equilibrium po-

sitions of the involved bond distances. That is unavoidablein

rectilinear Cartesian coordinates and requires the use of high

order anharmonic potentials for its correction.38,113,115–118

The numerical solution of the time-dependent Schödinger

equation has been carried out with an orthogonalised Krylov

subspace method.29,119
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