
11 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Reasoning about actions with Temporal Answer Sets

Published version:

DOI:10.1017/S1471068411000639

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/134769 since 2016-07-12T12:28:55Z

	
	

Reasoning about Actions with Temporal Answer Sets

L. Giordano, A. Martelli and D. Theseider Dupre’
(preliminary version)

Published in:

Theory and Practice of Logic Programming 13(2) 201-225 (2013)

	

Under consideration for publication in Theory and Practice of Logic Programming 1

Reasoning about Actions
with Temporal Answer Sets

Laura Giordano
Dipartimento di Informatica, Università del Piemonte Orientale, Italy

laura@mfn.unipmn.it

Alberto Martelli
Dipartimento di Informatica, Università di Torino, Italy

mrt@di.unito.it

Daniele Theseider Dupré
Dipartimento di Informatica, Università del Piemonte Orientale, Italy

dtd@mfn.unipmn.it

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this paper, we combine Answer Set Programming (ASP) with Dynamic Linear Time Temporal
Logic (DLTL) to define a temporal logic programming language for reasoning about complex actions
and infinite computations. DLTL extends propositional temporal logic of linear time with regular
programs of propositional dynamic logic, which are used for indexing temporal modalities. The
action language allows general DLTL formulas to be included in domain descriptions to constrain the
space of possible extensions. We introduce a notion of Temporal Answer Set for domain descriptions,
based on the usual notion of Answer Set. Also, we provide a translation of domain descriptions
into standard ASP and we use Bounded Model Checking techniques for the verification of DLTL
constraints.

1 Introduction

Temporal logic is one of the main tools used in the verification of dynamic systems. In
the last decades, temporal logic has been widely used also in AI in the context of planning,
diagnosis, web service verification, agent interaction and, in general, in most of those areas
having to do with some form of reasoning about actions.

The need of temporally extended goals in the context of planning has been first moti-
vated by Bacchus and Kabanza (Bacchus and Kabanza 1998), Kabanza et al. (Kabanza
et al. 1997) and by Giunchiglia and Traverso (Giunchiglia and Traverso 1999). In partic-
ular, (Giunchiglia and Traverso 1999) developed the idea of planning as model checking
in a temporal logic, where the properties of planning domains are formalized as tempo-
ral formulas in CTL. In general, temporal formulas can be usefully exploited both in the
specification of a domain and in the verification of its properties. This has been done, for
instance, for modeling the interaction of services on the web (Pistore et al. 2005), as well

2 L. Giordano, A. Martelli, D. Theseider Dupré

as for the specification and verification of agent communication protocols (Giordano et al.
2007). Recently, Claßen and Lakemeyer (Claßen and Lakemeyer 2008) have introduced
a second order extension of the temporal logic CTL*, ESG, to express and reason about
non-terminating Golog programs. The ability to capture infinite computations is important
as agents and robots usually fulfill non-terminating tasks.

In this paper we combine Answer Set Programming (ASP) (Gelfond 2007) with Dy-
namic Linear Time Temporal Logic (DLTL) (Henriksen and Thiagarajan 1999) to define
a temporal logic programming language for reasoning about complex actions and infinite
computations. DLTL extends propositional temporal logic of linear time with regular pro-
grams of propositional dynamic logic, which are used for indexing temporal modalities.
Allowing program expressions within temporal formulas and including arbitrary tempo-
ral formulas in domain descriptions provides a simple way of constraining the (possibly
infinite) evolutions of a system, as in PDL.

To combine ASP and DLTL, we define a temporal extension of ASP by allowing tem-
poral modalities to occur within rules and we introduce a notion of Temporal Answer Set,
which captures the temporal dimension of the language as a linear structure and naturally
allows to deal with infinite computations.

A domain description is defined to consist of two parts: a set of temporal rules (action
laws, causal laws, etc.) and of a set of constraint (arbitrary DLTL formulas). The temporal
answer sets of the rules in the domain description which also satisfy the constraints are
defined to be the extensions of the domain description.

We provide a translation into standard ASP for the action laws, causal laws, etc. of the
domain description. The temporal answer sets of an action theory can then be computed as
the standard answer sets of the translation.

To compute the extensions of a domain description, the temporal constraints, which are
part of the domain description, are evaluated over temporal answer sets using bounded
model checking techniques (Biere et al. 2003). The approach proposed for the verification
of DLTL formulas extends the one developed in (Heljanko and Niemelä 2003) for bounded
LTL model checking with Stable Models.

The outline of the paper is as follows. In Section 2, we recall the temporal logic DLTL.
In Section 3, we introduce our action theory in temporal ASP. In Section 4, we define the
notions of temporal answer set and extension of a domain description. Section 5 describes
the reasoning tasks, while Sections 6 and 7 describe the model checking problem and
provide a translation of temporal domain descriptions into ASP. Section 8 provides the
conclusions and the related work.

2 Dynamic Linear Time Temporal Logic

In this section we briefly define the syntax and semantics of DLTL as introduced in (Hen-
riksen and Thiagarajan 1999). In such a linear time temporal logic the next state modality
is indexed by actions. Moreover, (and this is the extension to LTL) the until operator U⇡ is
indexed by a program ⇡ as in Propositional Dynamic Logic (PDL). In addition to the usual
2 (always) and 3 (eventually) temporal modalities of LTL, new modalities [⇡] and h⇡i are
allowed. Informally, a formula [⇡]↵ is true in a world w of a linear temporal model if ↵
holds in all the worlds of the model which are reachable from w through any execution of

Reasoning about Actions with Temporal Answer Sets 3

the program ⇡. A formula h⇡i↵ is true in a world w of a linear temporal model if there
exists a world of the model reachable from w through an execution of the program ⇡, in
which ↵ holds. The program ⇡ can be any regular expression built from atomic actions us-
ing sequence (;), non-deterministic choice (+) and finite iteration (⇤). The usual modalities
2, 3 and� (next) of LTL are definable.

Let ⌃ be a finite non-empty alphabet. The members of ⌃ are actions. Let ⌃⇤ and ⌃! be
the set of finite and infinite words on ⌃, where ! = {0, 1, 2, . . .}. Let ⌃1 =⌃⇤ [⌃! . We
denote by �,�0 the words over ⌃! and by ⌧, ⌧ 0 the words over ⌃⇤. We denote by prf(u) the
set of finite prefixes of u. Moreover, we denote by the usual prefix ordering over ⌃⇤ and,
for u 2 ⌃1, namely, we define ⌧ ⌧ 0 iff 9⌧ 00 such that ⌧⌧ 00 = ⌧ 0 and we define ⌧ < ⌧ 0

iff ⌧ ⌧ 0 and ⌧ 6= ⌧ 0.
The set of programs (regular expressions) Prg(⌃) generated by ⌃ is:

Prg(⌃) ::= a | ⇡1 + ⇡2 | ⇡1;⇡2 | ⇡⇤,

where a 2 ⌃ and ⇡1,⇡2,⇡ range over Prg(⌃). A set of finite words is associated with
each program by the mapping [[]] : Prg(⌃)! 2⌃

⇤
, which is defined as follows:

• [[a]] = {a};
• [[⇡1 + ⇡2]] = [[⇡1]] [[[⇡2]];
• [[⇡1;⇡2]] = {⌧1⌧2 | ⌧1 2 [[⇡1]] and ⌧2 2 [[⇡2]]};
• [[⇡⇤]] =

S
[[⇡i]], where

— [[⇡0]] = {"}
— [[⇡i+1]] = {⌧1⌧2 | ⌧1 2 [[⇡]] and ⌧2 2 [[⇡i]]}, for every i 2 !.

where " is the empty word (the empty action sequence).
Let P = {p1, p2, . . .} be a countable set of atomic propositions containing > and ? and

let DLTL(⌃) ::= p | ¬↵ | ↵ _ � | ↵U⇡�, where p 2 P and ↵,� range over DLTL(⌃).
A model of DLTL(⌃) is a pair M = (�, V) where � 2 ⌃! and V : prf(�) ! 2P is a

valuation function. Given a model M = (�, V), a finite word ⌧ 2 prf(�) and a formula ↵,
the satisfiability of a formula ↵ at ⌧ in M , written M, ⌧ |= ↵, is defined as follows:

• M, ⌧ |= >;
• M, ⌧ 6|= ?;
• M, ⌧ |= p iff p 2 V (⌧);
• M, ⌧ |= ¬↵ iff M, ⌧ 6|= ↵;
• M, ⌧ |= ↵ _ � iff M, ⌧ |= ↵ or M, ⌧ |= �;
• M, ⌧ |= ↵U⇡� iff there exists ⌧ 0 2 [[⇡]] such that ⌧⌧ 0 2 prf(�) and M, ⌧⌧ 0 |= �.

Moreover, for every ⌧ 00 such that " ⌧ 00 < ⌧ 0, M, ⌧⌧ 00 |= ↵.

A formula ↵ is satisfiable iff there is a model M = (�, V) and a finite word ⌧ 2 prf(�)
such that M, ⌧ |= ↵. The formula ↵U⇡� is true at ⌧ if “↵ until �” is true on a finite stretch
of behavior which is in the linear time behavior of the program ⇡.

The classical connectives � and ^ are defined as usual. The derived modalities h⇡i and
[⇡] can be defined as follows: h⇡i↵ ⌘ >U⇡↵ and [⇡]↵ ⌘ ¬h⇡i¬↵. Furthermore, if we
let ⌃ = {a1, . . . , an}, the U (until),� (next), 3 and 2 operators of LTL can be defined
as follows:�↵ ⌘

W
a2⌃hai↵, ↵U� ⌘ ↵U⌃⇤

�, 3↵ ⌘ >U↵, 2↵ ⌘ ¬3¬↵, where,
in U⌃⇤

, ⌃ is taken to be a shorthand for the program a1 + . . . + an. Hence, LTL(⌃) is a

4 L. Giordano, A. Martelli, D. Theseider Dupré

fragment of DLTL(⌃). As shown in (Henriksen and Thiagarajan 1999), DLTL(⌃) is strictly
more expressive than LTL(⌃). In fact, DLTL has the full expressive power of the monadic
second order theory of !-sequences.

3 Action theories in Temporal ASP

Let P be a set of atomic propositions, the fluent names. A simple fluent literal l is a fluent
name f or its negation ¬f . Given a fluent literal l, such that l = f or l = ¬f , we define
|l| = f . We denote by LitS the set of all simple fluent literals and, for each l 2 LitS ,
we denote by l the complementary literal (namely, p = ¬p and ¬p = p). LitT is the set
of temporal fluent literals: if l 2 LitS , then [a]l,�l 2 LitT (for a 2 ⌃). Let Lit =
LitS [LitT [{?}, where ? represents inconsistency. Given a (temporal) fluent literal l,
not l represents the default negation of l. A (temporal) fluent literal possibly preceded by
a default negation, will be called an extended fluent literal.

In the following, to define our action language, we make use of a notion of state: a set of
fluent literals. A state is said to be consistent if it is not the case that both f and ¬f belong
to the state, or that ? belongs to the state. A state is said to be complete if, for each fluent
name p 2 P , either p or ¬p belong to the state. The execution of an action in a state may
possibly change the values of fluents in the state through its direct and indirect effects, thus
giving rise to a new state.

Given a set of actions ⌃, a domain description D over ⌃ is defined as a tuple (⇧, C),
where ⇧ is a set of laws (action laws, causal laws, precondition laws, etc.) describing the
preconditions and effects of actions, and C is a set of DLTL constraints. While ⇧ contains
the laws that are usually included in a domain description, which define the executability
conditions for actions, their direct and indirect effects as well as conditions on the initial
state, C contains general DLTL constraints which must be satisfied by the intended interpre-
tations of the domain description. As we will see, while the laws in ⇧ allow the definition
of local conditions, that must be satisfied by single states or by pairs of consecutive states,
the DLTL constraints define more general conditions on the possible executions of actions,
involving many different states. Let us first describe the laws occurring in ⇧.

The action laws in ⇧ describe the immediate effects of actions. They are rules of the
form:

2([a]l0 t1, . . . , tm, not tm+1, . . . , not tn) (1)

where l0 is a simple fluent literal and the ti’s are either simple fluent literals or temporal
fluent literals of the form [a]l. Its meaning is that executing action a in a state in which the
conditions t1, . . . , tm hold and conditions tm+1, . . . , tn do not hold causes the effect l0 to
hold. Observe that, a temporal literal [a]l is true in a state when the execution of action
a in that state causes l to become true in the next state. For instance, we can describe the
deterministic effect of the action shoot and load through the following action laws:

2([shoot]¬alive loaded)

(the action of shooting the turkey makes the turkey dead if the gun is loaded) and

2[load]loaded

(loading the gun makes the gun loaded).

Reasoning about Actions with Temporal Answer Sets 5

Non deterministic actions can be defined by making use of negation as failure in the
body of action laws. As an example of non-deterministic action, consider the action of
spinning the gun, after which the gun may be loaded or non-loaded:

2([spin]loaded not [spin]¬loaded)
2([spin]¬loaded not [spin]loaded)

Observe that, in this case, temporal fluent literals occur in the body of action laws.
Causal laws are intended to express “causal” dependencies among fluents. In ⇧ we allow

two kinds of causal laws: static causal laws and dynamic causal laws.
Static causal laws have the form:

2(l0 l1, . . . , lm, not lm+1, . . . , not ln) (2)

where the li’s are simple fluent literals. Their meaning is: if l1, . . . , lm hold in a state and
lm+1, . . . , ln do not hold in that state, than l0 is caused to hold in that state.

Dynamic causal laws have the form:

2(�l0 t1, . . . , tm, not tm+1, . . . , not tn) (3)

where the li’s are simple fluent literals and ti’s are either simple or temporal fluent literals
of the form �li. Their meaning is: if t1, . . . , tm hold in a state and tm+1, . . . , tn do not
hold in that state, than l0 is caused to hold in the next state. Observe that, a precondition
ti =�li holds in a state when li holds in the next state.

For instance, the static causal law 2(frightened in sight, alive) states that the
turkey being in sight of the hunter causes it to be frightened, if it is alive; alternatively, the
dynamic causal law 2(�frightened �in sight,¬in sight, alive) states that if the
turkey is alive, it becomes frightened (if it is not already) when it starts seeing the hunter;
but it can possibly become non-frightened later, due to other events, while still being in
sight of the hunter1.

Besides action laws and causal laws, which apply to all the states, we also allow for laws
in ⇧ which only apply to the initial state. They are called initial state laws and have the
form:

l0 l1, . . . , lm, not lm+1, . . . , not ln (4)

where the li’s are simple fluent literals. Observe that initial state laws unlike static causal
laws, only apply to the initial state as they are not prefixed by the 2 modality. As a special
case, the initial state can be defined as a set of simple fluent literals. For instance, the initial
state laws

alive. ¬in sight. ¬frightened.
define the initial state: {alive,¬in sight,¬frightened}.

Given the action laws, causal laws and initial state laws introduced above, all the usual
ingredients of action theories can be introduced in ⇧. In particular, let us consider that case
when ? can occur as a literal in the head of those laws.

1 Shorthands like those in (Denecker et al. 1998) could be used, even though we do not introduce them in this
paper, to express that a fluent or a complex formula is initiated (i.e. it is false in the current state and caused
true in the next one).

6 L. Giordano, A. Martelli, D. Theseider Dupré

Precondition laws are special kinds of action laws (1) with ? as effect. They have the
form:

2([a] ? l1, . . . , lm, not lm+1, . . . , not ln)

where a 2 ⌃ and the li’s are simple fluent literals. The meaning is that the execution of
an action a is not possible in a state in which l1, . . . , lm hold and lm+1, . . . , ln do not hold
(that is, no state may results from the execution of a in a state in which l1, . . . , lm hold and
lm+1, . . . , ln do not hold). An action for which no precondition law is given is regarded as
being executable in any state.

State constraints which apply to the initial state or to all states can be obtained, respec-
tively, when ? occurs in the head of initial state laws (4):

? t1, . . . , tm, not tm+1, . . . , not tn

or in the head of static causal laws (2)

2(? l1, . . . , lm, not lm+1, . . . , not ln)

The first one says that it is not the case that, in the initial state, l1, . . . , lm hold and
lm+1, . . . , ln do not hold. The second one says that there is no state in which l1, . . . , lm
hold and lm+1, . . . , ln do not hold.

As in (Lifschitz 1990; Kartha and Lifschitz 1994) we call frame fluents those fluents to
which the law of inertia applies. The persistency of frame fluents from a state to the next
one can be enforced by introducing in ⇧ a set of laws, called persistency laws,

2(�f f, not� ¬f)
2(�¬f ¬f, not� f)

for each simple fluent f to which inertia applies. Its meaning is that, if f holds in a state,
then f still holds in the next state, unless its complement ¬f is caused to hold. And sim-
ilarly for ¬f . Note that, persistency laws are instances of the dynamic causal laws (3). In
the following, for sake of conciseness, to include the above persistency laws for fluent f in
a domain description, we will simply write inertial f.

For instance, we can capture the fact that loaded is an inertial fluent (inertial loaded),
by introducing the two persistency laws:

2(�loaded loaded, not� ¬loaded)
2(�¬loaded ¬loaded, not� loaded)

The persistency of a fluent from a state to the next one can be blocked by the execution
of an action which causes the value of the fluent to change. For instance, the execution of
load in a state where the gun is unloaded (¬loaded) blocks the persistency of ¬loaded to
the next state as the action load causes the gun to be loaded as its immediate effect. Also,
the persistency of the fluent loaded is blocked by the execution of the action spin, which
may nondeterministically cause the gun to become loaded or ¬loaded, independently of
the initial value of the fluent itself.

Although most fluents are inertial, and they do not change their values unless an action
which affects their value is executed, there are also fluents which are not subject to the law
of inertia. For instance, there are fluents which normally take a default truth value, as a

Reasoning about Actions with Temporal Answer Sets 7

spring door which is normally closed

2(closed not¬closed)

or other non inertial fluents, like a pendulum (see (Giunchiglia et al. 2004)), which moves
from the leftmost position to the rightmost position and back and whose “default” behavior
can be described by the action laws:

2(�right ¬right, not� ¬right)
2(�¬right right, not� right)

Such default action laws play a role similar to that of default expressions in C+ (Giunchiglia
et al. 2004) and in K (Eiter et al. 2004). In such cases, persistency laws are not included in
the domain description for non-inertial fluents.

As we have seen, the specification of the initial state by initial state laws may be, in
general, incomplete. However, in this paper we want to reason about complete states so
that the execution of an infinite sequence of actions gives rise to a linear model as defined
in section 2. For this reason, we want to complete in all the possible ways the possibly
incomplete initial states. We assume that, for each fluent f , ⇧ contains the law:

f not ¬f
¬f not f

whose effect is that either f is assumed to hold in the initial state, or ¬f is assumed to
hold. In the following, we assume that, for each fluent f , the set of laws introduced above
for completing the initial state are implicitly included in ⇧, although, as we will see later,
this assumption in general is not sufficient to guarantee that all the states are complete.

DLTL does not include test actions as specific kinds of actions. However, test actions
are useful for checking the value of a fluent in a state, and they can be suitably defined.
Given a simple fluent literal l 2 LitS , we define a test action l?, for testing if l is true in
the current state. Action l? is executable in a state only if the literal l holds in that state
(otherwise, the action is non executable):

2([l?]? not l)

The test actions can be regarded as atomic actions with no effects:

2([l?]f f) 2([l?]¬f ¬f)

for all fluent names f : all simple fluent literals keep their values after the execution of
the test action l?. As we will see below, the presence of test actions is essential for the
definition of interesting complex actions.

The second component of a domain description is the set C of DLTL constraints, which
allow very general temporal conditions to be imposed on the executions of the domain
description (we will call them extensions). Their effect is that of restricting the space of
the possible executions. For instance, suppose that we want to add the condition that the
hunter does not load the gun until the turkey is in sight. We can add in C the temporal
constraint:

¬loaded U in sight

stating that the gun must not be loaded until the turkey is in sight. The addition of such

8 L. Giordano, A. Martelli, D. Theseider Dupré

a temporal constraint to the domain description filters out all the executions of a domain
description in which the gun is loaded before the turkey is in sight.

A temporal constraint can also require a complex behavior to be performed. The program

⇡ = (¬in sight?;wait)⇤; in sight?; load; shoot (5)

describes the behavior of the hunter who waits for a turkey until it appears and, when it is
in sight, loads the gun and shoots. Actions in sight? and ¬in sight? are test actions, as
introduced before. If the constraint

h(¬in sight?;wait)⇤; in sight?; load; shooti>

is included in C then all the runs of the domain description which do not start with an
execution of the given program are filtered out. For instance, an extension in which in the
initial state the turkey is not in sight and the hunter loads the gun and shoots is not allowed.
In general, the inclusion of a constraint h⇡i> in C requires that there is an execution of the
program ⇡ starting from the initial state.

Example 1
We can put together some of the laws introduced above to define the domain description
for a variant of the Yale shooting problem. As in the Russian turkey problem, besides the
action of loading the gun, shooting to the turkey and waiting, the hunter can execute the
action of spinning the gun, after which we do not know whether the gun is loaded or not.
In addition, we have that: (i) if the hunter is in sight and the turkey is alive, the turkey
becomes frightened; (ii) the hunter cannot load the gun until the turkey is out of sight; (iii)
the turkey can become in sight or out of sight (nondeterministically) during waiting.

Let ⌃ = {load, shoot, spin, wait} and P = {alive, loaded, in sight, frightened}.
We define a domain description (⇧,C), where ⇧ contains the following laws:

Immediate effects:

2([shoot]¬alive loaded)
2[load]loaded
2([spin]loaded not [spin]¬loaded)
2([spin]¬loaded not [spin]loaded)
2([wait]in sight not [wait]¬in sight)
2([wait]¬in sight not [wait]in sight)

Causal laws:

2(frightened in sight, alive)

Initial state laws:

alive. ¬in sight. ¬frightened.

Precondition laws:

2([load] ? loaded)

All fluents in P are inertial: inertial alive, inertial loaded, inertial in sight, inertial fright-
ened; and C = {¬loaded U in sight}.

Given this domain description we may want to ask if it is possible for the hunter to
execute a behavior described by program ⇡ in (5) so that the turkey is still alive after

Reasoning about Actions with Temporal Answer Sets 9

that execution. The intended answer to the query h⇡ialive would be yes, since there is a
possible scenario in which this can happen.

While we will make the answer to the above query more precise in the next section, by
introducing the notion of extension of a domain description, let us point out that the action
theory we have introduced is well suited to deal with infinite executions.

Example 2
This example describes a mail delivery agent, which repeatedly checks if there is mail in
the mailbox of a and in the mailbox of b and then it delivers the mail to a or to b, if any;
otherwise, it waits. Then, the agent starts again the cycle. The actions in ⌃ are: begin,
sense mail(a) (the agent verifies if there is mail in the mailbox of a), sense mail(b),
deliver(a) (the agent delivers the mail to a), deliver(b), wait (the agent waits). The fluent
names are mail(a) (there is mail in the mailbox of a) and mail(b). The domain description
contains the following laws for a:

Immediate effects:
2[deliver(a)]¬mail(a)
2([sense mail(a)]mail(a) not [sense mail(a)]¬mail(a))

Precondition laws:
2([deliver(a)] ? ¬mail(a))
2([wait] ? mail(a))

Their meaning is (in the order) that: after delivering the mail to a, there is no mail for
a any more; the action sense mail(a) of verifying if there is mail for a, may (non-
monotonically) cause mail(a) to become true; if there is no mail for a, deliver(a) is not
executable; if there is mail for a, wait is not executable. The same laws are also introduced
for the actions involving b.
All fluents in P are inertial: inertial mail(a), inertial mail(b). Observe that, the persistency
laws for inertial fluents interact with the immediate effect laws above. The execution of
sense mail(a) in a state in which there is no mail for a (¬mail(a)), may either lead to a
state in which mail(a) holds (by the second action law) or to a state in which ¬mail(a)
holds (by the persistency of ¬mail(a)).
C contains the following constraints:
hbegini>
2[begin]hsense(a); sense(b); (deliver(a) + deliver(b) + wait); begini>

The first one means that the action begin must be executed in the initial state. The second
one means that, after any execution of action begin, the agent must execute sense(a) and
sense(b) in the order, then either deliver the mail to a or to b or wait and, then, execute
action begin again, to start a new cycle.

We may want to check that if there is mail for a, the agent will eventually deliver it
to a. This property, which can be formalized by the formula 2(mail(a) � 3¬mail(a)),
does not hold as there is a possible scenario in which there is mail for a, but the mail is
repeatedly delivered to b and never to a. The mail delivery agent we have described is not
fair.

As another example, consider the following one concerning a controlled system from
the automotive domain.

10 L. Giordano, A. Martelli, D. Theseider Dupré

Example 3
We describe an adaptation of the qualitative causal model of the “common rail” diesel
injection system from (Panati and Theseider Dupré 2001) where:

• Pressurized fuel is stored in a container, the rail, in order to be injected at high pres-
sure into the cylinders. We ignore in the model the output flow through the injectors.
Fuel from the tank is input to the rail through a pump.

• A regulating system, including, in the physical system, a pressure sensor, a pressure
regulator and an Electronic Control Unit, controls pressure in the rail; in particular,
the pressure regulator, commanded by the ECU based on the measured pressure,
outputs fuel back to the tank.

• The control system repeatedly executes the sense p (sense pressure) action while the
physical system evolves through internal events.

Examples of formulas from the model are contained in ⇧:

2([pump weak fault]f in low

shows the effect of the fault event pump weak fault. Flows influence the (derivative of)
the pressure in the rail, and the derivative influences pressure, e.g.:

2(p decr f out ok, f in low) 2(p incr f out very low, f in low)
2(p steady f out low, f in low) 2([p change]p low p ok, p decr)
2([p change]p ok p low, p incr) 2([p change]? p steady)
2([p change]? p decr, p low) 2([p change]? p incr, p ok)

The model of the pressure regulating subsystem includes:

2([sense p]p obs ok p ok) 2([sense p]p obs low p low)
2(f out ok normal mode, p obs ok) 2([switch mode]comp mode)
2(f out low comp mode, p obs ok)
2(f out very low comp mode, p obs low)

with the obvious mutual exclusion constraints among fluents. Initially, everything is normal
and pressure is steady: p ok, p steady, f in ok, f out ok, normal mode.

All fluents are inertial. We have the following temporal constraints in C:

2((p ok ^ p decr) _ (p low ^ p incr) � hp changei>)
2(normal mode ^ p obs low � hswitch modei>)
[sense p]h(⌃� {sense p})⇤ihsense pi>
2[pump weak fault]¬3hpump weak faulti>

The first models conditions which imply a pressure change. The 2nd one models the fact
that a mode switch occurs when the system is operating in normal mode and the measured
pressure is low. The 3rd one models the fact that the control system repeatedly executes
sense p, but other actions may occur in between. The 4th one imposes that at most one
fault may occur in a run.

Given this specification, we can, for instance, check that if pressure is low in one state,
it will be normal in the 3rd next one, namely, that the temporal formula 2(p low � ��
�p ok) is satisfied in all the possible scenarios admitted by the domain description. That
is, the system tolerates a weak fault of the pump — the only fault included in this model.
In general, we could, e.g., be interested in proving properties that hold if at most one fault
occurs, or at most one fault in a set of “weak” faults occurs.

Reasoning about Actions with Temporal Answer Sets 11

As we have seen from the examples, our formalisms allows naturally to deal with infinite
executions of actions. Such infinite executions define the models over which temporal for-
mulas can be evaluated. Although in many cases (e.g. planning) we want to reason on finite
action sequences, it is easy to see that any finite action sequence can always be represented
as an infinite one. More precisely, this can be achieved by adding to the domain description
an action dummy, and the constraints 3hdummyi> and 2[dummy]hdummyi> stating
that action dummy is eventually executed and, from that point on, only action dummy is
executed. In the following, we will restrict our consideration to infinite executions and we
will assume that the dummy action is introduced when needed.

4 Temporal answer sets and extensions for domain descriptions

Given a domain description D = (⇧, C), the laws in ⇧ are rules of a general logic program
extended with a restricted use of temporal modalities. In order to define the extensions of
a domain description, we introduce a notion of temporal answer set, extending the usual
notion of answer set (Gelfond 2007). The extensions of a domain description will then be
defined as the temporal answer sets of ⇧ satisfying the integrity constraints C.

In the following, for conciseness, we call “simple (temporal) literals” the “simple (tem-
poral) fluent literals”. We call rules the laws in ⇧, which have one of the two forms:

l0 l1, . . . , lm, not lm+1, . . . , not ln (6)

where the l0i’s are simple literals, and

2(l0 l1, . . . , lm, not lm+1, . . . , not ln) (7)

where the li’s are simple or temporal literals, the first one capturing initial state laws, the
second one all the other laws. To define the notion of extension, we also need to introduce
rules of the form: [a1; . . . ; ah](l0 l1, . . . , lm), where the li’s are simple or temporal
literals, which will be used to define the reduct of a program. The modality [a1; . . . ; ah]
says that the rule applies in the state obtained after the execution of actions a1, . . . , ah.
Conveniently, also the notion of temporal literal used so far needs to be extended to include
literals of the form [a1; . . . ; ah]l, meaning that the simple fluent l holds after the execution
of the sequence of actions a1, . . . , ah.

As we have seen, temporal models of DLTL are linear models, consisting in an action
sequence � and a valuation function V , associating a propositional evaluation with each
state in the sequence (denoted by a prefix of �). We extend the notion of answer set to cap-
ture this linear structure of temporal models, by defining a partial temporal interpretation
as a pair (�, S), where � 2 ⌃! and S is a set of literals of the form [a1; . . . ; ak]l, where
a1 . . . ak is a prefix of �.

Definition 1
Let � 2 ⌃! . A partial temporal interpretation (�, S) (over �) is a set of temporal literals
of the form [a1; . . . ; ak]l, where a1 . . . ak is a prefix of �, and it is not the case that both
[a1; . . . ; ak]l and [a1; . . . ; ak]¬l belong to S or that [a1; . . . ; ak]? belongs to S (namely,
S is a consistent set of temporal literals).

A temporal interpretation (�, S) is said to be total if either [a1; . . . ; ak]p 2 S or [a1; . . . ; ak]¬p 2
S, for each a1 . . . ak prefix of � and for each fluent name p.

12 L. Giordano, A. Martelli, D. Theseider Dupré

Observe that a partial interpretation (�, S) provides, for each prefix a1 . . . ak, a partial
evaluation of fluents in the state corresponding to that prefix. The (partial) state w

(�,S)
a1...ak

obtained by the execution of the actions a1 . . . ak in the sequence can be defined as follows:

w(�,S)
a1...ak

= {l : [a1; . . . ; ak]l 2 S}

We define the satisfiability of a simple, temporal and extended literal t in a partial
temporal interpretation (�, S) in the state a1 . . . ak, (written S, a1 . . . ak |= t) as follows:
(�, S), a1 . . . ak |= >
(�, S), a1 . . . ak 6|= ?
(�, S), a1 . . . ak |= l iff [a1; . . . ; ak]l 2 S, for a simple literal l
(�, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l 2 S or a1 . . . ak, a is not a prefix of �
(�, S), a1 . . . ak |=�l iff [a1; . . . ; ak; b]l 2 S, where a1 . . . akb is a prefix of �
(�, S), a1 . . . ak |= not l iff (�, S), a1 . . . ak 6|= l

The satisfiability of rule bodies in a partial interpretation are defined as usual:
(�, S), a1 . . . ak |= t1, . . . , tn iff (�, S), a1 . . . ak |= t1 and . . . and (�, S), a1 . . . ak |= t

A rule H Body is satisfied in a partial temporal interpretation (�, S) if, (�, S), " |=
Body implies (�, S), " |= H , where " is the empty action sequence.

A rule 2(H Body) is satisfied in a partial temporal interpretation (�, S) if, for all
action sequences a1 . . . ak (including the empty one), (�, S), a1 . . . ak |= Body implies
(�, S), a1 . . . ak |= H .

A rule [a1; . . . ; ah](H Body) is satisfied in a partial temporal interpretation (�, S) if
(�, S), a1 . . . ah |= Body implies (�, S), a1 . . . ah |= H .

We are now ready to define the notion of answer set for a set P of rules that does not
contain default negation. Let P be a set of rules over an action alphabet ⌃, not containing
default negation, and let � 2 ⌃! .

Definition 2
A partial temporal interpretation (�, S) is a temporal answer set of P if S is minimal (in
the sense of set inclusion) among the partial interpretations over � satisfying the rules in
P .

In order to define answer sets of a program P possibly containing negation, given a
partial temporal interpretation (�, S) over � 2 ⌃! , we define the reduct, P (�,S), of P
relative to (�, S) extending Gelfond and Lifschitz’ transform (Gelfond and Lifschitz 1988)
to compute a different reduct of P for each prefix a1, . . . , ah of �.

Definition 3
The reduct, P (�,S)

a1,...,ah , of P relative to (�, S) and to the prefix a1, . . . , ah of � , is the set of
all the rules

[a1; . . . ; ah](H l1, . . . , lm)

such that 2(H l1, . . . , lm, not lm+1, . . . , not ln) is in P and (�, S), a1, . . . , ah 6|= li,
for all i = m+1, . . . , n. The reduct P (�,S) of P relative to (�, S) is the union of all reducts
P

(�,S)
a1,...,ah for all prefixes a1, . . . , ah of �.

In essence, given a partial interpretation (�, S) over �, a different reduct is computed for
each finite prefix of �, that is, for each possible state corresponding to a prefix of �.

Reasoning about Actions with Temporal Answer Sets 13

Definition 4
A partial temporal interpretation (�, S) is an answer set of P if (�, S) is an answer set of
the reduct P (�,S).

The definition above is a natural generalization of the usual notion of answer set to
programs with temporal rules. Observe that, � has infinitely many prefixes, so that the
reduct P (�,S) is infinite as well as its answer sets. This is in accordance with the fact that
temporal models are infinite.

In the following, we will devote our attention to those domain descriptions D = (⇧, C)
such that ⇧ has total temporal answer sets. We will call such domain descriptions well de-
fined domain descriptions. As we will see below, total temporal answer sets can indeed be
regarded as temporal models (according to the definition of model in Section 2). Although
it is not possible to define general syntactic conditions which guarantee that the temporal
answer sets of ⇧ are total, this can be done in some specific case. It is possible to prove the
following:

Proposition 1
Let D = (⇧, C) be a domain description over ⌃, such that all fluents are inertial. Let
� 2 ⌃! . Any answer set of ⇧ over � is a total answer set over �.

This result is not surprising, since, as we have assumed in the previous section, the laws for
completing the initial state are implicitly added to ⇧, so that the initial state is complete.
Moreover, it can be shown that (under the conditions, stated in Proposition 1, that all fluents
are inertial) the execution of an action in a complete state produces (non-deterministically,
due to the presence of non-deterministic actions) a new complete state, which can be only
determined by the action laws, causal laws and persistency laws executed in that state.

In the following, we define the notion of extension of a well defined domain description
D = (⇧, C) over ⌃ in two steps: first, we find the temporal answer sets of ⇧; second, we
filter out all the temporal answer sets which do not satisfy the temporal constraints in C.
For the second step, we need to define when a temporal formula ↵ is satisfied in a total
temporal interpretation (�, S). Observe that a total answer set (�, S) can be easily seen as
a temporal model, as defined in Section 2. Given a total answer set (�, S) we define the
corresponding temporal model as MS = (�, VS), where p 2 VS(a1, . . . , ah) if and only if
[a1; . . . ; ah]p 2 S, for all atomic propositions p. We say that a total answer set S over �
satisfies a DLTL formula ↵ if MS , " |= ↵.

Definition 5
An extension of a well-defined domain domain description D = (⇧, C) over ⌃ is a (total)
answer set (�, S) of ⇧ which satisfies the constraints in C.

Notice that, in general, a domain description may have more than one extension even for
the same action sequence �: the different extensions of D with the same � account for the
different possible initial states (when the initial state is incompletely specified) as well as
for the different possible effects of nondeterministic actions.

Example 4
Assume the dummy action is added to the Russian Turkey domain in Section 3. Given
the infinite sequence �1 = ¬in sight?; wait; in sight?; load; shoot; dummy; . . ., the

14 L. Giordano, A. Martelli, D. Theseider Dupré

domain description has (among the others) an extension (�1, S1) over �1 containing the
following temporal literals (for sake of brevity, we write [a1; . . . ; an](l1 ^ . . . ^ lk) to say
that [a1; . . . ; an]li holds in S1 for all i’s):
["](alive ^ ¬in sight ^ ¬frightened ^ ¬loaded),
[¬in sight?](alive ^ ¬in sight ^ ¬frightened ^ ¬loaded),
[¬in sight?; wait](alive ^ in sight ^ frightened ^ ¬loaded),
[¬in sight?;wait; in sight?](alive ^ in sight ^ frightened ^ ¬loaded),
[¬in sight?;wait; in sight?; load](alive ^ in sight ^ frightened ^ loaded),
[¬in sight?;wait; in sight?; load; shoot](¬alive ^ in sight ^ frightened ^ loaded),
[¬in sight?;wait; in sight?; load; shoot; dummy](¬alive ^ in sight ^ frightened ^
loaded)
and so on. This extension satisfies the constraints in the domain description and corre-
sponds to a linear temporal model MS1 = (�1, VS).

To conclude this section we would like to point out that, given a domain description
D = (⇧, C) over ⌃ such that ⇧ only admits total answer sets, a transition system (W, I, T)
can be associated with ⇧, as follows:

- W is the set of all the possible consistent and complete states of the domain descrip-
tion;

- I is the set of all the states in W satisfying the initial state laws in ⇧;
- T ✓W ⇥⌃⇥W is the set of all triples (w, a, w0) such that: w,w0 2W , a 2 ⌃ and

for some total answer set (�, S) of ⇧: w = w
(�,S)
[a1;...;ah]

and w0 = w
(�,S)
[a1;...;ah;a]

Intuitively, T is the set of transitions between states. A transition labelled a from w to w0

(represented by the triple (w, a, w0)) is present in T if, there is a (total) answer set of ⇧, in
which w is a state and the execution of action a in w leads to the state w0.

5 Reasoning tasks

Given a domain description D = (⇧, C) over ⌃ and a temporal goal ↵ (a DLTL formula),
we are interested in finding out the extensions of D = (⇧, C) satisfying/falsifying ↵. While
in the next sections we will focus on the use of bounded model checking techniques for
answering this questions, in this one, we show that many reasoning problems, including
temporal projection, planning and diagnosis can be characterized in this way.

Let us come back to the shooting domain in Example 1. Suppose we want to know
if there is a possible scenario in which the turkey is not alive after the action sequence
¬in sight?, wait; in sight?, load, shoot. This is an instance of the temporal projection
problem, that we can solve by finding out an extension of the domain description which
satisfies the temporal formula

h¬in sight?;wait; in sight?; load; shooti¬alive

The extension S1 in Example 4 indeed satisfies the temporal formula above, since h¬in sight?;wait; in sight?; load; shooti¬alive
is true in the linear model MS1 = (�1, VS) associated with the extension S1.

As it is well known from the planning literature, planning problem can be formulated
as a satisfiability problem (Giunchiglia and Traverso 1999). In case of complete state and

Reasoning about Actions with Temporal Answer Sets 15

deterministic actions, the problem of finding a plan which makes the turkey not alive and
the gun loaded, can be stated as the problem of finding out an extension of the domain de-
scription in which the formula 3(¬alive^ loaded) is satisfied. Such an extension provides
a plan for achieving the goal ¬alive ^ loaded.

It must be observed, however, that, in presence of incomplete initial state and of non-
deterministic actions, the problem of finding a conformant/universal plan which works for
all the possible completions of the initial state and for all the possible outcomes of non-
deterministic actions cannot be simply solved by checking the satisfiability of the formula
above. The computed plan must also be tested to be a universal plan. Let us consider, for
instance, the complex plan:

⇡ = (¬in sight?;wait)⇤; in sight?; load; shoot

one can verify that such a plan is indeed a universal plan, by verifying that there is no
extension of the domain description satisfying the formula

h(¬in sight?;wait)⇤; in sight?; load; shootialive

In such a case, there is no execution of the plan after which the turkey is still alive. Whatever
the initial values of unspecified fluents and whatever the effect of nondeterministic actions
might be, the plan ⇡ achieves its goal.

As concerns diagnosis, let us consider the controlled system Example 3. Given the ob-
servation p obs low in a state, we can ask if there is an extension of the domain description
which explains it. A diagnosis of the fault is a run from the initial state to a state in which
p obs low holds and which does not contain previous fault observation in the previous
states (Panati and Theseider Dupré 2000).

In general, we can compute a diagnosis of the fault obsf by finding an extension of the
domain description which satisfies the formula: (¬obs1^. . .^¬obsn) U obsf , where obs1,
. . . , obsn are all the possible observations of fault. Here, p obs low is the only possible
fault observation, hence a diagnosis for it is an extension of the domain description which
satisfies 3p obs low.

As concerns property verification, an example has been given in Example 2. We observe
that the verification that a domain description D is well defined can be done by adding to
the domain description a static law 2(undefined fluent not f ^ not ¬f), for each
fluent literal f , and by verifying that there are no estensions in which 3undefined fluent

holds in the initial state.
Among the other reasoning task which can be addressed by checking the satisfiabil-

ity/validity of formulas in a temporal action theory, we want to mention the verification
problems arising from the area of multiagent protocol verification (Giordano et al. 2007),
as well as the verification of the compliance of business processes to norms. We refer to
(D’Aprile et al. 2010) for a formulation of this problem as a problem of reasoning about
actions with temporal answer sets.

6 Model checking

The above verification and satisfiability problems can be solved by extending the standard
approach for verification and model-checking of Linear Time Temporal Logic, based on

16 L. Giordano, A. Martelli, D. Theseider Dupré

the use of Büchi automata. As described in (Henriksen and Thiagarajan 1999), the satis-
fiability problem for DLTL can be solved in deterministic exponential time, as for LTL,
by constructing for each formula ↵ 2 DLTL(⌃) a Büchi automaton B↵ such that the
language of !-words accepted by B↵ is non-empty if and only if ↵ is satisfiable. The size
of the automaton can be exponential in the size of ↵, while emptiness can be detected in a
time linear in the size of the automaton.

The validity of a formula ↵ can be verified by constructing the Büchi automaton B¬↵ for
¬↵: if the language accepted by B¬↵ is empty, then ↵ is valid, whereas any infinite word
accepted by B¬↵ provides a counterexample to the validity of ↵.

The construction given in (Henriksen and Thiagarajan 1999) is highly inefficient since
it requires to build an automaton with an exponential number of states, most of which will
not be reachable from the initial state. A more efficient approach for constructing a Büchi
automaton from a DLTL formula makes use of a tableau-based algorithm (Giordano and
Martelli 2006). The construction of the automaton can be done on-the-fly, while checking
for the emptiness of the language accepted by the automaton. As for LTL, the number of
states of the automaton is, in the worst case, exponential in the size if the input formula,
but in practice it is much smaller.

LTL is widely used to prove properties of (possibly concurrent) programs by means of
model checking techniques. The property is represented as an LTL formula ', whereas the
program generates a transition system (the model), which directly corresponds to a Büchi
automaton where all the states are accepting, and which describes all possible computations
of the program. The property can be proved as before by taking the product of the model
and of the automaton derived from ¬', and by checking for emptiness of the accepted
language.

In our case, given a domain description (⇧, C), we have shown how to define a transition
system from ⇧. Thus, given a property ' formulated as a DLTL formula, we can check its
validity by checking the unsatisfiability of C [¬' in the transition system.

In (Biere et al. 2003) it has been shown that, in some cases, model checking can be more
efficient if, instead of building the product automaton and checking for an accepting run on
it, we build only an accepting run of the automaton (if there is one). In our case, this means
to look for an infinite path of the transition system satisfying C [¬'. This technique is
called bounded model checking, since it looks for paths whose length is bounded by some
integer k, by iteratively increasing the length k until a model satisfying C [¬' is found (if
one exists). More precisely, it considers infinite paths which can be represented as a finite
path of length k with a back loop from state k to a previous state in the path. It can be easily
shown that, if a Büchi automaton has an accepting run, it has an accepting run which can
be represented in this way.

A bounded model checking problem can be efficiently reduced to a propositional sat-
isfiability problem or to an ASP problem. Unfortunately, if no model exists, the iterative
procedure will never stop. Thus it is a partial decision procedure for checking validity.
Techniques for achieving completeness are described in (Biere et al. 2003).

In the next section, we address the problem of defining a translation of a domain de-
scription into standard ASP, so that bounded model checking techniques can be used to
check if a temporal goal (a DLTL formula) is satisfiable in some extension of the domain
description.

Reasoning about Actions with Temporal Answer Sets 17

7 Translation to ASP

In this section, we show how to translate a domain description to standard ASP. In partic-
ular, we have run the translated domain descriptions in DLV (Leone et al. 2006).

A temporal model consists of an infinite sequence of actions and a valuation function
giving the value of fluents in the states of the model. States are represented in ASP as inte-
gers, starting with the initial state 0. We will use the predicates occurs(Action,State)
and holds(Literal,State). Occurrence of exactly one action in each state must be
encoded:
-occurs(A,S):- occurs(A1,S),action(A),action(A1),A!=A1,state(S).

occurs(A,S):- not -occurs(A,S),action(A),state(S).

Given a domain description (⇧, C), the rules in ⇧ can be translated as follows.
Action laws 2([a]l0 t1, . . . , tm, not tm+1, . . . , not tn) are translated to

holds(l0, S
0) state(S), S0 = S + 1, occurs(a, S), h1 . . . hm, not hm+1 . . . not hn

where hi = holds(li, S0) if ti = [a]li or hi = holds(li, S) if ti = li.
Dynamic causal laws 2(�l0 t1, . . . , tm, not tm+1, . . . , not tn) are translated to

holds(l0, S
0) state(S), S0 = S + 1, h1 . . . hm, not hm+1 . . . not hn

where hi = holds(li, S0) if ti =�li or hi = holds(li, S) if ti = li.
Static causal laws are translated in the same way, while static causal laws without the 2

in front will be evaluated in state 0.
Precondition laws 2([a] ? l1, . . . , lm, not lm+1, . . . , not ln) are translated to ASP
constraints

 state(S), occurs(a, S), h1 . . . hm, not hm+1 . . . not hn

where hi = holds(li, S).
As described in the previous section, we are interested in infinite models represented

as k-loops, i.e. a finite sequence of states from 0 to k with a back loop from state k to a
previous state. Thus we assume a bound k to the number of states.

The above rules will compute a finite model from state 0 to state k+1. To detect the loop,
we must find a state j, 0 j k, equal to state k + 1 This can be achieved by defining
a predicate eq(State1,State2) and a predicate next((State1,State2) such
that next(i,i+1) for 0 i k � 1, and next(k,j).
eq(S1,S2) :- state(S1), state(S2), not diff(S1,S2).

diff(S1,S2) :- state(S1), state(S2), fluent(F), holds(F,S1),

holds(-F,S2).

diff(S1,S2) :- diff(S2,S1).

next(S,SN) :- state(S),laststate(LS),S<LS, SN=S+1.

-next(LS,S) :- laststate(LS),next(LS,SS),state(S),state(SS),S!=SS.

next(LS,S) :- laststate(LS),state(S), S<=LS, not -next(LS,S).

:- laststate(LS), next(LS,S), SuccLS = LS+1, not eq(SuccLS,S).

The second and third rule of predicate next state that there must be exactly one state next
to state k, while the last constraint states that the state next to state k must be equal to state
k + 1.

18 L. Giordano, A. Martelli, D. Theseider Dupré

Given a domain description (⇧, C), we denote by tr(⇧) the set of rules containing the
translation of each law in ⇧, as defined above, as well as the definitions of eq,diff and next.
As we have said, a total answer set R of tr(⇧) represents an infinite model as a k-loop.
The corresponding temporal model, MR = (�R, VR), can be defined as follows:
�R = a1a2 . . . ajaj+1 . . . ak+1aj+1 . . . ak+1 . . .

where occurs(a1, 0), occurs(a2, 1), ..., occurs(aj+1, j), ..., occurs(ak+1, k), next(k, j)
belong to R, and, for all proposition p 2 P:
p 2 VR(a1 . . . ah) if and only if holds(p, h) 2 R, for 0 h k

p 2 VR(a1 . . . ak+1) if and only if holds(p, j) 2 R.
We can show that there is a one to one correspondence between the temporal answer

sets of ⇧ and the answer sets of the translation tr(⇧). Let (⇧, C) be a well-defined domain
description over ⌃.

Theorem 1
• Given a temporal answer set (�, S) of ⇧ such that � can be finitely represented as a

finite path with a back loop, there is a total answer set R of tr(⇧) such that R and S

correspond to the same temporal model.
• Given an answer set R of tr(⇧), there is a total temporal answer set (�, S) of ⇧

(that can be finitely represented as a finite path with a back loop) such that R and S

correspond to the same temporal model.
The proof is omitted for lack of space.

Let us now come to the problem of evaluating a DLTL formula over the models asso-
ciated with the answer sets of tr(⇧). To deal with DLTL formulas, we use the predicate
sat(alpha,S), to express satisfiability of a DLTL formula ↵ in a state of a model.
As in (Giordano and Martelli 2006) we assume that until formulas are indexed with fi-
nite automata rather than regular expressions, by exploiting the equivalence between reg-
ular expressions and finite automata. Thus we have ↵UA(q)� instead of ↵U⇡�, where
L(A(q)) = [[⇡]]. More precisely, let A = (Q, �, QF) be an ✏-free nondeterministic finite
automaton over the alphabet ⌃ without an initial state, where Q is a finite set of states,
� : Q ⇥ ⌃ ! 2Q is the transition function, and QF is the set of final states. Given a state
q 2 Q, we denote with A(q) an automaton A with initial state q. In the definition of pred-
icate sat for until formulas, we refer to the following axioms (Henriksen and Thiagarajan
1999):

↵UA(q)� ⌘ (� _ (↵ ^
W

a2⌃hai
W

q02�(q,a) ↵UA(q0)�)) (q is a final state of A)
↵UA(q)� ⌘ (↵ ^

W
a2⌃hai

W
q02�(q,a) ↵UA(q0)�) (q is not a final state of A)

In the translation to ASP, DLTL formulas will be represented with terms. In particular,
the formula ↵UA(q)� will be represented as until(A,q,alpha,beta). Furthermore,
we assume the automaton A to be described with the predicates trans(A,Q1,Act,Q2)
defining the transitions, and final(A,Q) defining the final states. The definition of sat
is the following:
fluent: sat(F,S):- fluent(F), holds(F,S).

or: sat(or(Alpha, Beta),S):- sat(Alpha,S).

sat(or(Alpha, Beta),S):- sat(Beta,S).

neg: sat(neg(Alpha),S):- not sat(Alpha,S).

Reasoning about Actions with Temporal Answer Sets 19

until: sat(until(Aut,Q,Alpha,Beta),S):- final(Aut,Q),sat(Beta,S).

sat(until(Aut,Q,Alpha,Beta),S):-

sat(Alpha,S),trans(Aut,Q,Act,Q1),occurs(Act,S),

next(S,S1),sat(until(Aut,Q1,Alpha,Beta),S1).

Similar definitions can be given for derived connectives and modalities. For instance, the
temporal formulas 3↵, hai↵ and [a]↵ are represented, respectively, by the terms eventually(t alpha),
always(t alpha), diamond(a,t alpha) and box(a,t alpha), where t alpha

is the term encoding the formula ↵. The definition of sat for such formulas is the follow-
ing:

eventually: sat(eventually(Alpha),S):- sat(Alpha,S).

eventually: sat(eventually(Alpha),S):- next(S,SN),sat(eventually(Alpha),SN).

hai: sat(diamond(A,Alpha),S):- occurs(A,S),next(S,SN),sat(Alpha,SN).

[a]: sat(box(A,Alpha),S):- action(A), occurs(B,S),A!=B.

[a]: sat(box(A,Alpha),S):- occurs(A,S),next(S,SN),sat(Alpha,SN).

Since states are complete, we can identify negation as failure with classical negation,
thus having a two valued interpretation of DLTL formulas. We must also add a constraint
:- not sat(t alpha,0), for each temporal constraint ↵ in the domain description,
where states are represented by numbers, 0 is the initial state and t alpha is the term
encoding the formula ↵. The presence of the constraint :- not sat(t alpha,0), in
the translation of the domain description guarantees that ↵ must be satisfied, as the negated
formula not sat(t alpha,0) is not allowed to be true in the answer set.

As an example, the encoding of the temporal constraint

2[begin]hsense(a); sense(b); (deliver(a) + deliver(b) + wait); begini>

in Example 2, is given by the following rules:
:- not sat(neg(ev(neg(box(begin,until(aut,q1,true,true))))),0).

trans(aut,q1,sense(a),q2).

trans(aut,q2,sense(b),q3).

trans(aut,q3,deliver(a),q4).

trans(aut,q3,deliver(b),q4).

trans(aut,q3,wait,q4).

trans(aut,q4,begin,q5).

final(aut,q5).

The first rule encodes the constraint, while the following ones encode the definition of the
automaton aut, which is equivalent to the regular expression indexing the until formula in
the constraint.

It is easy to see that the computation of the satisfiability of a formula ↵ in a given
state depends only on a finite set of formulas consisting of the subformulas of ↵ and the
formulas derived from an until subformula. We say that a formula �UA(q0)� is derived
from a formula �UA(q)� if q0 is reachable from q in A.

It is possible to see that the definition of the predicate sat, as given above for the base
cases (fluent, or, neg, until), provides a correct evaluation of the temporal formulas over
the temporal models associated with the translation tr(⇧) of ⇧. Let tr0(⇧) be the set of

20 L. Giordano, A. Martelli, D. Theseider Dupré

rules extending the rules in tr(⇧) with the definition of predicate sat above. Let (⇧, C)
be a well-defined domain description over ⌃. We can prove the following theorem.

Theorem 2
Let R be a total answer set of tr(⇧) and ↵ a DLTL formula. The temporal model MR =
(�, V) associated with R satisfies ↵ if and only if there is an answer set R’ of tr0(⇧) such
that R0 extends R and sat(t alpha,0)2 R0 (where t alpha is the term representing
the formula ↵).

Proof
Let MR = (�, V). The theorem can be proved by showing that for all finite prefixes ⌧ of �,
MR, ⌧ |= ↵ if and only if sat(t alpha,h)2 R0, where h is the state of MR obtained
after the execution of the sequence of actions ⌧ . The proof is by double induction on the
length of the prefix ⌧ and on the structure of ↵.

The above formulation of sat is indeed the direct translation of the semantics of DLTL,
which is given for infinite models. Intuitively, we can show that it works also when the
model is represented as a k-loop, by considering the case of until formulas. If S is a
state belonging to the loop the goal sat(↵UA(q)�, S) can depend cyclically on itself. This
happens if the only rule which can be applied to prove the satisfiability of ↵UA(q)� (or one
of its derived formulas in each state of the loop) is the second rule of until. In this case,
sat(↵UA(q)�, S) will be undefined, which amounts to say that ↵UA(q)� is not true. This is
correct, since, if this happens, ↵ must be true in each state of the loop, and � must be false
in all states of the loop corresponding to final states of A. Thus, by unfolding the cyclic
sequence into an infinite sequence, ↵UA(q)� will never be satisfied.

Given a domain description D = (⇧, C), the translation tr(D) of D contains: the trans-
lation tr(⇧) of ⇧, the definition of the predicate sat and, for each temporal formula ↵ in
C, the constraint :- not sat(t alpha,0).

Let (⇧, C) be a well-defined domain description over ⌃. Given Theorems 1 and 2 above,
it can be proved that:

Corollary 1
There is a one to one correspondence between the extensions of the domain description D

and the answer sets of its translation tr(D) in ASP.

More precisely, each extension of D is in a one to one correspondence with an answer set
of tr(D), and both of them are associated with the same temporal model.

Given a temporal formula ↵, we may want to check if there is an extension of the domain
description D satisfying it. To this purpose, as for the temporal formulas in C, we add to the
translation, tr(D), of D the constraint :- not sat(t alpha,0), so that the answer
sets falsifying ↵ are excluded.

According to the bounded model checking technique, the search for an extension of
the domain description satisfying ↵ is done by iteratively increasing the length k of the
sequence searched for, until a cyclic model is found (if one exists). On the other hand,
validity of a formula ↵ can be proved, as usual in model checking, by verifying that
D extended with ¬↵ is not satisfiable. Let us consider, from Example 2, the property
2(mail(a) � 3¬mail(a)) (if there is mail for a, the agent will eventually deliver it to a).
This formula is valid if its negation 3¬(mail(a) � 3¬mail(a)) is satisfiable. We verify

Reasoning about Actions with Temporal Answer Sets 21

the satisfiability of this formula, by adding to the translation of the domain description the
constraint
:- not sat(ev(neg(impl(mail(b),ev(neg(mail(b)))))),0).

and looking for an extension. The resulting set of rules indeed has extensions, which can be
found for k � 3 and provide counterexamples to the validity of the property above. For in-
stance, the extension in which next(0,1), next(1,2), next(2,3), next(3,0),

occurs(begin,0), occurs(sense mail(a),1), occurs(sense mail(b),2),

occurs(deliver mail(a),3), mail(b) holds in all states, and mail(a) only in
states 2 and 3, can be obtained for k = 3.

8 Conclusions and related work

In this paper we have described an action language which is based on a temporal extension
of ASP, in which temporal modalities are included within rules. In the action language
general temporal DLTL formulas (possibly including regular programs indexing temporal
modalities) are allowed in the domain description to constrain the space of possible ex-
tensions. The approach naturally deals with non-terminating computations and relies on
bounded model checking techniques for the verification of temporal formulas.

In (Giordano et al. 2001) a temporal action theory based on the linear temporal logic
DLTL has been developed and the temporal projection and planning problems are formal-
ized as satisfiability problems in DLTL. In (Giordano et al. 2001) a monotonic solution to
the frame problem was adopted, by introducing a completion construction. Default nega-
tion was not allowed in the body of action laws and causal laws. Due to the different
treatment of the frame problem, even in the case when default negation is not present in
the body of the laws in ⇧, the notion of extension defined here is not equivalent to the one
in (Giordano et al. 2001). In particular, the formalization of causal rules in (Giordano et al.
2001) does not allow reasoning by cases. Also, the nonmonotonic solution proposed here
has the advantage that it does not require action and causal laws to be stratified to avoid
unexpected extensions which may arise when cyclic dependencies are present.

In the last decade, ASP has been shown to be well suited for reasoning about dynamic
domains (Gelfond 2007). In (Baral and Gelfond 2000), Baral and Gelfond provide an en-
coding in ASP of the action specification language AL, which extends the action descrip-
tion language A (Gelfond and Lifschitz 1993) by allowing static and dynamic causal laws,
executability conditions and concurrent actions. The proposed approach has been used
for planning (Phan Huy Tu et al. 2010) and diagnosis (Balduccini and Gelfond 2003). In
(Eiter et al. 2000; Eiter et al. 2004) a logic-based planning language, K, is presented which
is well suited for reasoning about incomplete knowledge and is implemented on the top
of the DLV system. In (Giunchiglia and Lifschitz 1998; Giunchiglia et al. 2004) the lan-
guages C and C+ provide an account of causality and deal with actions with indirect and
non-deterministic effects and with concurrent actions. The action language defined in this
paper can be regarded as a temporal extension of the language A, which allows to deal
with general temporal constraints, with complex actions and infinite computations. Sim-
ilarly to K, our action language allows for default negation within the body of the laws
in ⇧. However, our action language does not deal with concurrent actions and incomplete
knowledge.

22 L. Giordano, A. Martelli, D. Theseider Dupré

Bounded model checking (Biere et al. 2003) is based on the idea to search for a coun-
terexample of the property to be checked in executions which are bounded by some integer
k. SAT based bounded model checking methods do not suffer from the state explosion
problem as the methods based on BDDs. Helianko and Niemelä (Heljanko and Niemelä
2003) developed a compact encoding of bounded model checking of LTL formulas as the
problem of finding stable models of logic programs. In this paper, we have extended the
approach in (Heljanko and Niemelä 2003) for encoding bounded model checking of DLTL
formulas in ASP. While the construction of a Büchi automaton (Henriksen and Thiagarajan
1999; Giordano and Martelli 2006) from a DLTL formula requires a specific machinery to
deal with program expressions with respect to the usual construction for LTL, bounded LTL
model checking can be naturally extended to deal with program expressions in temporal
modalities, by directly encoding in ASP the recursive definition of the modalities.

The presence of temporal constraints in our action language is related to the work on
temporally extended goals in (Dal Lago et al. 2002; Baral and Zhao 2007), which, however,
is concerned with expressing preferences among goals and exceptions in goal specification.
ESG (Claßen and Lakemeyer 2008) is a second order extension of CTL* for reason-

ing about nonterminating Golog programs. In ESG programs include, besides regular ex-
pressions, nondeterministic choice of arguments and concurrent composition. The paper
presents a method for verification of a first order CTL fragment of ESG, using model
checking and regression based reasoning. Because of first order quantification, this frag-
ment is in general undecidable. DLTL (Henriksen and Thiagarajan 1999) is a decidable
LTL fragment of ESG for which standard LTL model checking techniques can be adopted
(Giordano and Martelli 2006). Satisfiability in DLTL is known to be PSPACE-complete,
as for LTL (Henriksen and Thiagarajan 1999).

References

BACCHUS, F. AND KABANZA, F. 1998. Planning for temporally extended goals. Annals of Mathe-
matics and AI 22, 5–27.

BALDUCCINI, M. AND GELFOND, M. 2003. Diagnostic reasoning with A-prolog. Theory and
Practice of Logic Programming 3, 4-5, 425–461.

BARAL, C. AND GELFOND, M. 2000. Reasoning agents in dynamic domains. In Logic-Based
Artificial Intelligence. 257–279.

BARAL, C. AND ZHAO, J. 2007. Non-monotonic temporal logics for goal specification. In IJCAI
2007. 236–242.

BIERE, A., CIMATTI, A., CLARKE, E. M., STRICHMAN, O., AND ZHU, Y. 2003. Bounded model
checking. Advances in Computers 58, 118–149.

CLASSEN, J. AND LAKEMEYER, G. 2008. A logic for non-terminating Golog programs. In Proc.
KR 2008.

DAL LAGO, U., PISTORE, M., AND TRAVERSO, P. 2002. Planning with a language for extended
goals. In Proc. AAAI02.

D’APRILE, D., GIORDANO, L., GLIOZZI, V., MARTELLI, A., POZZATO, G., AND THESEIDER
DUPRÉ, D. 2010. Verifying business process compliance by reasoning about actions. In CLIMA
2010, LNCS 6245.

DENECKER, M., THESEIDER DUPRÉ, D., AND BELLEGHEM, K. V. 1998. An inductive definitions
approach to ramifications. Electronic Trans. on Artificial Intelligence 2, 25–97.

Reasoning about Actions with Temporal Answer Sets 23

EITER, T., FABER, W., LEONE, N., PFEIFER, G., AND POLLERES, A. 2000. Planning under in-
complete knowledge. In Computational Logic 2000. 807–821.

EITER, T., FABER, W., LEONE, N., PFEIFER, G., AND POLLERES, A. 2004. A logic programming
approach to knowledge-state planning: Semantics and complexity. ACM Trans. Comput. Log. 5, 2,
206–263.

GELFOND, M. 2007. Handbook of Knowledge Representation, chapter 7, Answer Sets. Elsevier.
GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In

Logic Programming, Proc. of the 5th Int. Conf. and Symposium. 1070–1080.
GELFOND, M. AND LIFSCHITZ, V. 1993. Representing action and change by logic programs. Jour-

nal of logic Programming 17, 301–322.
GIORDANO, L. AND MARTELLI, A. 2006. Tableau-based automata construction for dynamic linear

time temporal logic. Annals of Mathematics and Artificial Intelligence 46, 3, 289–315.
GIORDANO, L., MARTELLI, A., AND SCHWIND, C. 2001. Reasoning about actions in dynamic

linear time temporal logic. The Logic Journal of the IGPL 9, 2, 289–303.
GIORDANO, L., MARTELLI, A., AND SCHWIND, C. 2007. Specifying and verifying interaction

protocols in a temporal action logic. Journal of Applied Logic (Special issue on Logic Based
Agent Verification) 5, 214–234.

GIUNCHIGLIA, E., LEE, J., LIFSCHITZ, V., MCCAIN, N., , AND TURNER, H. 2004. Nonmonotonic
causal theories. Artificial Intelligence 153, 1-2, 49–104.

GIUNCHIGLIA, E. AND LIFSCHITZ, V. 1998. An action language based on causal explanation:
Preliminary report. In AAAI/IAAI. 623–630.

GIUNCHIGLIA, F. AND TRAVERSO, P. 1999. Planning as model checking. In Proc. The 5th Euro-
pean Conf. on Planning (ECP’99). 1–20.

HELJANKO, K. AND NIEMELÄ, I. 2003. Bounded LTL model checking with stable models.
TPLP 3, 4-5, 519–550.

HENRIKSEN, J. AND THIAGARAJAN, P. 1999. Dynamic linear time temporal logic. Annals of Pure
and Applied logic 96, 1-3, 187–207.

KABANZA, F., BARBEAU, M., AND ST-DENIS, R. 1997. Planning control rules for reactive agents.
Artificial Intelligence 95, 67–113.

KARTHA, G. AND LIFSCHITZ, V. 1994. Actions with indirect effects (preliminary report). In Proc.
KR’94. 341–350.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO,
F. 2006. The dlv system for knowledge representation and reasoning. ACM Transactions on
Computational Logic 7, 3, 499–562.

LIFSCHITZ, V. 1990. Frames in the space of situations. Artificial Intelligence 46, 365–376.
PANATI, A. AND THESEIDER DUPRÉ, D. 2000. State-based vs simulation-based diagnosis of dy-

namic systems. In Proc. ECAI 2000.
PANATI, A. AND THESEIDER DUPRÉ, D. 2001. Causal simulation and diagnosis of dynamic sys-

tems. In AI*IA 2001: Advances in Artificial Intelligence, LNCS 2175.
PHAN HUY TU, TRAN CAO SON, GELFOND, M., AND MORALES, R. 2010. Approximation of

action theories and its application to conformant planning. Artificial Intelligence.
PISTORE, M., TRAVERSO, P., AND BERTOLI, P. 2005. Automated composition of web services by

planning in asynchronous domains. In Proc. ICAPS 2005. 2–11.

