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ABSTRACT
We have performed stability analysis of axisymmetric accretion mounds on neutron stars in
high-mass X-ray binaries by 2D magnetohydrodynamic (MHD) simulations with the PLUTO

MHD code. We find that the mounds are stable with respect to interchange instabilities, but
the addition of excess mass destabilizes the equilibria. Our simulations confirm that accretion
mounds are unstable with respect to MHD instabilities beyond a threshold mass. We investigate
both filled and hollow mounds and for the latter also compute the expected profile of cyclotron
resonance scattering features (CRSF). In comparison to the CRSF from filled mounds reported
in our earlier work, hollow mounds display wider and more complex line profiles.

Key words: line: formation – MHD – radiation mechanisms: non-thermal – binaries: general –
stars: neutron – X-rays: binaries.

1 IN T RO D U C T I O N

Neutron stars in accreting X-ray pulsars accrete matter from the
companion star either from stellar winds (Davidson & Ostriker
1973) or through disc accretion by Roche lobe overflow (Ghosh,
Pethick & Lamb 1977; Koldoba et al. 2002; Romanova et al. 2003).
They can be broadly classified into two classes: (1) high-mass
X-ray binaries (HMXB) with companion stars of masses several
times the solar mass and neutron stars with high surface magnetic
field ∼1012 G and (2) low-mass X-ray binaries (LMXB) with com-
panion stars of masses less than a solar mass and neutron star
magnetic fields several orders lower in magnitude ∼107–109 G (see
Bhattacharya & van den Heuvel 1991 for a review). In this paper, we
consider the effect of accretion on the evolution of surface magnetic
field of HMXB sources by the formation of accretion mounds.

The accreted matter in HMXB passes through a shock, gradually
settling down on the polar cap to form an accretion mound. X-ray
emission from such mounds show characteristic cyclotron reso-
nance scattering features (CRSF; Harding & Preece 1987; Araya
& Harding 1999; Araya-Góchez & Harding 2000; Becker & Wolff
2007). The CRSF depends on the magnetic field of the local emit-
ting region, and hence serve as a tool to understand the structure
of accretion columns. CRSF often show complex line features and
characteristic variations with rotation phase and the luminosity of
the neutron star (Coburn et al. 2002; Heindl et al. 2004; Mihara
et al. 2007; Lutovinov & Tsygankov 2008). Explaining such fea-
tures require appropriate modelling of the structure of the accretion
column and the effect of accretion induced field distortion from the
accretion mound.

� E-mail: dipanjan@iucaa.ernet.in

Also, several authors propose that diamagnetic screening of the
magnetic field can lower the apparent dipole moment of the neutron
star (Romani 1990; Cumming, Zweibel & Bildsten 2001; Melatos
& Phinney 2001; Choudhuri & Konar 2002; Konar & Choudhuri
2004). Some recent works on magnetic screening by accretion
mounds (Payne & Melatos 2004, 2007; Vigelius & Melatos 2008,
2009) report that large mounds of mass ∼10−5 M� may form on
the neutron star, which can then bury the field as the matter spreads
on the surface. However, several questions regarding the effects of
magnetohydrodynamic (MHD) instabilities (Cumming et al. 2001;
Litwin, Brown & Rosner 2001) remain to be addressed fully. Mag-
netostatic solutions of accretion mounds have earlier been found by
several authors including Hameury et al. (1983), Brown & Bildsten
(1998), Payne & Melatos (2004) and Mukherjee & Bhattacharya
(2012). It was shown in Mukherjee & Bhattacharya (2012, hereafter
MB12) that magnetostatic solutions cannot be found for mounds be-
yond a threshold height (and mass), which may be indicative of the
presence of MHD instabilities. Similar results were also reported in
Payne & Melatos (2004, hereafter PM04) where closed magnetic
loops were seen to form beyond a threshold mound mass.

In this paper, we attempt to study the stability of the accretion
mound by 2D axisymmetric MHD simulations with the PLUTO MHD
code (Mignone et al. 2007). The study of the full set of MHD insta-
bilities in such mounds requires global 3D simulations. However,
results from 2D simulations would help to identify modes that grow
despite of the restrictive assumption of axisymmetry. This will be
a stepping stone to future 3D simulations where many other modes
may grow simultaneously. Here, we investigate the presence of
interchange instabilities as predicted for such mounds by Litwin
et al. (2001), and also the physical cause of the threshold in mound
mass obtained in MB12. To study the latter, we add a small amount
of mass to an existing Grad–Shafranov solution and dynamically
evolve the system to see if it settles to a new equilibrium state.
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This is carried out for different mound sizes up to the threshold
mass, at which one expects MHD instabilities to be triggered if the
threshold happens to be due to a physical effect.

Our approach differs from that of PM04 in various aspects. We
consider a cylindrical geometry with strict containment of the ac-
creted matter in the polar cap, while PM04 consider spherical ge-
ometry with mass loading on all field lines up to the equator. Also,
we consider degenerate non-relativistic Fermi plasma near the po-
lar cap surface instead of the isothermal equation of state used by
PM04. As we consider densities as high as ∼108 g cm−3 inside the
mound, a degenerate non-relativistic plasma is more appropriate
(see MB12 for a discussion).

Early models of accretion column formed by disc–magnetosphere
interaction proposed hollow ring-like accretion column on neutron
star poles (Basko & Sunyaev 1976; Ghosh & Lamb 1978, 1979).
Several authors have used hollow ring-like accretion columns to fit
the pulse profiles of HMXBs (e.g. Leahy 1991; Shakura et al. 1991;
Riffert et al. 1993). Panchenko & Postnov (1994) and Klochkov
et al. (2008) discuss effects of emission from two disconnected
rings to explain the shape of observed pulse profiles and nature
of cyclotron features in the emission from Her X-1. Following the
formalism of pulse profile decomposition developed by Kraus et al.
(1995), ring-like columns have been inferred for sources like Her
X-1 (Kraus 2001), 4U 1909+07 (Fürst et al. 2011), A0535+262
(Caballero et al. 2011) and V 0332+53 (Ferrigno et al. 2011). Even
for LMXB sources, ring-like polar cap models are preferred for
fitting pulse profiles (Poutanen, Ibragimov & Annala 2009; Kajava
et al. 2011). We therefore perform a study of the structure and
stability of hollow accretion mounds to compare with results from
filled mounds. We also perform simulations of CRSF emission from
hollow mounds, following the method described in MB12.

We structure the paper as follows: in Section 2, we outline the
numerical setup involved in the problem. We discuss the solution of
the Grad–Shafranov equation to determine the structure of the static
mound. We also discuss details of the setup of the MHD simulations
with PLUTO. In Section 3, we discuss the testing of the equilibrium
solution with PLUTO. In Section 4, we discuss the method and results
of the perturbation analysis with PLUTO to investigate the stability of
the mounds. In Section 5, we discuss the results of the simulations
of hollow mounds and we summarize the results in Section 6.

2 N U M E R I C A L S E T U P

To test the hydromagnetic stability of the confined mound, we first
evaluate the equilibrium solution to the magnetohydrostatic equa-
tions by solving the Grad–Shafranov (hereafter GS) equation. The
solution of the GS equation is used as initial condition in PLUTO,
where perturbation analysis is performed. In the following section,
we outline the solution of the GS equation and the setup of the
simulation using PLUTO.

2.1 Equilibrium solution from the Grad–Shafranov equation

For an axisymmetric system, one may write the magnetic field in
terms of the flux function in cylindrical coordinates as

B = ∇ψ × θ̂

r
(Bθ = 0) (1)

Using equation (1) in the static Euler equation and using separation
of variables in cylindrical coordinates using method of characteris-

tics (as in MB12), we get the GS equation for an adiabatic gas (p =
kadρ

γ )

�2ψ

4πr2
= −ρg

dZ0

dψ
, (2)

where g is acceleration due to gravity and density is given by the
equation

ρ =
(

g(γ − 1)

γ kad

) 1
γ−1

[Z0(ψ) − z]
1

γ−1 . (3)

Z0(ψ) is the mound height function which determines the shape
of the mound. For our work, we use the equation of state for
a degenerate non-relativistic zero temperature Fermi plasma with
μe = 2:

p =
[
(3π2)2/3 �

2

5me

] (
ρ

μemp

)5/3

= 3.122 × 1022
(

ρ

106 g cm−3

)5/3
dynes cm−2

⎫⎪⎬
⎪⎭ (4)

Most of the mound will be dominated by degeneracy pressure except
for a thin layer at the top (∼4 cm at 1keV plasma, see MB12 for
a discussion). Thus effects of thermal stratification would play a
limited role, and the zero temperature degenerate equation of state
would be an adequate assumption. We solve the GS equation for
an accretion mound of radius Rp = 1 km, on the poles of a slowly
spinning neutron star of mass 1.4 M� and radius R = 10 km. The
intrinsic field is assumed to be dipolar, which in the polar cap
region can be approximated as a uniform field along ẑ (Bp = B0 ẑ).
We consider Newtonian gravity with constant acceleration:

g = −1.86 × 1014

(
M∗

1.4 M�

) (
Rs

10 km

)−2

cm s−2 ẑ (5)

Our setup is similar to that in Hameury et al. (1983) and Litwin
et al. (2001). Following MB12, we carry out most of our analysis
for the mound height profile:

Z0(ψ) = Zc

(
1 −

(
ψ

ψp

)2
)

, (6)

where Zc is the central height of the mound and ψp = (1/2)B0R
2
p .

This is a smoothly varying parabolic profile in ψ which describes a
filled axisymmetric mound. We also discuss the GS solution for a
hollow mound in Section 5, which is specified by the mound height
function:

Z0(ψ) = Zc

0.25

(
0.25 −

(
ψ

ψp
− 0.5

)2
)

(7)

The GS is a coupled non-linear elliptic partial differential equation.
We have solved the GS equation by an iterative under-relaxation
algorithm with an inner successive over-relaxation loop with
Chebyshev acceleration (Press et al. 1993) as is outlined in MB12.
For a given polar magnetic field (Bp), the solutions to the GS equa-
tions are obtained up to a threshold height Zmax, beyond which the
numerical scheme does not converge to give an unique solution. De-
tails of the numerical algorithm and convergence of the GS solutions
have already been discussed in MB12.

2.2 PLUTO SETUP: INITIALIZATION

We use the Godunov scheme based MHD code PLUTO (Mignone
et al. 2007) to test the stability of the confined mound. The so-
lutions of the GS equation are used as initial condition in PLUTO.
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The GS solutions are imported into PLUTO using bi-linear interpola-
tion. We use the MHD module of PLUTO to solve the full set of ideal
magnetohydrodynamic equations

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0 (8)

∂v

∂t
+ v · ∇v + 1

ρ
B × (∇ × B) + 1

ρ
∇p = g (9)

∂B
∂t

+ ∇ × (v × B) = 0 (10)

∂p

∂t
+ v · ∇p + ρc2

s ∇ · v = 0, (11)

where the factor 1/
√

4π is absorbed in the definition of mag-
netic field and c2

s is the speed of sound (which for adiabatic gas
is c2

s = γp/ρ). The system is closed by an equation of state (here-
after EOS) which we choose to be either adiabatic (ρε = p/(γ − 1))
or barotropic for which p = p(ρ). In the second case equation (11) is
redundant. To investigate the effects of pressure-driven interchange
modes and gravity-driven modes, we perform perturbation analysis
with the adiabatic EOS (see Sections 4.1 and 4.2). PLUTO initial-
ization and boundary conditions are provided in terms of primitive
variables (ρ, v, p, B) defined in equation (8)–equation (11). The
computation is carried out in conservative variables (ρ, ρv, E, B),
where E = ρε + ρv2/2 + B2/2 is the total energy density.

We use the extended generalized Lagrangian multiplier (EGLM)
scheme (Mignone & Tzeferacos 2010; Mignone, Tzeferacos &
Bodo 2010) to preserve the ∇ · B = 0 constraint. The EGLM
scheme preserves the divergence criterion by modifying the in-
duction equation (equation 10) with a scalar field function ψGLM

(Dedner et al. 2002) and also the energy momentum equations with
extra source terms. This scheme transports the non-zero divergence
errors to the boundary of the domain at the fastest possible charac-
teristic speed, and damp them at the same time.

For our problem, we have found that the HLL Riemann solver
(Toro 2008), HLLD Riemann solver (Miyoshi & Kusano 2005) and
TVD Lax–Friedrichs solver (Toro 2008) combined with EGLM
scheme provide solutions free from numerical instabilities. Due
to the presence of very sharp gradients in the physical quantities,
higher order schemes need to be employed to reduce numerical
errors. A third-order Runge–Kutta scheme is used for time evolu-
tion and a third-order accurate piece-wise parabolic interpolation
scheme (PPM scheme as in Colella & Woodward 1984) has been
employed.

The simulations were set up using square cells (�r � �z) to
minimize numerical errors. The resolutions used were less than
∼0.5 m as listed in Table 1 for some sample runs. The physi-
cal variables in PLUTO are scaled to non-dimensional forms before
initialization. For example for mounds with polar magnetic field

Table 1. Sample resolutions for simulation runs.

Zc Bp Nr × Nz �l (�z � �r)

72 m 1012 G 1024 × 144 ∼0.43 m
65 m 1012 G 1088 × 104 ∼0.46 m
55 m 1012 G 1272 × 88 ∼0.39 m
50 m 1012 G 1024 × 80 ∼0.43 m
25 m 1011 G 1920 × 72 ∼0.2 m

Bp = 1012 G, we use ρ = 106 g cm−3 as the density unit, L0 =
105 cm as the length unit, B0 = 1012 G as the magnetic field unit and
VA0 = B0/

√
4πρ = 2.82 × 108 cm s−1 as the velocity unit. In these

units, time is measured in units of tA = L0/VA0 = 3.55 × 10−4 s,
which can be taken as the mean Alfvén time, while the scale veloc-
ity is the mean Alfvén velocity. A unique Alfvén velocity cannot
be prescribed for the whole domain as the Alfvén speeds will vary
over the domain depending on local density and magnetic field.

2.3 Boundary conditions

For stability studies, we run the simulations with either fixed bound-
aries where quantities are kept fixed to initial values (Q = Q0)
or fixed gradients where the initial gradients are preserved. The
fixed gradient boundary implies outflow of perturbed quantities as
gradients of perturbations are set to zero (∇Q = ∇Q0 + ∇Q̃ →
∇Q0, ∇Q̃ = 0). The standard outflow boundary condition (∇Q =
0) is inapplicable for our problem as the initial solution has non-
zero gradients at the boundaries of the domain. The fixed gradient
boundary condition is applied to the upper and the rightmost bound-
ary. For filled mounds, the inner-left boundary is kept fixed as it is
close to or equal to the axis of the column. For hollow mounds, the
inner-left boundary is kept at a fixed gradient to allow for inward
flow of perturbed matter. The bottom boundary is kept fixed to sim-
ulate a hard crust. The setup with fixed gradients on the outer sides
and fixed crust gives numerically stable solutions, as tested from
the simulations of the equilibrium solutions obtained from the GS
solver (see Section 3).

3 EQU I LI BRI UM STUDI ES

The GS solutions for adiabatic mounds have density profiles which
go to zero beyond Z0(ψ) (see equation 3). To avoid unrealistic
Alfvén velocities, we restrict the computation domain inside the
mound such that Alfvén speeds in the mound are non-relativistic.
A typical computation domain is depicted in Fig. 1 for a mound of
height Zc = 65 m. We first evolve the initial equilibrium solution
without applying perturbation in order to check the stability of the

Figure 1. Field lines for a mound of height Zc = 65 m with polar un-
loaded field Bp = 1012 G. The dash–dotted line in red denotes the top of
the mound beyond which density is zero. The total mass of the mound is
∼1.63 × 10−12 M�. The dashed blue box in the middle is the PLUTO compu-
tation domain, chosen to keep Alfvén velocities non-relativistic. The range
of density is ∼2.1 × 106−6.7 × 106 g cm−2 at the top of the mound and
∼3.02 × 107−5.7 × 107 g cm−2 at the bottom.
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MHD instabilities in accretion mounds 1979

numerical schemes and also to study the effects of initial transients
contributed by the numerical errors accumulated in interpolating
the solution from GS grid to PLUTO domain.

The solutions have been evolved to t ∼ 80tA for different choices
of schemes. For the set of schemes outlined in Sections 2.2 and 2.3,
the equilibrium solution remains intact with very small buildup
of internal flow velocities. For example, for a mound of height
Zc = 72 m, at t ∼ 80tA, the maximum velocity is ∼7.5 × 10−4 in
normalized units (∼2.15 × 105 cm s−1, which is much smaller than
typical scale velocities). This shows that the schemes used are free
from artificial numerical effects and also verifies the validity of the
equilibrium solution obtained from the GS solver.

4 PERTURBATION A NA LY SIS

We perturb the equilibrium solution by adding a normalized pertur-
bation field ξ (r, z) to any of the physical quantities

Q = Q0(1 + ηξ (r, z)), (12)

where η is a positive number signifying the perturbation strength.
The perturbations are kept away from the boundaries on all sides.
This is to preserve the equilibrium at the boundary layers and avoid
spurious interaction with the boundary. For our studies, we apply a
random perturbation on the density inside the simulation domain,
namely ξ is assigned a random value at each grid point within the
perturbation zone. The edges of the perturbing region are smoothed
with an exponential function to avoid sharp gradients which can
lead to spurious effects. The lack of any preferred perturbation
scale should allow the growth of the fastest growing modes. The
perturbation analysis is performed for mounds of different heights
up to the threshold height Zmax beyond which the GS solver does
not converge, as has been found in MB12.

4.1 Zero-mean perturbations: interchange modes

Zero-mean random perturbation with 〈ξ〉 = 0, implies rearranging
of density from the equilibrium solution without adding any net
mass. In this case, the system quickly converges to stable pockets
of perturbations, irrespective of perturbation strength (η in equation
12). See Fig. 2 for the results of a run with perturbation strength η =
10 per cent. The system settles down to an energy state close to the
original equilibrium value (see Fig. 3). However, for larger pertur-
bation strengths, a longer time is taken to relax into stable pockets

Figure 3. Energy components for zero-mean random perturbation run, nor-
malized to their initial value. Magnetic energy is normalized to 3.7 × 1022,
internal energy to 8.9 × 1023 erg and gravitational potential energy to 6.7 ×
1023 erg. The internal and gravitational energy components remain almost
constant (∼0.02 per cent change from initial value). The magnetic energy
initially decreases as the pockets of perturbed matter settle down, eventually
returning to its initial value. This indicates that the system is stable, and
when perturbed, settles to an energy state close to the original equilibrium
value.

of perturbed matter. For example, a mound with Bp = 1012 G and
Zc = 65 m stabilizes after t ∼ 1tA for η = 2 per cent and t ∼ 4tA
for η = 10 per cent.

The perturbation tests have been carried out for mounds of differ-
ent heights and polar magnetic field strengths. No instabilities are
seen at the threshold mound heights, e.g. Zc ∼ 72 m for B = 1012 G
and Zc ∼ 25 m for B = 1011 G etc. The simulations show that the
mounds are stable with respect to small departures from equilib-
rium resulting from rearrangement of flux tubes. Thus interchange
or ballooning modes are not seen in 2D axisymmetric simulations
of the mounds.

Figure 2. Overdensity: (ρ − ρeq)/ρeq for zero-mean perturbation runs for a mound of height Zc = 65 m, polar magnetic field Bp = 1012 G and perturbation
strength η = 10 per cent. ρeq is the unperturbed density from the equilibrium solution. The vertical axis is the height above neutron star surface in kilometres.
The horizontal axis is the radius (cylindrical geometry) in kilometres. The PLUTO simulation was carried out with a grid of size 1024 × 120. Random perturbation
is provided within a rectangular box inside the domain, away from the boundaries. The edges of the perturbation region are smoothed exponentially. The
perturbation slowly weakens and relaxes into stable pockets of perturbed density by t ∼ 4tA (bottom panel). The magnetic field lines are plotted in black.
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Figure 4. Overdensity: (ρ − ρeq)/ρeq at different times for a positive density perturbation with strength η = 3 per cent in a mound of height Zc = 65 m and
polar magnetic field Bp ∼ 1012 G. The simulation was carried out with a grid of size 1088 × 104. The horizontal and vertical axes are the same as in Fig. 2.
The perturbations result in the formation of closed loops but the solution eventually settles down to a steady state.

Figure 5. Magnetic field magnitude normalized to the local equilibrium value for the simulation described in Fig. 4. Bunching of field lines forms pockets of
excess field over equilibrium value, which eventually get smeared and start to dissipate.

4.2 Adding excess mass to equilibrium solution

In order to study the effect on the mound of the addition of matter
which eventually descends due to gravity, we apply a positive defi-
nite random perturbation field: 〈ξ〉 > 0 on the density without any
corresponding change in pressure. Such a change in density implies
local departure of kad from that in equation (4). In this work, we do
not attempt to model the exact composition of the accretion mound.
The perturbations were set up to ensure that the added matter is
heavier than its surroundings and will descend due to gravity, thus
triggering the gravity-driven modes. However, a change in kad can
indeed occur due to changes in chemical composition, e.g. η ∼ 5 per
cent local perturbation on a Zc ∼ 65 m mound would correspond
to a change of mean molecular weight by �μe ∼ 0.1.

The added mass settles down along the field lines, dragging and
distorting the equilibrium field configuration in the process. For
small perturbation strengths (η � 1 per cent for mound of height
Zc = 65 m) the matter quickly settles down to a new equilibrium,
without appreciable distortion of the field lines. With an increase
in η beyond a threshold, e.g. ηT ∼ 3 per cent for Zc = 65 m and
Bp = 1012 G mound, magnetic Rayleigh–Taylor type instabilities
are triggered by descending heavier matter and results in the for-
mation of closed loops due to the reconnection of field lines (see

Fig. 4).1 Bunching of field takes place in the radial direction (e.g.
Fig. 5) and the system eventually relaxes to a steady state.

Furthermore, increase in perturbation strength, e.g. η ∼ 5 per
cent for Zc = 65 m, disrupts the equilibria completely. Several
closed loops are formed across the perturbed region (see Figs 6
and 7). Individual closed loops merge to form larger knots without
showing any signs of decay. From Fig. 8 we see that the gravita-
tional potential energy and internal energy decreases from initial
value, whereas magnetic energy increases with time. This indi-
cates that internal flows stretch and twist the field lines converting
internal energy and gravitational energy to magnetic energy. The
system does not relax to a steady state within the run time of the
simulation (t ∼ 50tA). Thus, for a mound with Zc = 65 m and
Bp = 1012 G the threshold perturbation strength is ηT ∼ 3 per cent
beyond which gravity- and pressure-driven modes disrupt the MHD
equilibria.

Convergence has been tested by running the simulations for suc-
cessive higher resolutions, e.g. for Zc = 65 m, Bp = 1012 G with

1 Note that although the simulation is ideal MHD, numerical resistivity
allows dissipation and reconnection to occur.
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Figure 6. Overdensity (ρ − ρeq)/ρeq at different times for a positive density perturbation with strength η = 5 per cent in a mound of height Zc = 65 m and
Bp = 1012 G. The simulation was carried out with a grid of size 1088 × 104. The horizontal and vertical axes are the same as in Fig. 2. The reconnection of
field lines forms closed loops at multiple sites. The system does not relax to any steady state solution within the duration of the run. The closed loops grow
with time indicating the onset of unstable modes.

Figure 7. Magnetic field magnitude normalized to the local equilibrium value for the simulation described in Fig. 6. The bunching of field lines cause pockets
of excess field over equilibrium value which do not settle to any steady state.

positive random perturbation of strength η = 5 per cent, simula-
tions were carried out for resolutions 1088 × 104, 2176 × 208 and
4352 × 416. It was seen that MHD instabilities persist on increase of
resolution. Increase in resolution reduces numerical resistivity, thus
decreasing cross-field diffusion. The field lines are then more prone
to be deformed by gravity-driven modes triggered by the weight of
the overlying matter.

With an increase in mound height, it is easier to excite such
unstable behaviour. The threshold perturbation strength is larger
for mounds of smaller height: for Zc = 45 m and Bp = 1012 G,
ηT ∼ 7 per cent. Mounds near the GS threshold height Zmax (∼72 m
for Bp = 1012 G; ∼25 m for Bp = 1011 G) are only marginally
stable at ηT � 1 per cent. Thus, mounds higher than a threshold (as
previously obtained in MB12) are prone to gravity-driven Rayleigh–
Taylor and pressure-driven instabilities on the addition of excess
mass, and stable magnetostatic solutions cannot be obtained.

5 H O L L OW MO U N D

5.1 Grad–Shafranov for hollow mounds

For systems with magnetospheric accretion, mass loading at the
accretion disc takes place over a finite range of accretion disc radii
(�r ∼ 0.03RA, RA ≡ Alfvén radius; e.g. Ghosh & Lamb 1978,

1979). The inner edge of the polar cap ring2 for such systems
will be

Rpi = Rp

(
1 − �r

2RA

)
(13)

while the outer edge of the polar cap radius is (Rs/RA)1/2 Rs

(Poutanen et al. 2009), Rs being the neutron star radius. For small
values of �r the columns would be hollow and thin walled. On the
surface of the star this would create an accretion ring around the
polar cap instead of a filled mound. To model such an accretion
ring, we choose the mound height function to give a hollow mound
in which the density falls off to zero both at the axis and at the polar
cap radius.

For the solution presented in Fig. 9, we use a mound height profile
as in equation (7) with Zc = 45 m and Bp = 1012 G. The solution
shows considerable distortion of field lines on both sides of the
apex (r ∼ 698 m). This is in contrast to the case of filled mounds,
where curvature of field lines occur towards the outer edge. Larger
curvature of field lines allow larger mass to be accumulated per flux
tube, as compared to that of filled mounds. Hence, although the

2 which corresponds to the outermost radius in the accretion disc ∼RA + �r ,
where mass loading begins.
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Figure 8. Energy components for random positive perturbation run (η =
5 per cent), normalized to their initial value. Magnetic energy is normalized
to 5.2 × 1022 erg, internal energy to 9.9 × 1023 erg and gravitational
potential energy to 7.5 × 1023 erg. The initial energy is dominated by internal
and gravitational energy. The gravitational and internal energy decrease as
the system moves to a lower energy state following the perturbation. The
magnetic energy is seen to increase due to stretching of field lines due to
internal flows.

central part is hollow the total mass contained in the hollow mound
(M ∼ 5.87 × 10−13 M�) is comparable to that of a filled mound of
the same height and field (M ∼ 5.09 × 10−13 M� for Zc ∼ 45 m
and Bp ∼ 1012 G and a parabolic profile as in equation 6).

The family of GS solutions for hollow mounds behave similarly
as for filled mounds. With the increase in maximum mound height
Zc, the GS solutions show larger curvature of field lines on both
sides of ridge apex. The GS solutions fail to converge for mounds
greater than a threshold height for a given magnetic field. For the
mound height profile of equation (7), the threshold height is around
Zmax ∼ 47 m for a polar magnetic field Bp = 1012 G.

5.2 Stability analysis of hollow mounds

Using the GS solutions for hollow mound, we perform stability anal-
ysis with PLUTO. The results are similar to that of a filled mound.
Zero-mean density perturbations do not show growth of the per-
turbed region, indicating that the mounds are intrinsically stable
with respect to interchange modes. For positive perturbations in den-
sity, closed loops are formed after a threshold perturbation strength.
See Figs 10 and 11 for the results of a run with η = 5 per cent.
The closed loops form quickly within a few Alfvén times and mi-
grate away from the centre, on both sides of the central height. This
results in the formation of alternate regions of enhanced and re-
duced magnetic field due to the bunching of field lines, which have
considerable departure from equilibrium solution. The field knots
dissipate gradually as they migrate outwards.

5.3 Cyclotron lines from hollow mounds

Following the algorithm outlined in MB12, we have simulated the
CRSF that will be observed in the emitted spectrum from a hol-
low mound. The spectra have been calculated by integrating the
emission from different parts of the mound towards a given line

Figure 9. The field lines from GS solution for a hollow mound with mound
height function given by equation (7), Zc = 45 m and Bp = 1012 G. The
maximum height Zc occurs at ∼698 m from the axis. The red dashed line
represents the top of the mound.

of sight (hereafter los). We assume a Gaussian absorption profile
whose depth and width are evaluated from the interpolated results
of Schönherr et al. (2007) for the slab 1–0 geometry. As in MB12,
the line centre of the CRSF is obtained from the expression

En = nEc0

√
1 − u

(
1 − n

2

(
Ec0

511 keV

)
sin2 θαb

)
(14)

where n = 1, 2, 3. . . is of the order of the harmonic, Ec0 = 11.6B12

in keV, θαb is the angle between the direction of emission and local
magnetic field and u = rs/r , rs being the Schwarzschild radius.
Emission from the inner part of the hollow mound may be blocked
by the walls on the opposite side. In Appendix (A), we explain the
scheme we follow to account for such shielding.

For the simulated spectra shown in Fig. 12, we consider emis-
sion from a single pole at inclination angle ηp = 10◦ and an los at
i = 60◦, both measured from the spin axis. The spectrum shows
multiple absorption features due to the large variation of field
strength at the top of the mound (see Fig. 13). The different ab-
sorption features correspond to emission from different locations
on the top of the mound, with different magnetic field values.
The nature of this spectrum is significantly different from that
expected from a filled parabolic mound of the same height (see
Fig. 12). When convolved with a Gaussian of standard deviation
∼10 per cent of the local energy, to simulate the finite resolution
of a detector (see MB12 for details), the spectrum becomes a broad
absorption feature.

6 D I SCUSSI ON AND SUMMARY

(i) Absence of interchange mode instabilities: in this paper, we
have tested for the stability of magnetostatic accretion mounds by
MHD simulations using the PLUTO MHD code. From perturbation
analysis, we conclude that mounds are stable with respect to in-
terchange or ballooning modes in 2D axisymmetric simulations.3

Linear stability analysis by Litwin et al. (2001) predict the onset
of ballooning modes for a threshold plasma β (β = p/(B2/8π)).
However, such modes are inherently multi-dimensional in nature,
with finite toroidal and zero poloidal wave vectors, normal to the

3 Note that in this paper, we consider a T = 0◦ K Fermi gas. However, finite
plasma temperature can induce additional thermal modes (Cumming et al.
2001), which have not been explored here.
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Figure 10. Overdensity (ρ − ρeq)/ρeq and field line for a hollow mound of maximum height Zc = 45 m and polar magnetic field Bp = 1012 G with a positive
density perturbation of strength η = 5 per cent. The simulation was carried out for a grid of size 1144 × 136. The vertical and horizontal axes are the same as
in Fig. 2. The perturbation results in the formation of closed loops at multiple sites near the centre, very early in the simulation run.

Figure 11. Magnetic field magnitude normalized to the local equilibrium value for the simulation described in Fig. 10. The bunching of field lines in radial
direction causes alternate regions of enhanced field strengths. The closed loops and pockets of enhanced fields migrate to the radial boundaries and eventually
dissipate.

local magnetic field (see Freidberg 1982, for a review of MHD insta-
bilities in confined plasma). Hence, such modes cannot be excited
in an axisymmetric 2D simulation.

Litwin’s approximate analytical estimates give a threshold βT ∼
11.7(Rp/Zc) for γ ∼ 5/3, beyond which MHD instabilities will
set in. For GS solution of a filled mound with Zc = 45 m and
Bp = 1012 G, we get maximum β ∼ 293, which is close to Litwin’s
threshold for the same mound βT ∼ 260. For higher mounds, βT

decreases with increase in Zc and is much smaller than the maximum
β obtained from our GS solutions. For example, for a filled mound
with Zc = 65 m and Bp = 1012 G, βT ∼ 180 whereas maximum
β ∼ 911 from the GS solution (see Fig 14). Hence, results from
2D simulations cannot rule out the presence of such modes in a
3D setup. Also, interchange mode instabilities (Chen 1984) can
be excited in 3D simulation runs, as is seen in other examples of
confined plasmas, e.g. in tokamak reactors. Work on 3D stability
analysis of accretion mounds is currently underway and will be
addressed in a forthcoming publication (Mukherjee, Bhattacharya
and Mignone, in preparation).

(ii) Instabilities due to excess mass: from our 2D simulations
we have found that the addition of excess mass destabilizes the
equilibrium due to gravity-driven magnetic Rayleigh–Taylor type
instabilities. For mounds with higher mass, the GS solutions have
large radial (horizontal) component of magnetic field, which being
perpendicular to gravity are also prone to Parker type instabilities
(Cumming et al. 2001; Melatos & Phinney 2001). Topologically dis-
connected closed loops are formed beyond a threshold perturbation
strength ηT.

From the expression of the energy integral for linear perturbations
(Litwin et al. 2001) on an adiabatic plasma (p = kργ ), we have

δW = 1

2

∫
d3x

{
B̃2

⊥
4π

+ B2

4π

(∇ · ξ⊥ + 2κc · ξ⊥
)2

+γp
(∇ · ξ − 2κg · ξ

)2

−2(κc + ∇φ/(2c2
s )) · ξ⊥ (∇p + ρ∇φ) · ξ⊥

}
, (15)
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Figure 12. Top: CRSF from a filled mound of central height Zc ∼ 45 m
and Bp ∼ 1012 G. The right-hand panel gives the spectra convolved with a
Gaussian (standard deviation 10 per cent of local energy) to simulate finite
detector resolution. Bottom: CRSF from a hollow mound with Zc = 45 m
and Bp = 1012 G, with the right-hand panel giving the convolved spectra as
before. The CRSF from hollow mounds show a much broader spectra due
to contribution from different parts of the mound with large variations in the
magnetic field.

Figure 13. The magnetic field at the top of the hollow mound in Fig. 9.
Field lines are pushed on either side of the apex (r ∼ 698 m) of the mound
resulting in decrease in field at the apex and increase in field strength on
either side. Starting from a polar magnetic field strength Bp = 1012 G, from
our GS solution we get minimum field at the top ∼6.63 × 1011 G and
maximum field of ∼2.33 × 1012 G.

where ξ is the plasma displacement, B̃ = ∇ × (ξ × B) is the per-
turbed magnetic field, κc = (b · ∇)b is the magnetic field curvature
vector, cs is the sound speed and φ the gravitational potential. Bφ is
zero for our case.

Instabilities will develop if the negative contribution from any
(or all) of the terms containing field curvature, pressure gradient

Figure 14. Plasma β (ratio of plasma pressure to magnetic pressure) for a
GS solution of a mound of height Zc ∼ 65 m and Bp ∼ 1012 G. The vertical
and horizontal axes are the height and radius, respectively, expressed in
kilometres. The maximum plasma β (∼911) occurs along the central red
horizontal patch near the regions of maximum curvature of the magnetic
field lines (represented in white). At the regions of high β, the plasma is
primarily supported by tension from curvature of field lines. Such regions are
prone to pressure-driven instabilities, and show formation of closed loops
when perturbed.

and gravity overcomes the stabilizing effects of the magnetic and
pressure compression terms.4 Hence, it is not a surprise that the
closed loops are formed in regions with the largest curvature in
field lines. This also corresponds to the regions with high plasma β,
e.g. the red region in the middle of Fig. 14 where β ∼ 911. Pressure-
driven instabilities typically lead to a threshold plasma β beyond
which instabilities are triggered (e.g. Freidberg 1982; Litwin et al.
2001). For mounds near the stability threshold, e.g. Zc ∼ 72 m at
Bp = 1012 G, the maximum plasma β is as high as ∼1.26 × 104.

The magnitude of ηT decreases with increase in mound height,
with ηT → 0 as Zc → Zmax, indicating inherent unstable nature of
the mound for the modes under investigation. This corroborates
the result of MB12 that GS solutions do not converge beyond a
threshold height. The tests involving addition of mass are not meant
to reflect realistic accretion rates. Although the amount of excess
mass added in our simulations is small (∼7.6 × 10−15 M� for
η = 5 per cent perturbation on 65 m mound), in a real system
such mass will be accumulated slowly as mounds of larger mass
are built. Effects of such inflow of material on an initially static
mound have not been addressed here. However, from our current
2D simulations we conclude that for large mound masses, gravity-
and pressure-driven modes result in the onset of MHD instabilities
and no static equilibrium solution can be found beyond a threshold
Zmax.

Buoyancy related instabilities due to the formation of topolog-
ically disconnected closed loops have previously been reported in
the static mound simulations of Hameury et al. (1983) and Payne &
Melatos (2004) and also dynamic MHD simulations by Vigelius &
Melatos (2008, hereafter VM08). However, the threshold mass of
the mound for the formation of closed loops in PM04 and VM08 is
M ∼ 10−5 M�, which is much larger than the mass of the mounds in
this work. This may be due to the following differences in approach.

(a) PM04 and VM08 in their treatment consider spherical polar
geometry and populate all field lines up to the equator, whereas we
confine the accretion mounds strictly within the polar cap radius.

4 Necessary and sufficient condition for instability is δw < 0 (Bernstein
et al. 1958).
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Figure 15. Ratio of the magnetic field to its local equilibrium value for a barotropic simulation with random velocity perturbation of strength η = 15 per cent
of local sound speed (maximum initial velocity ∼0.35, in normalized units). The velocity unit vectors are plotted to show the nature of the flow. The bunching
of magnetic field takes place in the radial direction as local eddies are formed. The system settles down to a steady state with flow velocities less than ∼7.54 ×
10−3 (in normalized units) at t ∼ 5tA.

Populating all field lines up to the equator provides lateral pressure
support to the polar mound which can then hold a larger mass.

(b) Plasma pressure due to isothermal EOS by PM04 and VM08
is several orders of magnitude less than the degenerate Fermi pres-
sure used in our treatment, which results in higher plasma β in our
simulation. Such a system is more prone to pressure-driven MHD
instabilities, e.g. Freidberg (1982).

(iii) Adiabatic versus barotropic: we have also performed
barotropic simulations with PLUTO for which the energy equation
becomes redundant as pressure is evaluated from p = kργ , with
k a constant. This is similar to the isothermal setup of MHD sim-
ulations. Results from adiabatic and barotropic modes are similar
when perturbations are applied to velocity and magnetic fields. See
Fig. 15 for the results of velocity perturbation with barotropic sim-
ulation (η = 15 per cent of local sound speed). The magnetic field
bunches in the radial direction and local eddies are set up. The sys-
tem settles down to a steady state with flow velocities reduced by
more than three orders of magnitude at t ∼ 5tA. Similar results are
also obtained for adiabatic EOS.

However, density perturbations behave differently in barotropic
and adiabatic simulations. For a barotropic simulation, positive den-
sity perturbations on an initial static equilibrium create regions of
excess pressure. The perturbed regions with high local pressure
overcome the downward gravitational force and are quickly trans-
ported vertically upwards. Hence, to study the effect of gravity-
driven modes due to the descent of added matter, adiabatic simula-
tions have been performed in this work.

(iv) Hollow mounds – structure and stability: we have solved
the GS equation for mounds with hollow interiors. The hollow
mounds show considerable distortion of the magnetic field on both
sides of the maximum height to support the confined matter. There
is a decrease in field near the ridge apex as field lines are pushed
to either side. Closed loops form when excess mass is added to the
equilibrium solution. The closed loops migrate to either side and
eventually dissipate.

The fixed gradient boundary condition can induce artificial
stability as it results in line tying type boundaries, which are
known to give extra stability. In a real system, the plasmoids
will be eventually ejected from the system. Plasma travelling
inwards on closed loops may then eventually fill up the hol-
low. However, there was no significant mass-loss seen in our 2D
simulations.

(v) Hollow mounds – CRSF: CRSF from hollow mounds have
been explored. From the simulation of the spectra integrated over
the entire mound we see the following.

(a) Cyclotron emission from the top of hollow mounds show
complex fundamental features in the line shape (harmonics have
not been evaluated), due to the large variations in magnetic field
on the top of such mounds. This is similar to what is observed in

the spectra of V0332+53 (Mowlavi et al. 2006; Nakajima, Mihara
& Makishima 2010) which is conjectured to have a hollow column
geometry (Ferrigno et al. 2011). Complex line shapes have also been
predicted previously for strong non-dipolar local magnetic field by
Nishimura (2008, 2011).

(b) Convolving the CRSF with a Gaussian to account for finite
energy resolution of detectors, we see that the resultant CRSF has
the structure of a broad absorption envelope.

Thus, CRSF from hollow mounds will be characterized by broad
line widths and complex structures in the line shape, which may be
observed with improved detector resolution.

Thus, we conclude from this work that accretion mounds on
neutron stars in HMXB are stable up to a threshold height and
mass, beyond which MHD instabilities will disrupt the equilibria.
Structure and stability of hollow mounds have been explored. It is
shown that CRSF from such mounds will be characterized by broad
features with a complex line shape. More work needs to be done
to explore the 3D stability of such systems and the effect of non-
axisymmetric modes on the field structure and cyclotron emission
from such mounds.
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A P P E N D I X A : SH I E L D I N G O F R A D I AT I O N
F RO M I N N E R WA L L S O F H O L L OW MO U N D S

In HMXBs an accretion column is formed by the infalling matter
after it passes through a shock which may be several kilometres
from the surface of the star, depending on the accretion rate (e.g.
Basko & Sunyaev 1976; Becker & Wolff 2007; Becker et al. 2012).
In this work, we consider the spectra generated from the mound
without incorporating the effects of scattering from the overlying
accretion column. This is valid for systems with low accretion rates
and optically thin columns. The emission from the mound will
then be directly visible and effects of overlying column will be
small. However for systems with optically thick columns and large
accretion rates, the emission from the mound will be obscured by
scattering and absorption in the column. A proper Monte Carlo
simulation of the radiative transfer through the column must be
carried out to address such cases, which will be reported in a future
work (Kumar, Bhattacharya and Mukherjee, in preparation).

The rays of light coming from the hollow region can be blocked
by the inner walls of the mound on the opposite side. Such rays will
not contribute to the total spectra. The path of the emitted ray lies in
the plane defined by the radius vector from the origin (centre of the
neutron star) to the point of emission (r) and the unit vector along
the los n̂ψ (see e.g. Beloborodov 2002; Poutanen & Beloborodov
2006; Mukherjee & Bhattacharya 2012). To exclude rays that may
be blocked by the inner walls of the hollow mound, we first find the
point where the plane defined by r and n̂ψ passes through the top of
the mound rc as in Fig. A1. The radial and vertical coordinates of
rc (rc and zc, respectively) are found by fitting a polynomial to the
top of the mound obtained from the GS solution and evaluating the
coordinate where z is maximum. Since the three vectors r , n̂ψ and
rc lie in the same plane, the angular coordinate φc of rc is found
from the condition

rc · (
r × n̂ψ

) = 0. (A1)

Figure A1. Top: a 3D schematic representation of the hollow mound. The
vectors nψ and rc − r denote the plane where the path of the emitted ray
to the observer lie. Bottom: a cross-section of the mound along the plane
of the emitted ray to the observer and the location where the plane cuts the
mound on the opposite side.
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Following MB12, we use the following definitions for
the vectors n̂ψ ≡ (nψx, nψy, nψz) ≡ (sin i sin ω, sin i cos ω, cos i)
and r ≡ (x, y, z) ≡ {ρ cos φ, ρ cos ηp sin φ + (ξ + Rs) sin ηp, (ξ +
Rs) cos ηp − ρ sin ηp sin φ}, where i is the azimuthal angle of the
observer’s los with respect to the spin axis, ω is the spin-phase
angle, (ρ, φ, ξ ) are coordinates of the emitting region in the polar
cap frame with cylindrical coordinate system, Rs is the neutron star
radius and ηp is the azimuthal angle of the centre of the polar cap.
Using the above, we can rewrite equation (A1) as

Ac cos φc + Bc sin φc + Cc = 0, (A2)

where

Ac = ρc(ynψz − znψy)

Bc = ρc cos ηp(znψx − xnψz) − ρc sin ηp(xnψy − ynψx)

Cc = (ξc + Rs){sin ηp(znψx − xnψz)

+ cos ηp(xnψy − ynψx)}.
Equation (A2) is solved using a modified Newton–Raphson scheme
following Press et al. (1993). After finding the coordinate of rc, we
evaluate the angle θlc (see Fig. A1) between the local normal (n̂l)
and the radius vector from the point of emission to the top of the
mound on the other side

cos θlc = n̂l · (rc − r)

|rc − r| . (A3)

The normal vector is found as outlined in MB12 by evaluating
the slope ms = dξtop/dρ of the function ξ top = f(ρ) (ρ being the
radial coordinate) that fits the top profile of the mound obtained
from the GS solutions: n̂l ≡ {− sin θs cos φ,− sin θs cos ηp sin φ +
cos θs sin ηp, cos θs cos ηp + sin θs sin ηp sin φ}, where sin θs =

ms√
1+m2

s

and cos θs = 1√
1+m2

s

. Using the above definitions of the

vectors, one can write

n̂l · (rc − r) = cos θs(ξc − ξ ) + sin θs(ρ cos φ − ρc cos φc)

×(sin φ + cos φ)

|rc − r|2 = ρ2 + ρ2
c + (ξ − ξc)2

−2ρρc(cos φ cos φc + sin φ sin φc).

Any ray with emission angle larger than θlc will not contribute to
the total spectra. This implicitly assumes that light will travel in a
straight line and curvature effects from bending due to gravity are
ignored for such short paths.

More accurate methods should be used to calculate the tangent
vector from the point of emission to the mound surface on the
other side. However, this involves more computation, and for sharp
profiles of the hollow mound used approximating the tangent point
as the top of the mound will result in only a small correction.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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