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ABSTRACT

We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero magnetic flux.
We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. We choose radiative
boundary conditions at the vertical boundaries in which the heat flux is proportional to the fourth power of the
temperature. We compare the results with the corresponding cases in which fixed temperature boundary conditions
are applied. The most notable result is that the formation of a fully convective state in which the density is nearly
constant as a function of height and the heat is transported to the upper and lower boundaries by overturning
motions is robust and persists even in cases with radiative boundary conditions. Interestingly, in the convective
regime, although the diffusive transport is negligible, the mean stratification does not relax to an adiabatic state.
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1. INTRODUCTION

What determines the internal structure of accretion disks
and how is angular momentum transported in these objects
are two fundamental problems in plasma astrophysics. It is
universally believed that magnetic fields play an important role
in the mechanism of disk destabilization and in the generation of
turbulence. More specifically, the magnetorotational instability
(MRI) has been invoked as the most likely explanation for the
origin of disk turbulence, and indeed, it provides an elegant
framework for the discussion of such issues (Balbus & Hawley
1991). In those cases in which there is no net magnetic
flux, the magnetic field necessary to drive the MRI must
be re-generated by the turbulent motions. The problem of
the origin of disk turbulence then becomes one of driving a
turbulent dynamo in an accretion flow. Because of the inherently
nonlinear nature of this problem—dynamo action must set in as
a subcritical nonlinear instability—most of what is currently
known about disk dynamos is based on numerical studies. The
most commonly adopted configuration for such studies is that
of a local, Cartesian representation known as the shearing-
box approximation (Hawley et al. 1995). Recently, many such
studies have included some form of vertical stratification,
typically described as an isothermal atmosphere (Davis et al.
2010; Shi et al. 2010; Oishi & Mac Low 2011). For these cases
the dynamo is highly inhomogeneous, with strikingly different
behaviors in the dense regions near the equatorial plane and
in the more tenuous overlying layers (Gressel 2010; Guan &
Gammie 2011; Simon et al. 2012). In a recent paper, Bodo
and collaborators (Bodo et al. 2012, hereafter Paper I) have
considered cases with stratified shearing-boxes with an ideal
equation of state, dissipative internal heating, and a simplified
treatment of heat transport in terms of radiative diffusion. Their
results showed that if the thermal conduction were efficient, the
solutions resembled the isothermal cases, and if it were not,
then a convective state would set in that dramatically altered
the vertical structure of the disk. In this new fully convective
state, the density was nearly constant across the disk and a
radically different type of dynamo action became operative.

Significantly, one that was characterized by the production of
substantial amounts of toroidal flux and more efficient angular
momentum transport relative to the isothermal cases. In their
work, Bodo et al. (2012) used the isothermal atmosphere as
initial condition and imposed thermal boundary conditions in
which the temperature was fixed—and equal to the initial value;
this was done so that a direct comparison could be made with the
isothermal cases. Because the appearance of a fully convective
state with an associated efficient dynamo action is novel and
can have important consequences for our understanding of
accretion flows, it is necessary to ensure that the fully convective
states persist when less restrictive boundary conditions are used.
We address this issue here and consider instead systems with
radiative boundary conditions, i.e., ones in which the heat
flux is proportional to some power of the temperature—for
instance, the fourth power for blackbody radiation. These
conditions allow the overall temperature of the layer to “slide”
and choose its own self-consistent value—possibly one very
different from the initial one. We also note that the radiative
boundary conditions take care of another peculiarity of the
fixed temperature case, namely the invariance with respect to
the rescaling of the units of mass. If radiative conditions are
imposed, the constant of proportionality between the flux and
whichever power of the temperature is chosen, uniquely fixes
the unit of mass in terms of the other disk properties.

2. FORMULATION

The current formulation is essentially the same as in Paper I.
We perform three-dimensional, numerical simulations of a
perfect gas with finite thermal conduction in a shearing box
with vertical gravity. A detailed presentation of the shearing
box approximation and the relevant equations can be found in
Hawley et al. (1995). The computational domain covers the
region 1 × π × 6, where our unit of length is the pressure scale
height in the initial isothermal state. In the vertical direction
the box is symmetric with respect to the equatorial plane z =
0, where gravity changes sign. We assume periodic boundary
conditions in the y direction and shear periodic conditions
in the x direction. In the vertical direction, we assume that

1

http://dx.doi.org/10.1088/2041-8205/771/2/L23


The Astrophysical Journal Letters, 771:L23 (5pp), 2013 July 10 Bodo et al.

Figure 1. Horizontally and time-averaged profiles of the temperature, density, and Maxwell stresses as functions of z. The three cases correspond to values of κ equal
to 4 × 10−4 (solid, black lines), 2 × 10−2 (dashed, green lines), and 1.2 × 10−1 (dash-dotted, yellow lines), respectively.

(A color version of this figure is available in the online journal.)

the upper and lower boundaries (z = ±3) are impenetrable,
stress-free, and in hydrostatic balance the magnetic field is
taken purely vertical. We consider an optically thick plasma
and approximate the radiative transport by a diffusion process
which we model by a thermal conduction term, with thermal
diffusivity κ , in the energy equation. In general, κ depends on
density and temperature. However, a more realistic treatment
that incorporates the correct dependencies on density and
temperature would have an effect in the conductive regimes,
but hardly any in the convective regimes in which the energy
transport is all by advection and the contributions by conduction
are all but negligible. Since we are primarily interested in the
convective solutions, and use the conductive ones mostly as
reference states, we keep the same formulation as in Paper I
and assume a constant κ . In contrast to Paper I, here we adopt a
thermal radiative boundary condition of the form:

dT

dz
± Σ

κρ
T 4 = 0 at z = ±3, (1)

where Σ is a dimensionless quantity proportional to
Stefan–Boltzmann constant. Its precise definition and physi-
cal meaning will be discussed later, and for now it should be
considered simply as a constant defining the thermal boundary
conditions.

Some care is necessary in the choice of the initial conditions.
In Paper I, each simulation began from a state of isothermal
hydrostatic balance. Clearly, such state does not satisfy the
thermal boundary conditions (1). One could ignore this fact
and use it anyway, relying on the ability of the code to impose

the boundary conditions after the first time-step—and for all
subsequent steps. There are at least two reasons why this
approach is not a good idea. Numerically, we found that starting
from an isothermal state inevitably lead to the formation of very
sharp unresolved boundary layers and to the breakdown of the
numerical procedure within a few tens of steps. In principle,
one could overcome this problem by purely numerical artifices,
like adopting an initial grid with high resolution near the
boundaries, or greatly reducing the time-steps at the beginning
of the calculations. These procedures notwithstanding, there is
another, more physical reason why things may not work out
anyway. It should be noted that there is an isothermal solution
satisfying Equation (1); it is the one with zero temperature. If the
layer is already in a turbulent state the dissipative heating keeps
the solution away from this singular case. If, on the other hand,
the turbulent state has not yet evolved, because the MRI has not
had time fully to develop, the overall solution could be attracted
to the zero temperature solution. Even in cases in which the
descent to zero temperature is interrupted by the development
of the MRI, the system may, by the time the MRI heating kicks
in, have evolved to a state that is thermodynamically very far
from the eventual stationary state. This possibility could, in
principle, eventually yield a sensible answer but would require
a long integration time to reach a stationary state. Instead we use
different approach that takes care of both problems. We use the
stationary state solutions of Paper I to start the calculations with
the new boundary conditions. In the new calculations, the value
of Σ is chosen so that condition (1) is approximately satisfied by
the averages over the vertical boundaries. With this setup, the
boundary condition (1) is not satisfied initially in a pointwise

2



The Astrophysical Journal Letters, 771:L23 (5pp), 2013 July 10 Bodo et al.

Figure 2. Horizontally and time-averaged profiles of the conductive flux Fc and convective flux FT as functions of z. The three cases correspond to values of κ equal
to 4 × 10−4 (solid, black lines), 2 × 10−2 (dashed, green lines), and 1.2 × 10−1 (dash-dotted, yellow lines), respectively.

(A color version of this figure is available in the online journal.)

manner but, at least, it is satisfied in the mean. This way, the
initial conditions are already “near” a stationary state with fully
developed MRI driven turbulence.

In the present paper we consider three representative cases
defined by their thermal diffusivity which takes the values of
κ = 1.2 × 10−1, 2 × 10−2, 4 × 10−4. In the parlance of Paper I,
these values correspond to cases in the conductive regime, near
the critical value, and in the convective regime, respectively. In
all three cases, Σ = 0.1. We adopt a resolution that is twice
that of Paper I, namely 64 × 192 × 384. All simulations are
carried out with the PLUTO code, with a second order accurate
scheme, HLLD Riemann solver. The thermal conduction is
treated explicitly for small values of κ , and by super-time
stepping for larger ones (see Mignone et al. 2007).

3. RESULTS

We now describe the properties of the stationary states for the
three cases defined above. The typical integration extends over
1000 time units (approximately 160 rotations) which include
both a rapid relaxation phase lasting a few orbits and a stationary
state. Figure 1 shows the averages on horizontal planes, and in
time over the entire simulation, of the temperature, density, and
Maxwell stresses for all three cases. Comparing these curves
with the corresponding ones in Paper I shows that the overall
qualitative features of the solutions remain largely unchanged.
In particular, as κ decreases, and the solutions move from the
conductive to the convective regime, the temperature profile
changes from approximately parabolic to the “tent” profile, the
density changes from near Gaussian to nearly constant, and
the Maxwell stresses increase and become more concentrated
near the boundaries. Although these results are not entirely
surprising, especially in view of our strategy for choosing Σ,
it is important to note that they do show that the stationary states
are stable—i.e., there is no tendency for the layers to drift to
a completely different temperature—by no means a foregone
conclusion in such a strongly nonlinear system. The transition
from a conductive to a convective regime is also apparent in the
nature of the thermal transport. Figure 2 shows the conductive
and convective fluxes, as defined in Paper I, as functions of z for
the three cases. Except inside the two very thin boundary layers,
the conductive flux for the case with the smallest value of κ is all
but zero, and all of the flux is carried by convection throughout
the bulk of the fluid. Interestingly, even though, in this sense, the
convection is extremely efficient, it does not lead to an adiabatic
stratification. In fact, as shown in Figure 3, the entropy profile

Figure 3. Horizontally and time-averaged profiles of the entropy as a function
of z. The three cases correspond to values of κ equal to 4 × 10−4 (solid, black
lines), 2 × 10−2 (dashed, green lines), and 1.2 × 10−1 (dash-dotted, yellow
lines), respectively.

(A color version of this figure is available in the online journal.)

remains superadiabatic even when convection is efficient, in
contrast with regular thermal convection in which the average
stratification becomes very close to adiabatic. In view of this
difference, it is natural to ask to what extent we should think of
the motions that are responsible for the vertical energy flux here
as convective. Some insight into this issue is provided by the
curves in Figure 4 showing the horizontally averaged profiles
of the rate of buoyancy work and vertical kinetic energy flux
defined, respectively, by

Eg = g(z)ρvz, Fk = 1

2
ρv3

z . (2)

Here g(z) is the vertical component of the gravitational accel-
eration given, in a shearing-box, by g(z) = −Ω2z. Clearly Eg
shows that the convective motions are indeed convective, in the
sense that they are driven by buoyancy forces. The rate of do-
ing work is close to negligible in the conductive case, while in
the convective cases it becomes large and strongly peaked near
the boundaries where gravity is largest and radiative cooling
is most effective. The kinetic energy flux also has the famil-
iar shape characteristic of thermally driven convection with a
downward directed flux indicative of an asymmetry between
upflows and downflows, with strong concentrated downflows
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Figure 4. Horizontally and time-averaged profiles of the rate of buoyancy work Es and vertical kinetic energy flux Fk as functions of z. The three cases correspond to
values of κ equal to 4 × 10−4 (solid, black lines), 2 × 10−2 (dashed, green lines), and 1.2 × 10−1 (dash-dotted, yellow lines), respectively.

(A color version of this figure is available in the online journal.)

and gentler broader upflows (Hurlburt et al. 1984). Finally, and
for completeness, we remark that the magnetic field structure
in the current simulations is similar to that in the corresponding
simulations in Paper I.

4. CONCLUSIONS

The purpose of the current work was to extend the solutions
of Paper I to the radiative boundary conditions defined by
Equation (1). Our main result has been to find that the qualitative
features of the solutions remained largely unchanged. Since our
choice of Σ was such that the old solutions almost satisfied
the new boundary conditions, this result is perhaps not too
surprising. Nevertheless, it behooves us to speculate what would
happen had we chosen a dramatically different value. Also, we
should clarify what is the physical meaning associated with Σ
and its exact relationship to Stefan–Boltzmann constant.

A simple argument can be made to suggest that the effects
of varying Σ should be mostly to adjust the overall working
temperature of the layer relative to the boundary value, but not
to change the shape of the temperature profile. This can be seen
by considering an idealized diffusion equation with internal
heating

∂θ

∂t
= κ

∂2θ

∂z2
+ h, (3)

where h is a (spatially) uniform heating rate and, for simplicity,
we adopt linearized radiative conditions of the form

∂θ

∂z
± Σ

η
θ = 0 at z = ±1, (4)

where η = ρκ/4T 3
o . In a steady state the solution is given by

θ (z) = − h

2η
z2 + θ0, where θ0 = h

(
1

2η
+

1

Σ

)
. (5)

Clearly, the profile depends on a balance between the heating
rate h and the heat transport coefficient η ∝ κ , but not on
Σ. The latter only determines the overall temperature offset.
Furthermore, the smaller Σ, the higher the temperature.

To understand how Σ relates to Stefan–Boltzmann constant
and, in fact, how it determines the unit of density, we need to
consider the dimensionless form of the disk equations in the
shearing-box approximation. For definiteness, we assume that
Cs is the adiabatic sound speed, and choose Ω−1 and Cs/Ω

as the units of time and distance, respectively. With this choice,
the continuity equation has no adjustable coefficients, while the
equations of conservation of momentum and energy and the
induction equation have three dimensionless numbers appear-
ing in front of the dissipative terms and proportional respec-
tively to the inverses of the Reynolds, Peclet, and magnetic
Reynolds numbers. We note that the dimensionless equation
of state for a perfect gas also has no adjustable coefficients. If
one adopts fixed temperature boundary conditions, as was the
case in Paper I, this fixes the sound speed, and hence the size
of the disk, but not its density; the mass within the disk is un-
defined. If, on the other hand, one adopts, blackbody radiative
conditions, as we did here, the dimensionless boundary condi-
tions become Equation (1) with κ the inverse Peclet number,
and

Σ2 =
[

σ 2

R3

(γ − 1)2

γ 3

]
T 5

0 μ

ρ2
0

, (6)

where σ is Stefan–Boltzmann constant, R is the ideal gas
constant, γ is the ratio of specific heats, and μ is the mean
molecular weight. Although not immediately apparent, Σ is
proportional to the ratio of two energy fluxes: the flux of
blackbody radiation at temperature T0, and the kinetic energy
flux of a fluid moving at speed Cs. In Equation (6) the quantities
in the square brackets are fixed physical constants, thus, clearly
changing Σ at fixed temperature uniquely defines the unit of
density (mass).

We now briefly discuss the issue of what gets homogenized
in the convective regime. All the indicators are that the vertical
energy transport is by thermally driven convection. Thus, at
face value, one would expect that the entropy should be
homogenized and that the average stratification should be nearly
adiabatic. As shown in Figure 3, this is not the case; the layer
remains superadiabatic and it is the density instead that becomes
homogenized. Thus the convection is efficient in the sense that
it carries practically all of the heat, but inefficient because it
does not relax the layer to an adiabatic state. Superficially
this may appear strange, but actually it is not. The criterion
for marginal stability to overturning convection is that the
vertical lagrangian derivative of the density be zero (i.e., that
the Brunt-Väisälä frequency vanish). To be useful as a stability
criterion, this requires further information about how a vertical
displacement of a fluid element is to be effected. If the fluid
element is displaced isentropically, as is typically assumed,
then the marginally stable state is adiabatic. Thus one commonly
expects that efficient convection will relax a layer to an adiabatic
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state. Here, however, vertical displacements of fluid elements
are not isentropic; heat is constantly being supplied to the fluid
elements by dissipative heating driven by the MRI. Furthermore,
the source of free energy, here is not the stratification as is the
case in straight thermal convection, but the rotational shear. Thus
there is no a priori reason why the mean stratification should
relax to an adiabatic state.

Finally, we comment on our choice of thermal/mechanical
boundary conditions in the vertical. As mentioned in Section 2,
we adopt radiative, impenetrable stress-free boundaries. The
stress-free part is so that the regions external to the computa-
tional domain exert no tangential stresses on the interior. This
is a reasonable request that the boundary be tangentially neu-
tral. The radiative, impenetrable part, especially in view of the
recent work of Gressel (2013), requires further consideration.
Gressel compares two cases, one similar to the one considered
here and one in which the vertical boundary conditions are open.
Not surprisingly, in this second case the layer puffs up and the
convective motions are greatly reduced. He then concludes that
the convective state is to a large extent an artifact of the bound-
ary conditions, and that once the more “natural” open boundary
conditions are implemented the convection all but disappears.
We feel that this is not quite right.

Clearly, assuming that there is a horizontal surface (two,
actually) on which the vertical velocity vanishes and radiative
boundary conditions are applied is an idealization introduced,
to some extent, for numerical simplicity. However, it also has
a physical meaning. In a realistic situation, there should be
no physical boundary, but rather a region, and depending on
the details, possibly a very thin region, where the plasma
changes from optically thick to optically thin. In general, this
region is characterized by strong gradients and complex physical
processes that cause and are caused by the abrupt changes in
optical thickness. With suitable resources it is possible to model
this transition layer to some degree of accuracy. However, from
the point of view of the bulk of the convection, the effect of
such a layer is just to provide a source of low entropy that
causes the reversal of the buoyancy forces acting on moving
fluid parcels. In other words, when hot up-flowing fluid reaches

the transition layer, it is rapidly cooled off, becomes anti-
buoyant, and falls back down again. If one were primarily
interested in the dynamics of the interior, and the transition
regions were thin, one could justify an idealization in which
the complexities of the transition regions were replaced by
impenetrable radiative boundaries, as was done in the present
work. If, on the other hand, open boundary conditions are
applied while keeping the thermal diffusivity constant, as was
done in Gressell’s work, the only source of low entropy is at
infinity and the layer puffs up without much convecting. This,
however, is like comparing apples and oranges. If a meaningful
comparison is to be made one should compare a layer with an
impenetrable boundaries together with radiative conditions with
one with open boundaries and a mechanism to effect an abrupt
transition from very low to very high thermal conductivity, or
from very high to very low opacity somewhere in interior. Such
an experiment could be quite informative and could probably
be undertaken with current resources.
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