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ESTIMATION AND MAPPING OF NDVI UNCERTAINTY FROM LANDSAT 8 OLI 

DATASETS:  AN OPERATIONAL APPROACH 

 

Enrico Borgogno-Mondino (*), Andrea Lessio (*) 

 

Department of Agricultural, Forest and Food Sciences - Università di Torino 
 

ABSTRACT 

 

Within remote sensing applications aimed at monitoring 

vegetation, spectral indices represent an effective and 

widely used tool. Unfortunately, in the most of cases users 

do not take into account any estimation of index uncertainty. 

This information can be useful and desirable especially in 

multi-temporal analysis to define index sensitivity with the 

aim of identifying significant differences between pixels of 

the same scene or of the same pixel in time. The goal of this 

work is to investigate potential uncertainty affecting spectral 

indices, with particular focus on NDVI (Normalized 

Vegetation Index). An “open” (entirely controllable ) self-

developed radiative transfer model is considered for this 

study. Uncertainty concerning factors involved in the model 

was considered to estimate its effects on NDVI final 

accuracy. For this task the statistical model of the variance 

propagation law was adopted. Two Landsat 8 OLI images 

acquired over a sample study area sited in Piemonte (NW 

Italy) were used to compute NDVI images at two different 

dates, estimate its uncertainty and investigate the way this 

information can be exploited during a change detection 

analysis. 

 

Index Terms— Landsat 8 OLI, NDVI accuracy,  

change detection, Variance Propagation Law  

 

1. INTRODUCTION 

 

In optical satellite remote sensing applications aimed at 

investigating vegetation, spectral indices derived from 

optical multi/hyper-spectral imagery are widely and 

successfully used. In this context it is very important to 

proceed in the evaluation of spectral index reliability by 

considering and quantifying the role of those physical 

factors involved in the adopted radiative transfer model that 

introduce elements of uncertainty. This issue should be a 

mandatory one but, unfortunately, is often neglected in 

many scientific works. The potential uncertainty (or 

precision) affecting spectral measurement is, in fact, a basic 

requirement for a correct interpretation of results, especially 

while approaching change detection applications [1] [2]. 

This information is strongly needed: a) to map significant 

index differences between pixels of the same scene (at the 

same time); b) which pixels are really (significantly) 

changed over time.  

In this paper authors present an operational approach that, 

starting from a simplified imagery calibration model, is able 

to generate estimates of NDVI (Normalized Differencing 

Vegetation Index) uncertainty at each scene location and, 

consequently to propagate it over differences in time. The 

approach is tested by processing two Landsat 8 OLI image 

subsets representing an agricultural context in the south 

western Piemonte region (NW Italy). Some discussions are 

finally given concerning the relationship between NDVI 
values, NDVI differences and the correspondent estimated 

uncertainty.  

 

2. MATERIALS AND METHODS 

 

This work presents an operational approach to generate, at 

each position of a multispectral image, an estimate of NDVI 
accuracy. The statistical model of the Variance Propagation 

Law (VPL) [3] is suitable to estimate uncertainty affecting 

“indirect” measurements, deducing it from the ones 

supposed for the “direct” measures they depend on [4] [5]. 

Direct measures in NDVI calculation are represented by 

those physical factors, participating to reflectance 

recovering [6], within the adopted radiative transfer model: 

at-sensor radiance, sun irradiance, area topography [7] and 

atmosphere [8] [9].  

A simplified “open” radiative transfer model for at-the-

ground reflectance computation was adopted for this work 

and VPL was applied to generate for each L8 OLI band the 

correspondent reflectance uncertainty. The formulation of 

the used simplified radiative transfer model is the following: 

 

 
 

Where ρλ is the at-the-ground reflectance value, Lλ is the at-

sensor-radiance [W·m
-2

·sr
-1

·µm
-1

] obtained applying the 

GAIN and OFFSET values supplied with L8 OLI images, 

Lλ
atm

 the atmosphere scattered radiance [W·m
-2

·sr
-1

·µm
-1

], τλ 

the atmospheric transmittance, k the astronomical 

coefficient (k=1/d
2
) related to the Earth-Sun distance (d), Iλ 

the sun irradiance [W·m
-2

·µm
-1

] and β is the sun incidence 

angle (rad) 
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Table 1. Uncertainty of factors involved in the radiative transfer model 

 

calculated at each position using SRTM (Shuttle Radar 

Topography Mission) Digital Elevation Model (DEM).   

Uncertainty of factors involved in the radiative transfer 

model were set according to table 1. 

Reflectance uncertainty affecting bands used for NDVI 
computation was further propagated along its formula to 

obtain correspondent NDVI uncertainty estimate. Since 

estimation is local, both reflectance and NDVI uncertainty 

vary over the scene according to local lighting conditions. 

Therefore an NDVI uncertainty map, 𝜎𝑁𝐷𝑉𝐼(x,y), can be 

generated for each processed image. When NDVI difference 

in time, Δ𝑁𝐷𝑉𝐼(𝑥,𝑦), is required to investigate vegetation 

changes, NDVI uncertainty has to be further propagated 

along the difference for accuracy estimation of measured 
NDVI differences, 𝜎Δ𝑁𝐷𝑉𝐼(𝑥,𝑦). Resulting 𝜎Δ𝑁𝐷𝑉𝐼(𝑥,𝑦) 

map can be finally used to separate, over the scene, 

significant, SD(x,y), from not-significant differences.  

 

𝑆𝐷(𝑥,𝑦) = |Δ𝑁𝐷𝑉𝐼(𝑥,𝑦)| > 𝜎Δ𝑁𝐷𝑉𝐼(𝑥,𝑦) 

 

3. RESULTS 

 

Two sample image subsets were considered showing the 

study area on April 14
th

  2014 and August 11
th

  2014. 

A preliminary investigation was made exploring the 

behavior of reflectance uncertainty respect to spectral 

signature of surfaces. In Fig. 1 the average spectral 

signatures of two reference classes (vegetation and urban) 

represented by 50 pixels each, extracted by image 

interpretation from the August 11
th

 L8 OLI image, are 

compared with the correspondent band reflectance 

uncertainty.  It is easy to notice a high correlation, 

demonstrating that local variance is strictly dependent on 

surface type. Aside this first consideration, and obviously 

strictly related to it, it can be easily deduced that reflectance 

uncertainty is band dependent. NDVI images were then 

computed for the two dates using calibrated reflectances. 

 

 
 

Fig. 1. Average spectral signature and “uncertainty 

signature” of two groups of pixels (50) representing 

vegetation and urban, extracted from the August 11th L8 

OLI image. 

 

Contemporarily, reflectance uncertainty estimation given by 

model at the previous step for RED and NIR bands, was 

propagated along NDVI formula in order to generate NDVI 
uncertainty estimate for the two periods. Looking at results 

given in Fig. 2 (c-d), a strong dependence of NDVI 
uncertainty from season and position is evident. Comparing 

Fig. 2 (c-d) with Fig. 2 (a-b) it can be noted that NDVI 
uncertainty  behaves oppositely respect to the one of the 

NDVI it refers to.  A further demonstration of this strict 

dependence comes from scatterplots of Fig.2 (e-f), 

suggesting that the higher is NDVI value, the lower is its 

uncertainty. NDVI difference image (August minus April), 
hereinafter called Δ𝑁𝐷𝑉𝐼(𝑥,𝑦), was then computed to map 

NDVI changes in the reference period. The correspondent 
𝜎Δ𝑁𝐷𝑉𝐼(𝑥,𝑦) uncertainty map was generated too (Fig. 2 – 
g). Finally, authors proceeded to exemplify the way this 

information can be exploited to separate significant from 

not-significant NDVI differences (Fig. 2 - h). 

Factor Definition Description 

At-sensor-Radiance 
[W·sr-1·m-2·μm-1] 

𝐿𝜆(𝑥, 𝑦) Lλ
=

GAINλ ∙ (216 − 1)

(212 − 1)
 

Constant over the scene, different for each band. It is 

assumed to be equal to the original (12 bits) 

radiometric resolution of L8 OLI imagery. 

Atmospheric 
scattering 

[W·sr-1·m-2·μm-1] 
�̂�𝜆

𝑎𝑡𝑚
(𝑥, 𝑦) 𝜎�̂�𝜆

𝑎𝑡𝑚 = 𝑓[𝑑𝑎𝑟𝑘 𝑝𝑖𝑥𝑒𝑙𝑠, 𝑎𝑖𝑟 𝑚𝑎𝑠𝑠 𝑐𝑜𝑒𝑓𝑓. , 𝐷𝐸𝑀] 
Standard deviation of radiances of dark pixels 
(different for each band, constant over the scene). 

Atmospheric 

transmittance 
𝜏𝜆(𝑥, 𝑦) 𝜎𝜏𝜆

(𝑥, 𝑦) = 𝑓 [(
�̂�𝜆

𝑎𝑡𝑚(𝑥, 𝑦), 𝐷𝐸𝑀] Different for each band, varying over the scene. 

Sun Irradiance 

[W·m-2·μm-1] 
𝐼𝜆 𝐼𝜆

 Equal for all bands and constant over the scene (0.05) 

 

Sun incidence angle 

[rad] 
𝛽(𝑥, 𝑦) 

𝜎𝛽 =
√2 ∙ 𝜎𝐷𝐸𝑀

2𝐺𝑆𝐷 ∙ [1 + (
𝛥ℎ(𝑥, 𝑦)

𝐺𝑆𝐷
)

2

]

 
Equal for all bands, varying over the scene.  𝛥ℎ is the 
maximum local height difference around the pixel 

calculated from DEM (DEM = 8 m). 
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Fig. 2. (a-b) April and August NDVI and (c-d) NDVI uncertainty image subsets. The higher is signal (NDVI) the lower is its 

uncertainty (NDVI precision). (e-f) Scatterplots relating NDVI and its uncertainty for April 14th 2014 and August 11th 2014. 

The right sided bar reports observations’ frequency (number of pixels). (g) NDVI difference image subset and (h) its 

uncertainty map.  

 

 
Fig. 3. Significant NDVI differences map: white = “Not 

significant”, light gray = “significant > 1”, dark gray = 

“significant > 2 ” 

 

The adopted criterion states that NDVI difference values 

lower than thresholds corresponding to 1 or 2 times the local 

value of 𝜎Δ𝑁𝐷𝑉𝐼 are not-significant, i.e. no real change at 

that position occurred in the reference period. 

 

4. CONCLUSIONS 

 

Spectral indices are widely used in many environmental 

applications. Many of them are mapped to describe changes 

in time. In this work we focused on the importance of 

estimating uncertainty related to spectral indices derived 

from L8 OLI images. Proposed method relies on the 

Variance Propagation Law and requires the adoption of an 

“open” radiative transfer model during image calibration.  

As far as NDVI and NDVI difference is concerned, we found 

that 𝜎𝑁𝐷𝑉𝐼(x,y) strongly and inversely correlates with 

NDVI values (Fig.2, c-d.) This latter suggests that the higher 

is NDVI value, the lower is its uncertainty. Estimated values 

for 𝜎𝑁𝐷𝑉𝐼 through the    proposed method, are consistent 

with the ones reported for other sensors [10].  

We also showed that  𝜎𝑁𝐷𝑉𝐼(x,y)  and 𝜎Δ𝑁𝐷𝑉𝐼(𝑥,𝑦) can 

be effectively used to better interpret data. Specifically 

NDVI significant differences can be recognized and 

separated from the ones due to intrinsic uncertainty of 

recording instrument or RTM. Authors retain that this 

approach can be effectively applied to all spectral indexes 

and sensors, helping to improve reliability of many results 

concerning change detection and spectral index mapping. 
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