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ABSTRACT

We present a numerical study of turbulence and dynamo action in stratified shearing boxes with zero mean magnetic
flux. We assume that the fluid obeys the perfect gas law and has finite (constant) thermal diffusivity. The calculations
begin from an isothermal state spanning three scale heights above and below the mid-plane. After a long transient
the layers settle to a stationary state in which thermal losses out of the boundaries are balanced by dissipative
heating. We identify two regimes. The first is a conductive regime in which the heat is transported mostly by
conduction and the density decreases with height. In the limit of large thermal diffusivity this regime resembles
the more familiar isothermal case. The second is the convective regime, observed at smaller values of the thermal
diffusivity, in which the layer becomes unstable to overturning motions, the heat is carried mostly by advection, and
the density becomes nearly constant throughout the layer. In this latter constant-density regime we observe evidence
for large-scale dynamo action leading to a substantial increase in transport efficiency relative to the conductive case.
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1. INTRODUCTION

The origin of turbulence and enhanced angular momentum
transport in accretion flows is a fascinating problem of con-
siderable importance in astrophysics. It is commonly believed
that the magneto-rotational instability (MRI), in one form or an-
other, plays a fundamental role in destabilizing the basic quasi-
Keplerian flow. When a net magnetic flux is present the MRI
sets in as a classical linear instability with a well-defined growth
rate and characteristic wavenumber (Balbus & Hawley 1991);
the turbulence then develops from the nonlinear evolution of
this instability. When there is no net flux the problem is more
complicated and the turbulence must develop from a nonlinear
sub-critical instability. In this case, the problem becomes fun-
damentally one of establishing what form of dynamo action can
be sustained in a disk. Much of what is currently known about
dynamo action in accretion flows is based on numerical studies
formulated within the framework of the shearing-box approxi-
mation (Hawley et al. 1995). The simplest set up, both concep-
tually and numerically, consists of an unstratified, isothermal
shearing box with periodic boundary conditions in the vertical
direction. It is now well established that this configuration suf-
fers from the so-called convergence problem. As the magnetic
diffusivity decreases, or equivalently the resolution increases,
the Maxwell stresses decrease, eventually becoming negligi-
ble (Fromang & Papaloizou 2007; Pessah et al. 2007; Guan
et al. 2009; Simon et al. 2009; Bodo et al. 2011; see, however,
Fromang 2010 for a different view). The cause of this “non-
convergence” has been attributed to the lack of a characteristic
outer scale in the periodic, unstratified problem (for a discus-
sion see Bodo et al. 2011). The next step toward more realistic
simulations is to retain the shearing-box geometry but with the
inclusion of vertical gravity and, consequently, stratification.
This introduces a characteristic length—the scale height—that
may help to remedy the convergence problem (Davis et al. 2010;
Shi et al. 2010; Oishi & Mac Low 2011). Whether this is the

case or not at the moment remains an open question. Certainly,
in the stratified cases the solutions manifest a richness both in
space and time that is absent in the unstratified cases (Gressel
2010; Guan & Gammie 2011; Simon et al. 2012). It is important
to note that most of these studies adopt an isothermal equation
of state; the resulting density distribution is correspondingly
close to a Gaussian with most of the mass concentrated near the
mid-plane and tenuous, low-density regions above and below.
This leads to very different dynamo processes operating in the
mid-plane and in the overlying regions. Although an isothermal
formulation is conceptually simple and easy to implement nu-
merically, it neglects the possibly important process of turbulent
heating by viscous and Ohmic dissipation. It can be argued that
in an optically thin environment turbulent heating may not be
important since the energy can easily escape without substan-
tially heating the ambient plasma. However, this is definitely
not the case in an optically thick environment. In this case the
plasma will be heated locally and the final thermal structure
will be determined by a balance between energy deposition and
energy transport. In this case, it is possible that substantial de-
partures from the isothermal case may develop that, in turn,
may impact the operation of the dynamo. Some of these issues
have been addressed by Hirose and collaborators (Hirose et al.
2006, 2009; Blaes et al. 2011), who have considered radiation-
dominated disks and have included a sophisticated treatment of
the radiation field, and also by the works of Flaig and collabora-
tors (Flaig et al. 2010, 2012) whose models of proto-planetary
disks include partial ionization, chemical networks, and heat
transport in the radiative conduction approximation. All these
works indicate that turbulent heating can indeed be important.
Here, we also address the problem of turbulent heating but in the
somewhat simpler case of a fully ionized, pressure-dominated
disk. Our intention is to provide a bridge between the works of
Hirose et al. and Flaig et al. and those based on the isothermal
equation of state. To this end we consider a stratified shearing
box with a perfect gas equation of state and finite (constant)
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thermal diffusivity. The objective is to study how the basic state
and the corresponding dynamo action change as the thermal
diffusivity is varied. In this work we deliberately keep the for-
mulation as simple as possible in order to highlight some of the
basic underlying physical processes.

2. FORMULATION

Our objective is to provide a simple model in which the
effects of dissipative heating can be studied. In particular we
want to assess how these processes together with thermal trans-
port, lead to departures from the more familiar isothermal
cases. We assume that the plasma is optically thick and ap-
proximate the radiative transport by a diffusion process which
we model by a thermal conduction term in the energy equa-
tion. In the spirit of keeping things as simple as possible,
and in order to capture more easily the general properties
of the solutions, we make further simplifications by neglect-
ing the dependencies on density and temperature resulting
from the diffusion approximation to the radiative transport equa-
tion and assuming a constant thermal diffusivity. A more realis-
tic treatment of the radiation will be considered in future work.

We perform three-dimensional, numerical simulations of
a perfect gas with thermal conduction in a shearing box
with vertical gravity. A detailed presentation of the shearing-
box approximation can be found in Hawley et al. (1995).
The magnetohydrodynamics (MHD) shearing-box equations,
including vertical gravity and thermal conduction, can be written
as

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂v
∂t

+ v · ∇v + 2Ω × v = B · ∇B
4πρ

− 1

ρ
∇

(
B2

8π
+ P

)

− ∇
(

2AΩx2 +
1

2
Ω2z2

)
, (2)

∂B
∂t

− ∇ × (v × B) = 0, (3)

∂E

∂t
+ ∇ · [(E + PT )v + (v · B)B − k∇T ] = 0, (4)

where B, v, ρ, and P denote, respectively, the magnetic field
intensity, the velocity, the density, and the thermal pressure; E is
the total energy density; PT is the total (thermal plus magnetic)
pressure; and k is the thermal conductivity. The local angular
velocity � = Ωez and the shear rate

A ≡ R

2

∂Ω
∂R

(5)

are assumed constant. For a Keplerian disk A = −(3/4)Ω. The
system is closed by the equation of state for a perfect gas:

P = ρT , (6)

where we have absorbed the perfect gas constant in the definition
of the temperature. The thermal conductivity can be written as

k = 5

2
κρ, (7)

where κ is the thermal diffusivity, which, as discussed above,
we assume to be constant, and the factor of 5/2 is appropriate
for a gas with three degrees of freedom.

We start our simulations from a state with a uniform shear
flow, v = −2Axêy , and density and pressure distributions that
satisfy vertical hydrostatic balance with constant temperature
T0. With these conditions the initial density has a Gaussian
profile given by

ρ = ρ0 exp(−Ω2z2/2T0), (8)

where ρ0 is the value of the density on the equatorial plane.
If the MRI develops to substantial amplitude, this initial state

will be driven away from thermal equilibrium by the energy
input from dissipative processes. The temperature in the equa-
torial regions will progressively increase and a thermal gradient
will be established until a new equilibrium is reached whereby
the energy input is balanced by thermal losses at the upper and
lower boundaries. As we shall see, the new equilibrium can be
quite different from the initial isothermal state and is determined
self-consistently by the heating associated with the process of
angular momentum transport by the MRI. We note here that, in
our current formulation, we do not include viscous and Ohmic
dissipation explicitly. The heating of the fluid occurs because of
numerical dissipation together with a conservative formulation
of the total energy equation. The latter requires that whatever
kinetic or magnetic energy is lost by dissipative processes must
be re-introduced in the form of internal energy (heating).

The computational domain covers the region Lx × Ly × Lz,
where Lx = H , Ly = πH , and Lz = 6H , where

H =
√

2T0

Ω
(9)

is the pressure scale height in the initial isothermal state. In
the vertical direction the box is symmetric with respect to the
equatorial plane z = 0, where gravity changes sign. Numerically,
the domain is covered by a grid of 32 × 96 × 192 grid points.
A magnetic field of the form

B = B0 sin

(
2πx

H

)
êz (10)

is imposed initially, where B0 corresponds to the ratio between
thermal and magnetic pressure and has a value of 1600. Clearly,
there is no net magnetic flux threading the box. In addition we
introduce random noise in the y-component of the velocity in
order to destabilize the system.

Following common practice, we assume periodic boundary
conditions in the y-direction and shear periodic conditions in
the x-direction. In the vertical direction, we assume that the
upper and lower boundaries (z = ±3H ) are impenetrable and
stress free, giving vz = 0, ∂vx/∂z = ∂vy/∂z = 0, and also
that the magnetic field is purely vertical, giving ∂Bz/∂z = 0,
Bx = By = 0. We should note that these conditions allow a net
flux of magnetic helicity through the boundaries with possibly
important consequences for the dynamo processes (Vishniac &
Cho 2001; Käpylä & Korpi 2011). Finally, we assume that the
boundaries are in hydrostatic balance, and that the temperature
is constant and equal to T0; thus

∂pT

∂z
= ∓3ρΩ2H, T = T0. (11)

All simulations are carried out with the PLUTO code (Mignone
et al. 2007), with a second-order accurate scheme, HLLD
Riemann solver, and an explicit treatment of thermal conduction.
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Figure 1. Time history of the Maxwell stresses averaged over the computational
box for the case κ = 2 × 10−2.

3. RESULTS

We now describe the development of MRI-driven turbulence
from an initially isothermal state. Hereinafter, and unless other-
wise specified, when presenting the numerical results, we adopt
Ω−1 as the unit of time, H as the unit of length, and the mid-plane
density in the initial isothermal state ρ0 as the unit of density
and, since H is our unit of length, we have T0 = 1/2. Following
the initial perturbations, a sub-critical instability sets in lead-
ing to the generation of magnetic fields and the development
of turbulence. Dissipative processes heat the plasma driving the
system away from the initial isothermal state. Eventually the
system reaches a stationary state in which the heat generated
by the turbulence is balanced by the heat lost through the up-
per and lower boundaries. Locally, the balance is between the
volumetric heat production and the divergence of the heat flux
that can arise both by thermal conduction and turbulent trans-
port. The relative importance of these two processes depends on
the value of the thermal diffusivity, which here is expressed in
units of the product of the scale height and the isothermal sound
speed, i.e., it has the form of an inverse Péclet number. The typ-
ical evolution for a case with κ = 2 × 10−2 can be followed in
Figure 1 where we show the time history of the Maxwell stresses
averaged over the entire computational domain. Clearly, there
is a long adjustment phase lasting approximately 500 time units
after which the system settles into a stationary state in which
the stresses remain strongly fluctuating but with a well-defined
(time) average value. The corresponding thermal history can be
assessed by inspection of Figures 2 and 3, which show, respec-
tively, the horizontally averaged temperature, T̃ (z) and density
ρ̃(z) at several times. The asymptotic profiles in the stationary
state (obtained by time averaging from t = 500 to the end of the
simulation, t = 2000) are denoted by angle brackets. Clearly, the
increase in the Maxwell stresses is accompanied by the heating
of the central regions leading to the establishment of a nearly
parabolic profile in temperature. We note a corresponding dra-
matic change in the density distribution that evolves from the
initial Gaussian profile to an almost constant distribution at later
times.

The development of a constant-density state is somewhat
remarkable, and deserves further investigation. At first sight
it may appear as the result of a fortuitous choice of thermal
diffusivity. As we shall see presently, this is not entirely the

 t = 0

 t = 150

 t = 300

 t = 450  <
~
T>

−2 −1 0 1 2
z

0

1

2

3

4

5

~ T

Figure 2. Temperature averaged over horizontal planes, T̃ , as a function of the
vertical coordinate z for the case κ = 2 × 10−2. The different curves refer to
different times, as indicated by the labels, and for comparison we also plot the
time-averaged distribution 〈T̃ 〉 in the steady state.

(A color version of this figure is available in the online journal.)
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Figure 3. Density averaged over horizontal planes, ρ̃, as a function of the
vertical coordinate z for the case κ = 2 × 10−2. The different curves refer to
different times, as indicated by the labels, and for comparison we also plot the
time-averaged distribution 〈ρ̃〉 in the steady state.

(A color version of this figure is available in the online journal.)

case. In the stationary state the average temperature and density
are related by the condition of hydrostatic balance, which we
write here in dimensional form and for simplicity we consider
only z > 0:

1

ρ

dρ

dz
= 1

T

(
−Ω2z − dT

dz

)
. (12)

Clearly, whether the density decreases upward, increases up-
ward, or remains constant depends on the relative magnitude
of the two terms in the brackets on the right-hand side (rhs) of
Equation (12). The first term is a fixed linear function of z. The
second—the temperature gradient—is negative since the layer
is heated from within, but its magnitude depends on a balance
between local heat production rate and local heat transport. To
a first approximation, one could assume that the energy pro-
duction rate should be independent of the thermal diffusivity
κ . This is not unreasonable, since the production rate is driven
by turbulent dissipation, which in turn depends solely on the
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Figure 4. Plot of 〈T̃ 〉 as a function of z. The different curves refer to different
values of κ , as shown in the legend. For comparison we also plot the isothermal
case.

(A color version of this figure is available in the online journal.)

efficiency of the MRI. This being the case, the magnitude of
the temperature gradient could be made arbitrarily small by
choosing a large value of κ . Clearly, if the thermal diffusivity
is huge, thermal conduction can easily transport all the gener-
ated heat along very shallow gradients. The temperature will
be nearly constant, the density will rapidly decrease upward
in accordance with Equation (12), and resemble the isothermal
distribution. By contrast, if κ is tiny the temperature gradients
required to carry the heat will be huge (in absolute value), the
rhs of Equation (12) will be positive, and the density will rapidly
increase with height. However, this configuration with a density
inversion is strongly unstable to Rayleigh–Taylor-type instabil-
ities. The resulting overturning motions will both carry the heat
more efficiently than thermal conduction and homogenize the
mass toward a constant-density state. Thus we can conjecture
the existence of a critical value of κ = κcrit above which the
transport is mostly conductive, the layers have a density de-
creasing with height and a stratification approaching that of an
isothermal layer in the limit of large κ (conductive states). For
κ 	 κcrit, the heat transport is mostly advective, and the density
is approximately constant (convective states).

Some of these ideas can be easily verified by considering a
series of calculations with varying thermal diffusivity. The re-
sults are summarized in Figures 4 and 5 where we show the
steady-state horizontally averaged temperature and density dis-
tributions for different values of κ . As expected, the temperature
gradient is always negative (z > 0) and its magnitude increases
with decreasing κ , as does the overall temperature of the layer.
For large values of κ the temperature distributions have an ap-
proximately parabolic profile and the density decreases upward.

For small values of κ the temperature in the interior ap-
proaches a “tent” profile with a parabolic shape near the equator,
then a linear decrease over most of the domain, and thin bound-
ary layers at the edges. As κ decreases the profiles move up
retaining their shape but producing progressively thinner bound-
ary layers. The corresponding density profiles confirm the estab-
lishment of a constant-density state that becomes asymptotically
independent of κ . From Figure 5, we can estimate that the crit-
ical value of κ for a transition from conductive to convective
regimes in this setup satisfies

κcrit ≈ 2 × 10−2. (13)
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Figure 5. Plot of 〈ρ̃〉 as a function of z. The different curves refer to different
values of κ , as shown in the legend. For comparison we also plot the isothermal
case.

(A color version of this figure is available in the online journal.)
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Figure 6. Plot of 〈Fc〉 and 〈FT 〉 as functions of z. The solid curves show 〈Fc〉
while the dashed curves show 〈FT 〉; the different colors refer to different values
of κ, as indicated in the legend.

(A color version of this figure is available in the online journal.)

Our conjecture that as κ crosses its critical value the vertical heat
transport changes from conductively dominated to advectively
dominated can also be verified by considering the horizontally
averaged conductive and advective fluxes that can be defined,
respectively, as

Fc = −5

2
κρ

dT̃

dz
(14)

and

FT = 1

LxLy

∫
5

2
ρvz(T − T̃ )dxdy. (15)

Their values in the stationary state for the two extreme values
of κ are shown in Figure 6. The roles of the two types of
flux practically reverse. For κ = 0.12 the transport is entirely
conductive and advection is negligible; for κ = 4 × 10−3 heat
conduction is negligible, except in the boundary layers, and all
of the flux is carried by advection. It is interesting to note that
near the equator where the advective flux is small—it is actually
zero at the equator—the density displays a weak inversion. This
is related to the absence of gravity near the equator to drive
Rayleigh–Taylor instabilities.
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Figure 7. Time histories of the volume-averaged Maxwell stresses for different
values of the thermal diffusivity κ , as shown in the legend.

(A color version of this figure is available in the online journal.)
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Figure 8. Plot of the average Maxwell stresses as a function of z for two cases
with different values of κ . One case (solid line) is in the convective regime, the
other (dashed-dotted line) is in the conductive regime.

(A color version of this figure is available in the online journal.)

The existence of two regimes, conductive and convective,
with strikingly different vertical structures is likely to lead
to correspondingly different dynamo actions. A measure of
these differences can be assessed by inspection of Figure 7
where the domain-averaged Maxwell stresses are shown as a
function of time for different values of κ . The corresponding
curve for an isothermal case is also included for comparison.
Clearly, the angular momentum transport efficiency increases
with decreasing κ and eventually saturates in the convective
regime. It is natural to assume that once the heat transport is
mostly advective further decreases in thermal diffusivity will
not make any difference. What is remarkable is the difference
between the convective cases and the purely isothermal one,
with the latter being strikingly smaller.

Further evidence for two distinct types of dynamo actions
operating in the two regimes can be obtained by inspection
of Figure 8. This shows the horizontally and time-averaged
Maxwell stresses as a function of z for two cases with different
values of κ corresponding to the convective and conductive
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Figure 9. Space–time diagrams of average azimuthal field. The horizontally
averaged value of By is plotted as a function of z and t. The upper panel
corresponds to a case in the convective regime and the lower to one in the
conductive regime. The corresponding values of κ are indicated.

(A color version of this figure is available in the online journal.)

regimes. The curve for the conductive case follows the general
trend of the more familiar isothermal calculations. The transport
is largest in the denser central regions and decreases steadily
at higher values of z. This is in sharp contrast with the
convective case in which the stresses actually rapidly increase
with distance from the mid-plane, reaching a sharp maximum
near the boundaries. In both cases, the corresponding Reynolds
stresses are small and decrease steadily away from the mid-
plane. The spatio-temporal behavior of the dynamo is also
remarkably different in the two regimes as illustrated in Figure 9.
The two panels show space–time diagrams of the horizontally
averaged azimuthal magnetic field as a function of z and
time. The lower panel, corresponding to a conductive case,
displays the characteristic patterns typical of the isothermal
cases, signaling the presence of cyclic activity with magnetic
structures propagating from the mid-plane to the boundaries.
In the upper panel there is no evidence for cyclic activity
or pattern propagation. The magnetic structures form and
vanish seemingly at random with no apparent characteristic
time between field reversals. Furthermore there are events in
which coherent structures form that extend over the entire layer.
Interestingly, for earlier times, when the layer is still close to
isothermal, there is some evidence for pattern propagation. From
these last two figures it is clear that both the transport efficiency
and the amount of toroidal flux generated are much higher in
the convective regime than in the conductive one.

A possible reason for this difference might be related to the
influence of magnetic boundary conditions. It is well known that
in unstratified shearing boxes the boundary conditions make a
big difference to the operation of the dynamo. Periodic boundary
conditions, as mentioned in the introduction, lead to small-scale
dynamo action and to the convergence problem. On the other
hand, “vertical” boundary conditions, such as the ones imposed
here, lead to a much more efficient dynamo that appears to
scale with the system size rather than with the dissipation scale
(Käpylä & Korpi 2011). By contrast, the solutions in isothermal,
stratified shearing boxes are more insensitive to the boundary
conditions (Davis et al. 2010; Shi et al. 2010; Oishi & Mac Low
2011). This most likely is because the boundaries are located
in very tenuous regions characterized by low density and high
Alfvén speed. In the convective cases described here, the density
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Figure 10. Time history of By (the volume-averaged By) in units of the rms
value of the fluctuations. For this case κ = 4 × 10−3.

(A color version of this figure is available in the online journal.)

is nearly constant as a function of height, making the layer
appear more “unstratified”. Partial support for this argument
can be provided by looking at what type of dynamo is operating
in the convective regime. Figure 10 shows the time history of the
volume-averaged value of By (the azimuthal component) scaled
in terms of the rms value of the fluctuations. Two things are
worthy of note: the average field changes sign, and its magnitude
is comparable with—and actually it occasionally exceeds—that
of the fluctuations. This is strongly suggestive of the operation
of a system-scale dynamo (Tobias et al. 2011) and should be
contrasted with the corresponding isothermal case in which
there is a different behavior depending on height and the ratio
between average and fluctuations rises from about 10% in the
central region, where most of the transport takes place, to more
substantial values in the upper and lower regions where the
transport strongly declines.

4. CONCLUSIONS

Our main objective was to study numerically the effects of
dissipative heating and finite heat transport in determining the
thermal structure of the layer and the efficiency of angular
momentum transport in stratified shearing boxes with zero
magnetic flux. In particular, we wanted to compare with the
more commonly studied isothermal case. To this end we have
considered the simple case of a fluid obeying the perfect gas law
and with finite (constant) thermal diffusivity.

Our main result is to identify two distinct regimes: conductive
and convective, corresponding respectively to large and small
values of the thermal diffusivity. In the conductive regime, the
heat generated by dissipation is transported through the bulk of
the layer by thermal conduction, and the temperature and density
have close to parabolic profiles. This appears to be in agreement
with the conclusions of the recent work by Uzdensky (2012).
The convective regime is dramatically different. In these cases,
the heat is transported almost entirely by overturning motions
driven by Rayleigh–Taylor-type instabilities. The density profile
becomes flat, and the temperature develops a “tent” profile with
thin boundary layers at the upper and lower boundaries. There
is evidence that the “tent” profile for the temperature and the flat
profile for the density are universal, in the sense that they depend
solely on the properties of the turbulence and not on the values

of the collisional processes. This last property in particular
may have important consequences for the dynamo processes. It
appears that the dynamo can operate more efficiently in a layer
with nearly constant density than in a corresponding layer with
the same total mass and a Gaussian profile (isothermal case).
This being the case, there is an interesting feedback effect. The
dynamo drives the MRI turbulence that heats the layer, causing
it to become Rayleigh–Taylor unstable, the overturning motions
associated with the Rayleigh–Taylor instability homogenize the
density allowing a more efficient operation of the dynamo,
and so on until the layer settles to a universal, convective,
self-regulated state. At the moment it is not clear whether the
Rayleigh–Taylor-driven motions contribute directly to a more
efficient working of the dynamo, or contribute indirectly by
maintaining the more beneficial constant-density state. Some of
the similarities between the dynamo properties observed here
and those in the work of Käpylä & Korpi (2011) in which
stratification is absent suggest that it may be the constant-density
feature that is important.

Finally, we remark on the natural extensions of the present
model. There are two avenues that immediately come to mind.
One is to include a more realistic treatment of the thermal trans-
port. The obvious next step is to consider thermal diffusivi-
ties that have power-law dependencies on density and temper-
ature. We anticipate that this may have some impact on the
stratification in the conductive regime, but hardly any in the
convective regime in which all the thermal transport is medi-
ated by flows anyway. The other is to consider more realistic
boundary conditions such as, for instance, those appropriate to
blackbody radiation. Preliminary results in this direction show
that in the convective regime this choice leads to a change in
the overall value of the temperature but not in its profile. Also,
the constant-density profile remains unchanged. These results,
however, are preliminary and a more thorough study is needed.
Also, the assumption of impenetrable stress-free boundary con-
ditions should be replaced by more realistic conditions in which
there is a thin transition layer across which the opacity changes
dramatically and the fluid goes from being optically thick to
optically thin. The problem is similar to that of matching a pho-
tosphere on top of a stellar convection zone. Numerically, this
is extremely challenging and will be considered in future work.
However, all these extensions are secondary to the issue of con-
vergence. In a sense, if the dynamo ceases to operate efficiently
at high magnetic Reynolds numbers all bets are off. There is
some room for cautious optimism since the evidence so far is
that the dynamo operating here in the convective regime is more
likely to be of the system-scale type than of the small-scale
type. Preliminary calculations with twice the resolutions indeed
support this conjecture. However, in the end only a (very costly)
convergence study will settle the issue.
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