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1. Introduction

The lattice study of pure-glue gauge theories gives interesting information on the behavior of
non-Abelian gauge theories, at a fraction of the typical computational costs of lattice QCD, and
offers the possibility to compare the results of Monte Carlo numerical integrations with analytical
calculations. Here we present a summary of our recent work [1] in which, following this line of
research, we studied the equilibrium thermodynamics of SU(2) pure-glue theory in its confining
phase, i.e. for temperatures 7 below the critical deconfinement temperature 7.. We show that
the equation of state in the 7 < 7, region can be modeled as a gas of non-interacting relativistic
glueballs, provided that the contribution of heavier glueball states is described in terms of a bosonic
string model. This work can be considered as a generalization of the study presented in ref. [2]
for SU(3) Yang-Mills theory, later extended to SU(N) theories in 2+1 spacetime dimensions [3].
Related ideas have also been discussed in refs. [4, 5]. The motivation to focus on the theory with
N =2 color charges is that it provides a crucial cross-check for the string model, as it admits only
states with charge conjugation C = +1 and it is characterized by a second-order deconfinement
transition. Furthermore we show that similarly good agreement (with no free parameters) is also
found for the SU(3) theory, using lattice data computed in ref. [6].

2. Thermodynamics on the lattice

A quantity of major phenomenological interest in finite-temperature field theory is the pressure
p, which in the thermodynamic limit V' — oo equals the opposite of the free-energy density f:
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The pressure p is related to A, the trace of the energy-momentum tensor (also called trace anomaly)
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Two other quantities such as energy density and entropy density can be readily evaluated:
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The SU(2) Yang-Mills gauge theory is regularized on a four-dimensional hypercubic lattice A of
spacing a and hypervolume a*(N? x N;), with periodic boundary conditions on all directions. The
temperature of the theory, according to thermal field theory, is the inverse of the shortest (temporal)
size, i.e. T = 1/(aN;). In this work, variations of the temperature are performed by changing the
lattice spacing a (which is a function of the coupling) while keeping N, fixed. The lattice version
of the action is set to be the standard Wilson action

2
Sv=-a Y )Y T (2.4)

xeA0<u<v<3

where g is the bare lattice coupling (which is related to the Wilson parameter § = 4/g?) and Uy, (x)
denotes the plaquette from the site x in the (u, v) plane.
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The dynamics of the lattice system is defined by the partition function
3
Z— / TTTT dvu(x)es* 2.5)
xeAu=0
so that the expectation value of a generic, gauge-invariant quantity A is given by
1 3
@) = [TT ] uwae . (2:6)
Z xeAu=0

Any expectation value is estimated numerically via Monte Carlo numerical integration averaging
on a large set of configurations generated by a mix of “heat-bath” and “overrelaxation” algorithms.

Thermodynamic quantities can be obtained from plaquette expectation values by the “integral
method” [7]: the pressure (with respect to the value it takes at 7 = 0) is given by

B
p=x [ B (@Whr— W) @)

where (U,)r denotes the average plaquette at a generic temperature 7. The integrand in eq. (2.7) is
closely related to the trace anomaly A, since:

6 Ip
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where df3/d(Ina) can be readily evaluated from the scale setting.

3. Scale setting
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Figure 1: Values of string tension in units of @ obtained from our lattice simulations are showed along with

those reported in ref. [10]. The solid black curve shows the interpolation to the functional form in eq. (3.2)
with the associated uncertainties.
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In order to determine the temperature reliably at a certain value of f3, a precise scale setting of
the theory is mandatory. We computed non-perturbatively the zero-temperature Polyakov loop cor-
relation function, denoted as G(r), for different values of r and 3, using the multilevel algorithm [8]
on 32* lattices. The interquark potential V (r) was extracted from V (r) = —[InG(r)]/(aN;) and fit-
ted to the functional form

aV = acr+aVy — 3.1)

12r
using the tree-level improved definition of the distance r [9] to obtain the string tension o in units
of the squared inverse lattice spacing. As a final step, we performed a polynomial interpolation for

the logarithm of the string tension for different values of the Wilson parameter 3

Npar—1

log(oa®) =Y a;(B—PBo) 3.2)
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with n,,, = 4 and By = 2.35. The result, which models the relation between a and f3, is shown in
fig. 1, and allows an accurate determination of the temperature for a large range of f3.

4. Numerical results and comparison with a bosonic string model

The main part of our numerical study of the SU(2) Yang-Mills theory is focused on the equa-
tion of state in the confining phase of the theory. The results for A/T* were obtained via Monte
Carlo simulations on lattices with different temporal extents, keeping the aspect ratio Ny/N; large
enough to avoid finite-volume effects. The results are showed in figure 2 and are plotted against
T /T, using T./v/o = 0.7091(36) from ref. [10]. The only physical degrees of freedom of the
theory in the 7 < T, region are massive glueballs: it is reasonable to assume that such states are
weakly interacting with each other! and thus the system can be modelled with good approximation
as a free, relativistic Bose gas. The trace anomaly of the latter is given by

27[2 Z

n=1

”m/ ) @.1)

and using asymptotic expressions for the modified Bessel function we have

A:m<Tm>3/2iexp(_nm/T) <1+ 3T ) 42)
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In figure 2 the contributions due to the lightest glueball only (the 0" state) and to all the
states with mass m < 2mg++ (taken from the spectrum calculated in ref. [13]) are shown. The most
striking feature of the figure is the large mismatch between the glueball gas prediction and lattice
data for T close to T.. To address this mismatch, we assume that the density of heavier glueball
states is described by a Hagedorn spectrum: indeed, only an exponentially increasing spectrum can
account for the exponential dependence in eq. (4.2). In particular, a Hagedorn-like spectrum arises

IThe expectation that glueballs are weakly interacting is borne out of theoretical arguments in the large-N limit, but
lattice results indicate that these expectations are surprisingly accurate even for the theories with N = 3 or N = 2 color
charges [11, 12].
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Figure 2: Comparison between our lattice results for the trace anomaly in SU(2) Yang-Mills theory from
simulations with different N, and the behavior expected for a gas of free, massive glueballs. The dotted
line corresponds to the contribution of the lightest state only, with quantum numbers J*C = 0"+, while the
dashed line includes all the low lying glueballs with masses lower than 2m++. The solid line includes also
the contribution from high-lying states, described by a bosonic string model.

if we model glueball states as thin closed color flux tubes that can be described in terms of closed
bosonic strings [14, 15]. Specifically, such closed bosonic string model leads to a spectral density
(see ref. [3, appendix] for a derivation)

) 1 (2nTy\°
= — T; 4.3
pon) =+ (%) exp /) @3)
where the only free parameter is the Hagedorn temperature 7;; [16]. If the effective action governing
the string model is identified with the Nambu-Goto action [17, 18], then T} is fixed and its value is

3
Ty = T = 1 /% ~0.691,/. (4.4)

For SU(2) Yang-Mills theory, however, the deconfinement transition is second order and the Hage-
dorn temperature coincides with 7, so that no determination of 7 is required. Whether the transi-
tion is continuous or not, the contribution of the complete glueball spectrum for a thermodynamic
quantity such as the trace anomaly A can be written as

AT) = Y (27 +1)A(m;, T)+nc / dm'p (m)A(m, T, 4.5)

m;<iMgh Mip
where the first term includes the contribution of low-lying states (whose masses are taken from
independent lattice calculations) up to a threshold chosen as my, = 2mg++, and the second term ap-
proximates the contribution of heavier states via the bosonic string spectral density The (pseudo)real
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nature of the representations of the SU(2) Lie group allows only glueball states with quantum num-
ber C = +-1: thus the multiplicity factor nc is set to be 1. The final result can be seen in figure 2:
lattice data and the bosonic string model prediction are in remarkable agreement.
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Figure 3: Comparison between the prediction of a massive-glueball gas, including the contribution from
states modelled by a closed Nambu-Goto string model, like in eq. (4.5), and continuum-extrapolated data
obtained in ref. [6] for SU(3) Yang-Mills theory, as a function of 7 /Ty. Our data and predictions for the
SU(2) theory are also showed for comparison.

We tested this model also for the SU(3) theory, using the results for the equation of state from
ref. [6] and the glueball spectrum from ref. [19]. The differences from the N = 2 case are:

o SU(3) Yang-Mills theory allows for both C = +1 states, thus the factor n¢ in eq. (4.5) is set
to 2 in order to account for this charge-conjugation multiplicity;

e the deconfinement transition is of first order and the value of the Hagedorn temperature is
fixed by the Nambu-Goto prediction, see eq. (4.4).

The resulting curve for the trace is showed in figure 3 as a function of 7' /Tj;, along with the results
for SU(2). The parameter T./\/6 = 0.629(3) from ref. [20] was used to plot the data; this value
is consistent with the recent result ro7, = 0.7457(45) taken from ref. [21] and combined with
roy/o = 1.192(10) from ref. [22]. Excellent agreement with the effective string prediction is also
found for SU(3) Yang-Mills theory, and the contribution of C = —1 states in the spectrum is crucial.
We remark that the non-interacting glueball gas predictions for both N =2 and N = 3 colors do
not depend on any free parameters: furthermore, these findings are in agreement with previous
results in D = 2 4 1 spacetime dimensions for SU(N = 2, ...,6) theories [3] and can be considered
a generalization of those.
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