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Abstract 

We present an accurate ab initio study of the structure and surface energy of the low-index (100), 

(111) and (110) diamond faces, by using the hybrid Hartree-Fock/Density Functional B3LYP 

Hamiltonian and a localized all-electron Gaussian-type basis set. A 2D periodic slab model has 

been adopted, for which convergence on both structural and energetic parameters has been 

thoroughly investigated. For all the three surfaces possible relaxations and reconstructions have 

been considered. A detailed geometrical characterization is provided for the most stable structure of 

each orientation; surface energy is discussed for all the investigated faces. All data show a very 

good agreement with previous pure Density Functional calculations. 

 

Keywords Diamond, {100}, {111} and {110} forms, Surface structure, Surface reconstruction, 

Surface energy, Quantum-mechanical calculations, CRYSTAL code 
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1. Introduction 

Diamonds and their inclusions (hereafter named Diamond Inclusions, DIs) are among the deepest 

materials originating from Earth's interior and reaching the planet surface. While being billions 

years old, they remain unaltered over time and preserve the pristine conditions of Earth. Therefore, 

their study plays a key role in understanding and interpreting the geodynamics, geophysics, 

petrology, geochemistry and mineralogy of the Earth's mantle from lithospheric to lower-mantle 

levels (Stachel and Harris [1], and references therein). 

DIs reflect the chemical composition and mineral assemblages of the two principal rock 

types occurring in the deep lithosphere, namely peridotite and eclogite (e.g., [2]). Typical DIs of the 

peridotitic paragenesis are olivine, orthopyroxene, chromian diopsidic clinopyroxene, chromian 

pyropic garnet, magnesiochromite and iron–nickel sulfides, whereas typical eclogite minerals are 

omphacitic pyroxene, chromium-poor garnet, and iron-rich sulfides. DIs are divided into three 

groups (protogenetic, syngenetic, epigenetic), the criterion being whether their formation preceded, 

accompanied or followed crystallization of their host diamonds (e.g., [2]). DIs are classified as 

protogenetic when they formed before the encapsulation by the host diamond, whereas they are 

considered syngenetic when the inclusion and its host diamond formed at exactly the same time and 

by the same genetic process. Both groups play a key role in the study of diamond formation 

processes, contrary to epigenetic phases, that are secondary minerals, usually associated with crustal 

processes, and atypical to the primary minerals in mantle xenoliths.  

Distinguishing between syngenesis and protogenesis is as crucial as extremely difficult and 

controversial, as demonstrated by Taylor et al. [3]. The most common observation used to deduce 

syngenesis is the imposition of the host diamond morphology on the DI (e.g., [2, 4-6]). However, as 

demonstrated by Taylor et al. [3], some peridotitic garnet inclusions, having morphology imposed 

by the host diamond, clearly show a Rare Earth Element (REE) pattern typical of garnets found 

worldwide and not included in diamonds. Taylor et al. [3] stated that this observation is consistent 

with a protogenetic nature, at least for peridotitic garnets. Similar conclusions were drawn by 

Thomassot et al. [7], who investigated isotopes of sulfide inclusions in diamonds, and Spetsius et al. 

[8], who analyzed inclusions found in zircons extracted from diamonds. These evidences suggest 

that at the moment no conclusive criteria exist, able to establish whether a diamond and inclusion 

pair is either syngenetic or protogenetic.  

A significant contribution to this syngenesis/protogenesis debate is brought by the 

observation that some DIs occur in a specific orientation relationship with respect to diamond, 

which can be considered as a powerful proof in favor of epitaxial growth, and hence syngenesis [2, 

5, 6, 9-15]. The first findings concerning possible epitaxial growth were those of Mitchell and 

Giardini [9], who reported oriented inclusions of olivine in diamonds: the orientation was such that 

the (010) face of olivine was parallel to the (111) one of the diamond and that the zone [101] of 

olivine was parallel to that [101] of diamond. More recent findings were reported by Wiggers de 

Vries et al. [16], whose electron backscatter diffraction experiments showed that the <100> 

crystallographic directions of diamond were parallel to the <100> directions of their chromite 

inclusions. These epitactic relationships seem to indicate an epitaxial growth of the DI above the 

diamond or viceversa. 

A tool capable of interpreting the outlined experimental evidences and providing new 

insights in the diamond/DI interface system is quantum mechanical ab initio simulation. This 
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technique has the potential to investigate structure and stability of diamond/DI interfaces, as well as 

nucleation and growth mechanisms. 

In the past, computer simulation has been applied to the study of the most typical growth 

planes of diamond, namely (100), (111) and (110), both in clean and hydrogen-terminated 

conditions. The main goal was to support and interpret the experimental findings concerning 

structure and reconstruction, energetics, electronic structure and chemical composition. The first 

applied methods include Modified Neglect of Differential Overlap [17], Tight Binding (TB) [18, 

19], semi-empirical potentials [20, 21], Local Density Functional-Molecular Dynamics (LDF-MD) 

[22, 23]. The most systematic and extensive investigation was the one performed by Kern and 

coworkers [24-28], who adopted density functional theory (DFT) at the local density approximation 

(LDA) level, coupled with pseudo-potentials and plane waves to describe the wave-function. In 

subsequent works, the ab initio DFT approach was extended to the exploration of surface 

terminations other than hydrogen, such as oxygen and hydroxyl [29-32].  

In the present study a hybrid Hartree-Fock (HF)-DFT approach has been adopted, which 

notably has never been applied before to the study of diamond surfaces. In particular, the chosen 

functional is B3LYP [33-35], which has already demonstrated great accuracy in describing the 

surfaces of insulating materials, such as periclase [36], silica [37-42], and hydroxyhapatite [43-48]. 

These works concerned the investigation of structure and energetics for variously oriented surfaces, 

as well as of their interactions with either simple probe molecules or organic compounds. 

The first step for the investigation of diamond/DI interfaces is the assessment of our hybrid 

method in the description of clean diamond surfaces. Therefore, the present paper is devoted to the 

study of the structure and surface energy of the main growth forms of diamond, {100}, {111} and 

{110}, which are interested by epitaxial phenomena. The paper is structured as follows: (i) outline 

of the computational parameters used in the ab initio calculations of the (100), (111) and (110) 

surfaces of diamond; (ii) assessment of the slab model, i.e. determination of the minimum number 

of atomic layers required for convergence of the properties of interest; (iii) description of the 

structure and energy of the (100), (111) and (110) surfaces, and comparison with previous 

computational studies; (iv) main conclusions. 

 

 

2. Computational details 

 

The ab initio CRYSTAL09 code [49, 50] was employed, which implements the Hartree-Fock and 

Kohn-Sham self-consistent field (SCF) method for the study of periodic systems [51]. Surfaces 

were simulated by using the 2D periodic slab model, consisting of a film formed by a set of atomic 

layers parallel to the hkl crystalline plane of interest [52]. Selected outputs from the calculations are 

available as Supporting Information. 

All the calculations were performed at the DFT (Density Functional Theory) level. In the 

Density Functional approach, the B3LYP Hamiltonian was adopted [33-35], which contains a 

hybrid Hartree-Fock/Density-Functional exchange term. This Hamiltonian has recently been 

successfully applied to the study of structural, vibrational and optical properties of carbon 

nanotubes and porous graphene phases [53-55]. 

The multi-electronic wave-function is constructed as an anti-symmetrized product (Slater 

determinant) of mono-electronic crystalline orbitals (COs) which are linear combinations of local 
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functions (i.e. atomic orbitals, AOs) centred on each atom of the crystal. In turn, AOs are linear 

combinations of Gaussian-type functions (GTF, the product of a Gaussian times a real solid 

spherical harmonic to give s-, p- and d-type AOs). In the present study, C was described with a 6-

1111G* basis set [56], where the outer sp (0.175) and d (0.8625) coefficients were variationally 

optimized (the symbol * refers to the inclusion of d orbitals). The complete basis-set is available as 

Supporting Information. Additional calculations were performed with smaller 6-31G* and 6-211G* 

basis sets [56], to clarify the role of this relevant computational parameter in the calculation of the 

structural and energetic properties of diamond surfaces. Indeed, these basis sets yield comparable 

results with respect to the richer 6-1111G* basis set; a detailed comparison is included in the 

Supporting Information. 

DFT Exchange and correlation contributions were evaluated numerically by integrating, 

over the cell volume, functions of the electron density and of its gradient. Choice of the integration 

grid is based on an atomic partition method, originally developed by Becke [57]. In the present 

study, the extra-large pruned (75, 974) p grid was chosen (XLGRID in the code, see Dovesi et al. 

[50]), which ensures a satisfactory accuracy in the integrated electron charge density, the 

corresponding error for the studied surfaces being smaller than 1·10-4 |e| (over 144 |e|). The 

thresholds controlling the accuracy in the evaluation of Coulomb and exchange integrals (ITOL1, 

ITOL2, ITOL3, ITOL4 and ITOL5, see Dovesi et al. [50]) were set to 10-7 (ITOL1 to ITOL3), 10-8 

(ITOL4) and 10-18 (ITOL5). Threshold on the SCF energy was set to 10-10 Ha. Diagonalization of 

the Hamiltonian for the studied surfaces was performed at 25 k points in the reciprocal space 

(Monkhrost net, see Monkhrost [58]) by setting the shrinking factor IS [50] to 8. Structures were 

optimized by using the analytical energy gradients with respect to atomic coordinates [59-61]; 

convergence was checked on both gradient components and nuclear displacements, whose 

tolerances where set to 0.0003 Hartree·bohr-1 and 0.0012 bohr, respectively. 

The specific surface energy γ at T = 0 K was calculated by using the following relation [52]: 

 

g = lim
n®¥

Es(n) = lim
n®¥

E(n)-nEbulk

2A
  (1) 

 

where E(n) is the energy of a n-layer slab; Ebulk is the energy of the bulk; A is the area of the 

primitive unit cell of the surface; the factor 2 in the denominator accounts for the upper and lower 

surfaces of the slab. Es(n) is thus the energy per unit area required for the formation of the surface 

from the bulk. As more layers are added in the calculation (n → ∞), Es(n) will converge to the 

surface energy per unit area (γ). Values of the surface energy are reported both in J/m2 and in eV/ 

surface atom (in the following, for brevity of notation we will use eV/atom). All values were 

corrected for Basis Set Superposition Error (BSSE, e.g. [38,52]). 

 Supplementary data to this article can be found online at ----- 

 

3. Results and discussion 

3.1. Bulk parameters 

A preliminary step of this study consisted in the calculation of the structural and energetic 

properties of bulk diamond. These data can be compared to experiment, permitting to evaluate the 
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accuracy of the adopted computational setup. Moreover, structural quantities will serve as reference 

for the subsequent analysis of diamond surfaces. Let us recall that bulk diamond has a Fd 3 m space 

group; its unit cell contains 2 atoms. 

The fundamental structural parameter is the lattice parameter. Our B3LYP calculation yields 

a value of 3.5769 Å; the experimental datum is 3.567 Å [62], indicating only a slight (0.3%) 

overestimation. Derived quantities are the C-C bond distance of 1.5488 Å, and the inter-layer 

distances along the three crystallographic directions here investigated: 0.8942 Å along <100>, 

0.5163 and 1.5488 Å along <111>, 1.2646 Å along <110>. 

As regards energetics, the computed cohesive energy is 7.0427 eV/atom, to be compared 

with the experimental value of 7.62 eV/atom [63, 64]. Our method appears to underestimate this 

quantity by 7.6%. 

 

3.2. Determination of the slab thickness to reproduce the (100), (110) and (111) surface properties 

The key quantity that characterizes the slab model is the number of atomic layers composing the 

slab; here and in the following, atoms are considered to form a layer when they share the same z 

coordinate in the slab ideally cut from the bulk (i.e. whose geometry is still not optimized). The 

higher the number of layers, the more resembling to the bulk the slab properties will be; however, 

the computational cost will increase accordingly. It is then crucial to identify the minimum number 

of layers that is required to have good precision in describing the properties of interest. We were 

here interested in reproducing i) the specific surface energy; ii) the geometry of the surface (upper 

atomic layers) and eventually of the bulk (inner atomic layers); iii) the surface atomic net charges. 

We considered that properties are “well converged” when surface energy does not change within 

0.01 eV/atom, distances within 0.01 Å, angles within 1°, charges within 0.01 |e|. Results for the 

three diamond surface orientations are shown in Table 1; notation for the examined quantities is 

defined in the caption to the Table 1. Note that for the (111) orientation both the 1x1 relaxed and 

2x1 reconstructed structures were analyzed. 

Let us consider the (100) surface (see Table 1). First of all, the surface energy  is already 

quite stable with 8 layers (1.936 eV/atom), but reaches the desired convergence with 12 layers 

(1.945 eV/atom against 1.947 eV/atom for the 14-layer case). All bond angles  and the atomic 

charge q(1) turn out to be stable for all the considered slab thicknesses; 8 layers are required for 

q(2). Concerning the bond lengths d, we notice that 6 layers are enough for describing the first two 

surface layers properly. In fact, in the case of d(1-1) and d(1-2) distances we have 1.3805 and 

1.5238 Å when using 6 layers, to be compared with 1.3707, 1.5150 Å (14 layers). However, when 

inner atoms are considered, 8 layers are required: d(2-3*) and d(innest) are 1.5431, 1.4942 Å (6 

layers), against 1.5718, 1.5438 Å (8 layers) and 1.5820, 1.5529 Å (14 layers); values of d(innest) 

can in turn be compared with the bulk value of 1.5488 Å. The reason for the slower convergence of 

the inner distances is surface reconstruction, which alters the surface structure with respect to the 

bulk one to a great extent; thus a higher number of layers is required to reach the ideal bulk 

geometry inside the slab. 10 layers are required when considering the inter-layer distance z. For 

example, z(1-2) and z(innest) are 0.6523, 0.7347 Å in a 8-layer slab, against 0.6781, 0.8927 Å (10 

layers) and 0.6798, 0.8863 Å (14 layers); note the slightly large difference, 1.3 Å, for z(innest) with 

12 layers (0.8736 Å vs. 0.8863 Å with 14 layers). When considering the intra-layer buckling of 

atoms z, occurring in the third and fourth layers, at least 12 layers are required, as in the case of 
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the 10-layer structure the differences are increasing for both quantities: z(3) and z(4) are 0.2787, 

0.1782 Å (10 layers), to be compared with 0.2657, 0.1579 Å (12 layers) and 0.2646, 0.1560 Å (14 

layers). Overall, inter-layer distances and intra-layer buckling are the slowest converging properties; 

surface reconstruction here probably plays a cumulative effect, as a large number of atoms and 

bonds is involved in determining the equilibrium distance between two atomic layers.  

The case of the (111) surface is the most delicate. When dealing with the 1x1 relaxed 

structure, SCF issues were encountered during the electronic structure calculations. The reason lies 

in the electronic surface states of this unsaturated, conducting structure, that are delocalized all over 

the diamond surface; when few atomic layers are considered, the high relative weight of these states 

in the band structure destabilizes the calculation and hinders to reach convergence in the SCF 

calculation of the total energy. As a consequence, in this case at least 10 layers are required to 

successfully optimize the structure. When considering the structures with 10, 12 and 14 layers (see 

Table 1), we notice that convergence for all the observed quantities is already reached in the 10-

layer case. This is reasonable, as no reconstruction occurs for this surface, so that there are no huge 

geometrical rearrangements. 

Let us now consider the (111)-2x1 reconstructed structure. Here at least 8 layers are required 

to permit the realization of the large and in-deep reconstruction. Moreover, given the peculiar 

geometry of this structure, only a number of layers which is multiple of 4 is permitted: the cases of 

8, 12 and 16 layers were considered. The surface energy values are 1.364 (8 layers), 1.307 (12 

layers) and 1.304 (16 layers) eV/atom; thus, this quantity is converged with 12 layers. The four 

surface-layer distances reported in the Table 1 are already converged with 8 layers, as well as the 

first-layer angle (1*) and the second-layer angle (2c). All other quantities require 12 layers for 

convergence. In particular, for the distance d(innest) compare 1.4678 Å (8 layers) with 1.5380 Å 

(12 layers), 1.5419 Å (16 layers) and 1.5488 (bulk structure); due to the huge reconstruction, the 

value at 16 layers still differs from the bulk one by 0.69 Å. Note that, in the case of the intra-layer 

buckling z(5), only two values are available, with 12 (0.0558 Å) and 16 (0.0666 Å) layers, whose 

difference is 0.01 Å; we can consider this quantity to be converged, given the good trends observed 

for the other distances in this structure. 

Finally, the case of (110) surface is quite simple to analyze. Similar to the case of the (111)-

1x1 relaxed structure, no surface reconstruction takes place; all the quantities under study reach 

convergence when the 6-layer slab is considered, except for the surface energy and the inter-layer 

distance z(innest), which require 8 layers. 

To sum up the results of this section, (100) and (111)-2x1 faces require at least 12 layers to 

be described with the desired precision. 10 layers are necessary for the (111)-1x1 face. In the case 

of the (110) face, 8 layers are enough. However, in the following discussion data for all surfaces 

refer to the case with 12 layers, to use the maximum precision available in this study with a 

homogeneous number of layers. 

 

3.3. Structure and surface energy of the (100) surface 

The ideal structure of the (100) surface presents atoms with two dangling bonds (see Figure S1, 

Supporting Information). Such a condition is strongly unfavourable from an energetic point of view, 

and the surface undergoes a 2x1 reconstruction. A graphical representation is given in Figure 1, 

whereas the structural parameters are reported in Table 2, along with data taken from the literature. 
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The surface unit cell is doubled with respect to the bulk one. This condition allows the formation of 

surface C-C dimers, so that each surface atom partially saturates its dangling bonds, thus lowering 

the total energy. This is reflected in the changes in the surface geometry: the C-C distance in the 

dimer is 1.371 Å, far lower than the value for bulk diamond (1.549 Å, sp3 C), a little bit lower than 

in graphite (1.42 Å, sp2 C), and almost equal to the case of ethylene molecule (1.38 Å, again sp2 C). 

Bond angles of surface carbons are 108.6° and 113.2°, not far from the value of a tetrahedral 

coordination (109.5°), but indeed quite far from the one of a planar sp2-like coordination (120°). On 

the basis of these structural parameters, we can state that surface dimers show a double bond 

together with a distorted, unsaturated, sp3-like coordination. As a consequence of the three-fold 

coordination, surface atoms feature stronger bonds with atoms of the second layer, too: this is 

confirmed by the d(1-2) distances (1.515 Å), and most of all by the inter-layer distance, which is 

0.678 Å, 0.217 Å lower than the value for bulk diamond. The 2x1 reconstruction also implies the 

occurrence of two not equivalent carbon sites, which results in the buckling of the atoms belonging 

to the sub-surface layers: atoms are displaced along the z axis by 0.266 and 0.158 Å in the third and 

fourth layers, respectively. Buckling of the first layer dimers was checked by calculation and was 

found to be energetically unfavourable.  

When comparing the obtained geometry with previous published data, the results are 

qualitatively the same in all cases (Table 2). With respect to the ab initio pure DFT studies by 

Fürthmuller et al. [27], Hong and Chou [65] and Steckel et al. [66], the values are the same within 

0.01 Å, which is pretty satisfactory. Instead, molecular dynamics studies performed by Alfonso et 

al. [23] and Davisdon and Pickett [19] show larger discrepancies; however, in these cases the 

theoretical framework is known to be less accurate than our ab initio approach. 

Surface energy values for all the investigated diamond faces are summarized in Table 3. In 

the case of the (100) face, the 1x1 ideal (not relaxed) and 1x1 relaxed surface energies are 3.742 

eV/atom (9.372 J/m2) and 3.642 eV/atom (9.122 J/m2), respectively; relaxation accounts for -0.100 

eV/atom. As expected, the (100)-2x1 reconstructed surface shows the lowest surface energy, 1.945 

eV/atom (4.870 J/m2). As a matter of fact, the 2x1 reconstruction results in an energy gain equal to -

1.797 eV/atom with respect to the ideal surface, which is a significant stabilization. The main factor 

for the surface stabilization is the formation of the strongly bonded C-C dimers; on the other hand, a 

small, minor destabilization effect is probably associated to the geometry distortion of the first two 

atomic layers. When comparing to literature, Kern and Hafner [28] reported values of -0.26 and -

1.77 eV/atom, for the relaxation and reconstruction energies, respectively; Steckel et al. [66] found -

0.12 and -1.58 eV/atom for the same quantities. Finally, a reconstruction energy of -1.86 eV/atom 

was estimated by Davidson and Pickett [19] (molecular dynamics). Thus, while the predicted 

relative stability is always the same, quantitative results are spread over a 10 % range of values. 
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Figure 1. Section of the (100)-2x1 reconstructed diamond surface. All values are in Å; z is the 

intra-layer buckling. 

 

3.4. Structure and surface energy of the (111) surface 

The (111) surface can have two different terminations (see Figures S3 and S4, Supporting 

Information). Surface carbon atoms feature one and three dangling bonds in the two cases, 

respectively. As the former condition is by far the most stable, our structural investigations 

concentrated on this configuration. The (111) surface with one dangling bond per surface atoms 

undergoes a strong 2x1 reconstruction, called Pandey-chain reconstruction [67]. The corresponding 

optimized structure is shown in Figure 2; structural parameters are given in Table 2. The first two 

surface layers are affected to a large extent: the section view clearly shows an alternation of 5-atoms 

and 7-atoms rings, contrary to all other diamond structures, where the 6-atoms ring is always found. 

The main consequence of the reconstruction is the formation of “zig-zag” chains of C atoms at the 

surface, featuring a geometry very close to that of graphite: the C-C distance is 1.443 Å, while the 

bond angle is 122.4° (graphite features 1.42 Å and 120°). This configuration allows for the 

formation of a delocalized -bond along the surface atoms, which stabilizes the surface. The 

arrangement of the lower-lying atoms is a consequence of the constraints imposed by the “zig-zag” 

chains, and is quite peculiar: considering the first four atomic layers, bond distances range from 

1.443 to 1.646 Å, while bond angles from 96.3° to 124.7°. Inter-layer distances are far from the 

bulk values in the case of the first two layers: z(1-2) and z(2-3) are equal to 0.694 and 1.511 Å, 

respectively (against 0.516 and 1.549 Å in the bulk). Finally, a remarkable intra-layer buckling is 

found in the case of the fourth and fifth layers: 0.177 and 0.056 Å, respectively. Both buckling and 

dimerization of the carbon atoms involved in the “zig-zag” chain was checked: they were found to 

be energetically unfavourable. Note that a 12-layer slab model is the smallest one that is suitable to 

properly describe the structural rearrangement in the (111)-2x1 reconstructed surface. A good 

agreement with literature can be found (Table 2); a slight overestimation of the bond distances is 

noticed, in particular in the case of d(1-2) and d(2-3) distances. 

The relative stability of different (111) surfaces can be discussed by looking at Table 3. The 

surface with three dangling bond per C atom, 1x1-3db, either ideal or relaxed, is by far the least 

stable: the surface energy is 4.516 (13.060) and 4.501 (13.017) eV/atom (J/m2), respectively. Let us 
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discuss the surface with one dangling bond per C atom. The ideal (not relaxed) 1x1 face presents a 

surface energy of 2.809 eV/atom (8.123 J/m2); the relaxation of this surface corresponds to an 

energy gain of -0.567 eV/atom. However, the Pandey-chain reconstruction implies a far larger 

stabilization, equal to -1.502 and -0.935 eV/atom, with respect to the ideal and relaxed 1x1 surface, 

respectively. This stabilization is due to the formation of the -bonded chain, which permits to 

saturate the fourth dangling bond of the surface C atoms; the relaxed 1x1 geometry is not suitable 

for this purpose. The comparison with other ab initio studies is satisfactory, in particular with the 

systematic work by Kern et Hafner [28], where the relaxation energy was estimated as 0.57 

eV/atom and the reconstruction energies as -1.40 and -0.83 eV/atom, with differences below 10%. 

On the other hand, molecular dynamics calculations turn out to be less precise, as already pointed 

out before. 

 

 

 

Figure 2. Section of the (111)-2x1 reconstructed diamond surface. All values are in Å; z is the 

intra-layer buckling. 

 

 

3.5. Structure and surface energy of the (110) surface 

The (110) surface does not undergo any reconstruction (see Figure 3 and Table 2). A simple 

relaxation of the first two atomic layers is sufficient to create a -bonded “zig-zag” chain over the 

surface, with distances and angles very close to the values of both (111)-2x1 diamond surfaces and 

graphite: 1.434 Å and 123.7°, respectively. Similar to the case of the (111)-2x1 reconstructed 

surface, this configuration saturates the fourth dangling bond of surface carbons, with a stabilization 

effect. d(1-2) bond length is 1.480 Å, while z(1-2) and z(1-3) are 1.057 and 1.302 Å, respectively 

(the bulk value is 1.265 Å). From the third layer on, the bulk geometry is almost completely 

recovered. As for previous surfaces, quantitative agreement is found with the DFT study by Kern 

and Hafner [28]. Structures featuring either dimerization or buckling of the surface layer turn out to 
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be unstable with respect to the described surface; this is in agreement with previous ab initio results 

by Kern and Hafner [28], and in contrast with the molecular dynamics study by Alfonso et al. [23]. 

Concerning surface energy of the (110) face (see Table 3), we obtained 2.113 eV/atom 

(7.482 J/m2) and 1.571 eV/atom (6.524 J/m2) for the ideal and relaxed surfaces, respectively; the 

relaxation of the clean surface accounts for -0.542 eV/atom. As in the case of previous surfaces, the 

agreement turns out to be very satisfactory when referring to ab initio pure DFT studies [28], 

whereas surface energy values coming from molecular dynamics calculations [19] are very 

imprecise. 

 

 

Figure 3. Section of the (110)-1x1 relaxed diamond surface. All values are in Å. 

 

 

4. Conclusions 

In this work, we have presented an accurate ab initio study of the structure and surface energy of 

the low-index (100), (111) and (110) diamond faces, by using for the first time, at the best of our 

knowledge, the hybrid Hartree-Fock/Density Functional B3LYP Hamiltonian and a localized all-

electron Gaussian-type basis set. We can summarize our results in the following points: 

(i) In order to reproduce the structure and surface energy of the studied diamond faces with 

satisfactory precision, the following slab thicknesses must be considered: the (100) and 

(111)-2x1 faces require at least 12 layers; 10 layers are necessary for the (111)-1x1 face; 

instead, instead, 8 layers are enough for the (110) face. 
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(ii) The (100) surface undergoes a 2x1 reconstruction. This condition allows the formation 

of surface C-C dimers, so that each surface atom partially saturates its dangling bonds, 

thus lowering the total energy. Indeed, the (100)-2x1 reconstructed surface shows a 

lower surface energy, 1.945 eV/atom (4.870 J/m2), with respect to the relaxed (100)-1x1 

surface, 3.642 (9.122) eV/atom (J/m2). 

(iii) As for the (100) face, also the (111) face is stabilized by a 2x1 reconstruction, called 

Pandey-chain reconstruction [67]. The main consequence of this reconstruction is the 

formation of -bonded “zig-zag” chains of C atoms at the surface, whose geometrical 

parameters are very close to those of graphite. The surface energy of the (111)-2x1 face 

is 1.307 (3.780) eV/atom (J/m2), whereas that of the relaxed (111)-1x1 surface is 

somewhat higher, 2.242 (6.483) eV/atom (J/m2). 

(iv) The (110) surface does not undergo any reconstruction. A relaxation of the first two 

atomic layers is sufficient to create -bonded “zig-zag” chains over the surface, with a 

geometry very close to the values of both (111)-2x1 diamond surfaces and graphite. The 

surface energy is 1.571 (6.524) eV/atom (J/m2). 

(v) As a final remark on surface energies (in J/m2), when considering the most stable 

structure for each crystallographic orientation, the relative stability we obtain is the same 

than for the LDA studies by Kern and Hafner [28] and Hong and Chou [68], despite the 

large percentage discrepancies: (111) < (100) < (110). 

This paper is the first one of a series dedicated to the study of diamond by means of the B3LYP 

Hamiltonian. Indeed, future works will be devoted to the study of the interfaces between 

diamond/olivine and diamond/garnet and of functionalized diamond surfaces. Therefore, the 

calculations presented in this paper have permitted both i) to assess the performance of the B3LYP 

Hamiltonian in reproducing the structure and surface energy of the principal diamond faces and ii) 

to calibrate the computational parameters for future studies. 
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Tables 

 

Table 1. Convergence of the surface energy  and of selected structural parameters of diamond 

surfaces with respect to the number of layers of the slab model. Studied cases are: (100)-2x1 

reconstructed, (111)-1x1 relaxed, (111)-2x1 reconstructed, and (110)-1x1 relaxed. Distances are in 

Å; angles are in degrees (°).  is the surface energy at T = 0 K, in eV/surface atom. d(i-j) are bond 

distances between pairs of atoms lying in the ith and jth layer (numbering begins from the surface 

layer); (i) are bond angles centered on atoms lying in the ith layer; z(i-j) are distances between pairs 

of atomic layers i and j; z(i) is the buckling of the ith layer, i.e. the displacement along the z axis of 

atoms within the same layer; q(i) is the net electronic charge of atoms lying in the ith layer. Notes: 

d(2-3*) and (2*) in (100) refer to the atoms underlying the surface “dimer”; (1*) in (110) and 

(111) is the angle among atoms belonging to the “zig-zag” surface chain. 

 

  n. of layers 6 8 10 12 14 16 

(100)-2x1  2.175 1.936 1.923 1.945 1.947   

  d(1-1) 1.3805 1.3705 1.3698 1.3706 1.3707 

   d(1-2) 1.5238 1.5148 1.5143 1.5150 1.5150 

   d(2-3*) 1.5431 1.5718 1.5863 1.5813 1.5820 

  d(innest) 1.4942 1.5438 1.5479 1.5485 1.5529  

  (1a) 108.56 108.50 108.63 108.61 108.61 

   (1b) 112.18 113.26 113.26 113.19 113.18 

   (2*) 93.13 94.16 93.87 93.84 93.82 

   z(1-2) 0.6981 0.6523 0.6781 0.6777 0.6798 

   z(2-3) 0.8914 0.7823 0.7940 0.7996 0.8014 

   z(innest) 0.7958 0.7347 0.8927 0.8736 0.8863 

   z(3) 0.1087 0.2714 0.2787 0.2657 0.2646 

   z(4) -- 0.1672 0.1782 0.1579 0.1560 

   q(1) 5.855 5.847 5.842 5.841 5.842 

   q(2) 6.049 6.080 6.073 6.070 6.071   

(111)-1x1  -- -- 2.243 2.242 2.242 

   d(1-2) -- -- 1.4845 1.4844 1.4844 

   d(2-3) -- -- 1.6965 1.6976 1.6979 

  d(innest) -- -- 1.5473 1.5516 1.5485  

  (1) -- -- 116.84 116.84 116.84 

   (2) -- -- 100.37 100.36 100.35 

   z(1-2) -- -- 0.2671 0.2668 0.2668 

   z(2-3) -- -- 1.6965 1.6976 1.6979 

   z(innest) -- -- 0.5117 0.5132 0.5154 

   q(1) -- -- 5.761 5.760 5.760 

   q(2) -- -- 6.226 6.227 6.227   

(111)-2x1  -- 1.364 -- 1.307 -- 1.304 

  d(1-1) -- 1.4428 -- 1.4430 -- 1.4431 

  d(1-2)a -- 1.5485 -- 1.5463 -- 1.5448 

  d(1-2)b -- 1.5545 -- 1.5611 -- 1.5617 

  d(2-2) -- 1.5680 -- 1.5653 -- 1.5648 

 d(innest) -- 1.4678 -- 1.5380 -- 1.5419 

  (1*) -- 122.45 -- 122.42 -- 122.40 

  (2a) -- 97.54 -- 96.33 -- 95.99 

  (2b) -- 96.52 -- 97.64 -- 97.82 

  (2c) -- 107.52 -- 107.78 -- 107.84 

  z(1-2) -- 0.7054 -- 0.6942 -- 0.6896 
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  z(2-3) -- 1.5354 -- 1.5107 -- 1.5081 

  z(innest) -- 1.4678 -- 1.5380 -- 1.5419 

  z(4) -- 0.1231 -- 0.1769 -- 0.1813 

  z(5) -- -- -- 0.0558 -- 0.0666 

  q(1) -- 5.911 -- 5.886 -- 5.880 

  q(2) -- 6.065 -- 6.061 --  6.060 

(110)-1x1  1.546 1.565 1.570 1.571 1.572 

   d(1-1) 1.4342 1.4344 1.4344 1.4344 1.4344 

   d(1-2) 1.4790 1.4801 1.4803 1.4803 1.4803 

   d(2-2) 1.5095 1.5109 1.5112 1.5112 1.5112 

  d(innest) 1.5442 1.5535 1.5486 1.5489 1.5485  

  (1*) 123.71 123.68 123.68 123.67 123.67 

   (2a) 99.84 100.00 100.03 100.04 100.04 

   (2b) 113.82 113.65 113.62 113.61 113.61 

   z(1-2) 1.0535 1.0565 1.0570 1.0570 1.0571 

   z(2-3) 1.3042 1.3018 1.3016 1.3016 1.3016 

   z(innest) 1.2534 1.2680 1.2637 1.2645 1.2642 

   q(1) 5.898 5.898 5.899 5.899 5.899 

   q(2) 6.096 6.098 6.096 6.096 6.096   
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Table 2. Structural parameters of the most stable (100), (111) and (110) diamond surfaces. Lengths 

are in Å; angles are in degrees (°). d(i-j) are bond distances between pairs of atoms lying in the ith 

and jth layer (numbering begins from the surface layer); z(i-j) are distances between pairs of atomic 

layers i and j; z(i) is the buckling of the ith layer; in the case of (110) surface, z(i) is the layer 

relaxation along the z coordinate with respect to the ideal surface. 

(100)-2x1 

  

This 

work 

Steckel 

(GGA)a 

Furthmuller 

(LDA)b 

Hong 

(LDA)c 

Alfonso 

(LDA-MD)d 

Davidson  

(TB-MD)e 

Sque 

(LDA)f 

Petrini 

(GGA)g 

d(1-1)  1.371 1.38 1.37 1.37 1.36 1.4 1.37 1.381 

d(1-2) 1.515 1.51 1.50 1.50 

  

1.50 1.563 

z(1-2) 0.678 

 

0.67 

 

0.68 0.67 0.68 

 z(2-3) 0.800  0.79    0.79  

z(3) 0.266 

 

0.26 

 

0.13 

 

0.26 

 z(4) 0.158 

 

0.16 

 

0.25 

 

0.15 

 

         (111)-2x1 

 

This 

work 

 

Kern  

(LDA)h 

 

Alfonso 

(LDA-MD)d 

Davidson  

(TB-MD)e 

Sque 

(LDA)f 

Petrini 

(GGA)i 

d(1-1) 1.443 

 

1.43 

 

1.44 1.44 1.43 1.44 

d(1-2) 1.546 

 

1.53 

  

1.47 1.53 1.54 

 

1.561 

       d(2-2) 1.565 

 

1.54 

 

1.56 

 

1.54 1.56 

d(2-3) 1.631 

 

1.60 

   

1.60 1.62 

 

1.646 

 

1.63 

  

1.69 1.63 

 z(1-2) 0.694 

     

0.69 

 z(2-3) 1.511 

     

1.52 

 z(4) 0.177 

 

0.17 

   

0.18 

 z(5) 0.056 

 

0.06 

   

0.07 

 

         (110)-1x1 

 

This 

work 

 

Kern 

 (LDA)j 

 

Alfonso 

(LDA-MD)d 

Davidson  

(TB-MD)e 

  d(1-1) 1.434 

 

1.419 

 

1.44 1.43 

  d(1-2) 1.480 

 

1.467 

     z(1-2) 1.057 

    

1.08 

  z(2-3) 1.302 

    

1.30 

  z(1) -0.175 

 

-0.17 

     z(2) 0.033 

 

0.03 

     z(1) 0.000 

 

0.00 

 

0.14 0.00 

  aSteckel et al. [66]; bFurthmüller et al. [27]; cHong and Chou [65]; dAlfonso et al. [23]; eDavidson 

and Pickett [19]; fSque et al. [29]; gPetrini and Larsson [30]; hKern et al. [25, 26]; iPetrini and 

Larsson [31]; jKern and Hafner [28]. 
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Table 3. Surface energy  at T = 0 K of the (100), (111) and (110) surfaces of diamonds. Values are 

in eV/surface atom; bracketed values are in J/m2. In the case of energy differences, the reference 

structure is marked with a hash “#”. 

  

This  

work 

Kern  

(LDA)a 

Steckel 

(GGA)b 

Alfonso 

(LDA-MD)c 

Davidson  

(TB-MD)d 

Sque 

(LDA)e 

Hong  

(LDA)f 

(100) 

1x1 ideal 
3.742 3.89 3.48 

 

# 

  (9.372) 

      
1x1 relaxed 

3.642 3.63 3.36 

    (9.122) 

      
2x1 reconstructed 

1.945 2.12 1.90 

 

# -1.86 

  (4.870) 

     

(5.60) 

        (111) 

1x1-3db ideal 
4.516 4.65 

     (13.060) 

      
1x1-3db relaxed 

4.501 4.63 

     (13.017) 

      
1x1 ideal 

2.809 2.75 

  

# 

  (8.123) 

      
1x1 relaxed 

2.242 2.18 

 

# # -0.39 # 

 (6.483) 

      
2x1 reconstructed 

1.307 1.35 

 

# -0.63 # -1.08 # -0.80 

 (3.780) 

     

(4.12) 

 
       (110) 

1x1 ideal 
2.113 2.09 

  

# 

  (7.482) 

      
1x1 relaxed 

1.571 1.66 

  

# -0.38 

  (6.524) 

     

(5.96) 
aKern and Hafner [28]; bSteckel et al. [66]; cAlfonso et al. [23]; dDavidson and Pickett [19]; eSque et 

al. [29]; fHong and Chou [68]. 

 


