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Abstract 
 
This paper presents new methods for synthesizing results from subgroup and moderation analyses 
across different randomized trials. We demonstrate that such a synthesis generally results in 
additional power to detect significant moderation findings above what one would find in a single 
trial. Three general methods for conducting synthesis analyses are discussed, with two methods, 
integrative data analysis, and parallel analyses, sharing a large advantage over traditional methods 
available in meta-analysis. We present a broad class of analytic models to examine moderation 
effects across trials that can be used to assess their overall effect and explain sources of 
heterogeneity, and present ways to disentangle differences across trials due to individual differences, 
contextual level differences, intervention, and trial design. 
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Introduction 
 
Through the use of meta-analysis(Durlak & Wells, 1997; Faggiano et al., 2005; Faggiano et al., 
2008; Tobler, 1986) and scientific reviews(Elliott, Mihalic, Elliott, & Mihalic, 2004; O'Connell, 
Boat, & Warner, 2009) that are applied to findings from randomized trials testing specific 
interventions, we now have identified a large number of programs or interventions that have been 
shown to be efficacious or effective in the prevention of mental disorders, drug abuse, and 
delinquency. A set of generally accepted procedures has emerged to guide the searching for trials, 
coding of trial results, steps in conducting meta-analysis, and summarization of evidence (Higgens 
& Green, 2008). Generally, the three major dimensions used to make these decisions about 
evidence are based on 1) the statistical magnitude of overall impact on a targeted behavioral 
outcome, 2) determining whether the trial was designed and conducted with sufficient quality to 
support causal conclusions, and 3) evaluating the replicability of findings across multiple trials of 
the same or similar intervention. Such information has served as the basis for selecting evidence-
based programs for wide scale dissemination and implementation (Brown, Hawkins, Arthur, Briney, 
& Abbott, 2007) , although different review groups vary in the criteria they require interventions to 
meet across these three dimensions (Flay et al., 2005). 
 
One limitation of this current system for determining which programs meet standards of evidence is 
that it does not account for how programs may benefit, or potentially harm, subgroups within a 
defined population. A related limitation is that these evaluations do not describe whether or to what 
extent intervention effects vary across contexts. There are numerous examples of interventions that 
affect subjects differently based on their own baseline risk (Brown & Liao, 1999; Brown et al., 
2008; Tein, Sandler, MacKinnon, & Wolchik, 2004; Wolchik, Sandler, Weiss, & Winslow, 2007), 
that produce iatrogenic effects with adolescents who learn deviant behavior (Dishion, Burraston, & 
Poulin, 2001; Dishion, McCord, & Poulin, 1999; Dishion, Spracklen, Andrews, & Patterson, 1996), 
or that show differential effects across community settings (Van Horn et al., under review, 2008). 
Such knowledge would be valuable in identifying interventions that address differing risk and 
protective factors, mediational pathways, cultural factors, or community preferences and resources. 
Traditional summarizations of evidence need extending to allow delivery of interventions that 
match community and individual needs, preferences, and likelihood of receiving benefit. 
 
In this paper, we provide a methodologic perspective on how to use multiple randomized trials to 
understand how an intervention's effect varies or remains constant across individuals and contexts. 
We show that single trials are generally underpowered to examine variation in impact, and 
combining data across multiple randomized trials can increase statistical power for modeling 
variation in impact. Combining such moderation data, however, requires new analytic models for 
synthesizing findings, different ways of decomposing sources of variation across trials, and 
alternative ways of combining data based on the degree that data can be shared. 
 
We use the broad term of “variation in impact” to refer to individual or contextual factors at 
baseline that affect the relationship between intervention and outcome. These sources can be 
measured quantities or attributes, such as age or gender, or unmeasured characteristics, whose 
presence can only be inferred indirectly by identifying a significant source of variation in impact 
through mixture models or multilevel modeling. The term “moderation” will refer only to variation 
in impact through measured baseline variables. These moderators can be at the individual level, 
such as age or ethnicity, or across measured cultural or contextual factors, such as neighborhood 
rates of underage drinking. Moderation is generally tested with interaction terms involving a 
covariate and intervention status. The term “heterogeneity” will refer to sources of variation that are 
present but not clearly identified. For example, when an intervention's impact varies significantly 
across a set of trials or the interaction of gender and intervention status on outcome varies 



significantly across trials, we refer to either of these as displaying heterogeneity of effects. In this 
paper, we use the specialized term “subgroup analyses” to refer to a restricted set of analyses where 
intervention effect is examined only within a subset of the sample, i.e., males, and no attempt is 
made to assess the comparative effect of the intervention across different subsets. 
 
This paper addresses several important methodologic challenges in identifying and quantifying 
moderation effects of interventions. The foremost challenge is that moderation effects are difficult 
to assess because these baseline by intervention interaction analyses are very often underpowered in 
a single randomized trial. We first determine conditions under which there are gains in power when 
using data from multiple trials compared to a single trial. Our development is based on short 
statistical arguments for the general reader; footnotes buttress these short presentations with more 
details on these statistical arguments. We then present a new, general multilevel approach for 
decomposing moderator effects both within and between trials. These analytic models for synthesis 
of moderator effects are only useful when two problems can be solved. First, we need to be able to 
distinguish functionally different reasons for variation within and across trials. Do the outcomes 
from two trials differ from underlying differences in growth patterns, or merely from different 
measurement times for outcomes in the two studies? Our approach involves growth modeling, and 
in particular multilevel growth mixture modeling to calibrate change across trials with different 
follow-up times. The second challenge in using these models is that they require access to data of 
sufficient depth within each trial and sufficient breadth of data across trials to carry out these types 
of moderator analyses. We present three alternative approaches to combining data across trials 
based on the level of data sharing available, and we compare their strengths and weaknesses. In our 
conclusion we give guidance on when to use these methods and their limitations. 
 
What Do We Want to Achieve from Moderator Analyses? 
 
Often embedded in many etiologic theories are specific hypotheses about moderation. Our theory of 
change that underlies how we believe an intervention should work often leads to a priori moderation 
hypotheses. For prevention science, the fundamental paradigm involves identifying antecedent risk 
and protective factors leading towards a target outcome, then applying an intervention to interrupt 
the risk process or strengthen protective factors (Coie, Watt, West, & Hawkins, 1993; Howe, Reiss, 
& Yuh, 2002; Kellam & Langevin, 2003). This general framework suggests examining the degree 
to which risk or protective factors moderate an intervention's effect. For universal interventions that 
target early risk behaviors within a developmental epidemiologic perspective, which normative 
systems such as classrooms and schools to reinforce prosocial behavior, we often predict that the 
most benefit will occur among those with an expressed risk factor at baseline, (Brown, Wang, 
Kellam, et al., 2008; Dolan et al., 1993; Ialongo, Poduska, Werthamer, & Kellam, 2001; Ialongo et 
al., 1999; Kellam et al., 2008; Kellam, Koretz, & Moscicki, 1999). 
 
We are often interested in examining the preventive effects on low and high risk youth separately. 
Thus a middle school-based drug prevention program may have different effects on those who 
already use substances at baseline versus those who do not. An intervention designed primarily to 
address only one of these subgroups, say to prevent initiation, may have negative effects on the 
other subgroup of users. In fact, one of the criticisms of the original DARE program, was that the 
delivery of the program by police officers might alienate those youth who were already engaged in 
deviant behavior (Ennett, Tobler, Ringwalt, & Flewelling, 1994). In a recent trial that used DARE 
officers with an updated curriculum, such early deviant youth were more engaged, but this program 
may have inadvertently heightened later drug experimentation among those who did not use 
substances at baseline (Sloboda et al., 2009). 
 
 



Power to Study Moderation of Intervention Effects 
 
Most trials are powered to detect main effects, so we briefly discuss how the power for moderation 
analysis relates to that for main effects. Comparison of power hinges on the comparison of standard 
errors for main effect and moderation estimators1. Consider testing for a main effect of intervention 
with traditional error rates (α = 0.05, β = 0.2) and two-sided testing. For a continuous outcome with 
equal numbers of individuals assigned to intervention or control, one needs 126 total subjects when 
the standardized mean difference or effect size is large (ES = 0.5) and 350 subjects when the effect 
size is more modest (ES =0.3; Cohen, 1988). The test statistic compares the difference in sample 
means for treatment (t) and control (c), X ̄t − X̄c to the main effect (ME) standard error,  
 

 
where N is the total sample size and σ̂ is the standard deviation estimate. 
 
For moderator or interaction effects involving a binary baseline measure, say gender, we would 
compare the mean differences in intervention effect for males, X̄ tm − X̄cm, to that for females, X̄ tf 
− X̄cf, where the second subscript refers to gender. The standard error of this interaction (Int) ES, 
depends on the proportion of males, p; 
 

 
A comparison of (1) and (2) shows that the standard error for the interaction term is larger by a 
factor of . For all possible values of the proportion of males, this factor is always larger than 2, and 
since power depends inversely on the square of the standard error, one would need at least 4 times 
the sample size to achieve the same statistical power for testing an interaction that has the same ES 
as that for a main effect. That means, for an interactive ES of 0.5 the sample size would need to be 
at least 504 rather than 126, and for an interactive ES of 0.3, the sample size would need to exceed 
1400 rather than 350. If the proportion who are in the subgroup is far from 1/2, this would require 
much more than 4 times the sample size as that for the main effect analysis. 
 

1Our argument below provides a partial justification due to space; the complete proof involves formulas for power 
based on noncentrality parameters, which in turn depend on sample size. 
 
Statistical Power for Testing Moderator Effects in Group Based Trials 
 
In group-based randomized trials, moderator analyses lose less power compared to main effect 
analyses. Consider conducting a group randomized trial, say when intervention is assigned at the 
school, classroom, or community level, and we are examining an individual level baseline variable, 
such as gender, for its moderating effect. In this case, the standard error depends in a more complex 
way on the number of groups or units that are randomized (M), the number of subjects within each 
unit (N), all of whom receive the same intervention condition, and the two sources of variance, 
between (b) and within (w) groups. 

 
Note that only the second term in these expressions is changed when we turn to tests of interaction. 
In school-based randomized trials where the number of units M is relatively small, the number of 
subjects per unit is moderate or large, and the intraclass correlation (ICC) is fairly large, changes in 



this second term have less effect on the standard error. As an example, with M = 12 schools, N = 
200 subjects per school, and an ICC of 0.05, the standard error for the interaction is 40% larger than 
that for the main effect, compared to 100% larger for an individual based trial. As we increase the 
number of subjects per school, the power for testing interactions in group randomized designs 
approaches that for testing a main effect. A similar situation occurs when there is randomization 
within blocks, such as a school, where subjects within the same school are assigned to either 
intervention or control conditions (Brown & Liao, 1999). This situation is analogous to combining 
multiple randomized trials, where each trial forms a block and there are both intervention and 
control subjects in each block; consequently this case is covered below under our discussion of 
integrative data analysis below. 
 
Because sample sizes for trials are almost universally based on detecting significant main effects, 
few of these trials have any real hope of finding significant moderator effects when they are small 
to moderate2. This basic result has pushed us to consider more powerful moderating analyses 
involving multiple randomized trials. 
 
2The development in this part of the text is limited to interactions involving a binary covariate. The power for detecting 
a linear interaction with a continuous baseline measure can be compared to that of the main effect once a common 
calibration of “effect size” is established. Our choice is to scale the treatment variable to have the same variance as that 
of the continuous variable. The regression coefficient of the interaction term measures the difference in response under 
intervention and control for two covariate values separated by 1 standard deviation, i.e. ESInter = E(Y | T = 1, X = 1) − 
E(Y | T = 0, X = 1) − {E(Y | T = 1, X = 0) − E(Y | T = 0, X =0)}. To achieve the same power for detecting an effect 
size , ESME for the main effect in a trial with equal allocations to intervention and control, we require ESInter = 2 ESME . 
This is the identical result for the case of a dichotomous moderator variable presented in the text. 
 
When Can the Use of Multiple Randomized Trials Increase Statistical Power for Moderator 
Analyses? 
 
We next examine conditions under which combining data from multiple trials increases power to 
detect moderation. Our approach to this problem is to model the interactions in each of the j trials in 
a hierarchical fashion. At the first level, let the individual level response Yij of subject i within trial j, 
depend on the same covariate Xij and treatment condition Tij, and their interaction term, XijTij 
representing a moderating effect, with separate coefficients for each trial, 

 
Here the last term expresses individual level error with mean 0 and within trial variance . 
At the second level we assume that the moderator effect for the jth trial, bj has a normal distribution 

with mean b and variance . For a single trial based on N subjects equally allocated to intervention 

or control, the standardized (Var(X) = 1) estimate  of the interaction has variance  
The estimator for the common interaction effect b, obtained from a two-level analysis involving M 
trials, has variance  

 
 
Thus the precision of the two-level estimator that synthesizes the findings from multiple trials will 
be higher than that for a single trial whenever 

 



In words, the left hand side of this inequality compares the between trial variance to within trial 
variance while the right hand side depends only on the number of trials and subjects per trial. A 
synthesis will have increased precision over that of a single trial when the between variance is small, 
or the number of trials relative to number of subjects is large. A quick way to compare this is based 

on the size of the intraclass correlation (ICC), , applied to Equation (4).  

As long as the ICC is less than  we are guaranteed to increase precision for moderation by 
combining results across trials3. It is rare for ICC's to exceed 5%, so combining results from just 
two trials is nearly certain to increase power if there are 80 or fewer subjects in a trial. For 4 trials a 
synthesis will increase power for moderation as long as there are less than 240 subjects per trial. 
Thus most often the combination of even a small number of trials is likely to provide gains in 
precision over that in a single trial. 
 
3In this argument we have ignored the differences in smaller degrees of freedom needed to test for this interaction effect 
across trials; nevertheless, the relationship ICC < 4(M−1)/N is still a very conservative bound. 
 
Modeling of Variation in Impact Within and Across Randomized Trials 
 
Any synthesis of intervention findings across trials needs to identify the sources of variation that 
can be explained by covariates as well as those remaining unexplained. We recommend a synthesis 
approach that not only obtains a combined overall estimate of a moderator effect but also examines 
alternative sources of heterogeneity in these moderating effects both within and across trials. In this 
section we present general modeling approaches using the notation of latent classes and covariates 
in two-level modeling. To make these ideas concrete, we consider combining data from multiple 
trials of a school-based intervention for preventing drug abuse. Each trial randomly assigns schools 
to receive the intervention or serve as a control. One can consider the moderator as individual level 
smoking at baseline and the outcome as the frequency of marijuana use at follow-up. Table 1 
presents a set of general models that can distinguish shared versus unique moderating effects (of 
baseline smoking) that may be explained by measured or unmeasured covariates at the trial level. 
For simplicity, we ignore levels of clustering, such as the classroom or school, as well as multiple 
outcomes in this table; these factors can be added to our models, but they do not introduce any new 
concepts. All these models in Table 1 assume that the moderating effect is the same for everyone 
within each trial. Table 2 extends these models by allowing the moderating effects (of baseline 
smoking) within trials to vary by measured or unmeasured variables as well. We use bold font for 
emphasis.  
 
The first column in Table 1 is built on the same two-level model as in Equation 1, with trial level 
random effects for intercept aj, covariate (baseline smoking status) aj

0, treatment main effects aj
1 and 

treatment by (baseline smoking) covariate moderating effects bj. All four of these random effects 
may not be needed in every synthesis analysis, but tests of heterogeneity across trials can be used to 
determine which of these need to be modeled as random effects rather than fixed effects. The 
primary test for heterogeneity of moderation, is shown at the bottom of Column 1. Here we would 
test for non-zero variance of the trial level moderating effect, Ha: Var(bj) > 0. This will determine 
whether there is any unexplained trial level heterogeneity in comparing the intervention's effect on 
baseline smokers vs. nonsmokers. No heterogeneity would indicate a consistent variation in effects 
for smokers versus nonsmokers. 
 
If there is heterogeneity, we have several ways to decompose this effect further. A portion of this 
heterogeneity may be attributed to measured characteristics of the trial or Zj, as indicated in the 
second column of Table 1. To make this model concrete, Z could measure a community's norms 



against youth smoking. The coefficient β1 measures the strength of this trial level covariate in 
explaining variation in the effect of an individual level moderator Xij (baseline smoking status) 
across trials. We can also test to see whether trial level variation in moderation by Xij is sufficiently 
explained by trial level covariate Z j . In particular, support for this covariate (community norms 
regarding smoking) explaining trial level moderation is found if we detect little remaining variance 
across trials, Var(bj | Z j) > 0, once we condition on this trial level covariate. 
 
We can delve further in our assessment of trial level variation in the effects of this moderator. 
Variation in impact (as a function of smoking status) may also be related to unmeasured 
characteristics of trials, rather than the measured trial level covariate Z j in Column 2. A latent class 
variable at the trial level is introduced in Column 2, to cluster trials where the moderator effects are 
similar. Specifically, a set of trial-level latent classes indexed by c are posited, with the proportion 
of each class given by πc. One possibility is that trials are conducted is some areas where marijuana 
use in high school is tolerated and others where it is not, but we have no data on this unmeasured 
covariate. Then the moderator effect of Xij (baseline smoking) within trial j is given by bj, which 
shares a common mean θ

(c) across trials in the same latent class (e.g., in regions where there is low 
tolerance of marijuana use). It is possible to add additional trial level covariates to this model 
involving latent classes (Column 4). Here we use a trial level covariate Uj (say community arrest 
rate for marijuana use) to predict that trial's class membership, which in turn predicts the trial's 
moderator effect θ(c). These models can be fit using two-level models that allow for covariates and 
discrete mixtures (Asparouhov & Muthen, 2008; Brown, Wang, & Sandler, 2008; Muthen & 
Asparouhov, 2003a; Muthen & Muthen, 2000; Muthen & Asparouhov, 2008, 2009). 
 
Table 2 provides a similar set of models involving individual level variation (and by extension other 
levels such as school) that are modeled to hold across all the trials. Note that the variation of 
moderator effects in Column 1 of Table 2, bij  (difference in effect of intervention by smoking 
status) is now treated as random across all individuals and trials; in Table 1 they were treated as 
constant within trials. Models such as these are best fit when we have repeated outcome measures 
(e.g. of marijuana use) so that growth modeling can be used to assess changes over time using 
random slopes and growth mixture modelling (Muthen & Asparouhov, 2003a, 2003b). Another way 
in which significant heterogeneity can be detected is to investigate how the variance depends on the 
covariate (Klein & Muthen, 2006), as indicated by the alternative hypothesis at the bottom of 
Column 1 in Table 2.  
Concretely, a finding that there is more variation in growth trajectories of marijuana use among 
smokers compared to non-smokers who are exposed to intervention (ν > 0) suggests an unexplained 
source of variation in impact. The remaining parts of this table follow similarly to that of Table 1. In 
particular, for the second column of Table 2, we can use a measured individual level covariate (say 
affiliation with peer smokers) to explain how a particular moderator (baseline smoking) influences 
this outcome. This corresponds to a three-way interaction between treatment, X, and Z. In the third 
column, we can model variation in the moderator effect into distinct but unobserved classes. Finally, 
in the last column these classes are predicted by other measured covariates U. All of these models 
can be examined using discrete mixtures of random slopes within a latent class framework (Muthen, 
2001; Muthen & Asparouhov, 2003b; Muthen & Shedden, 1999; Muthen & Muthen, 2007). 
 
Using Growth Models to Address Different Times of Measurement across Trials 
 
A set of trials will rarely use the exact same times of measurement for outcomes, so one 
methodologic problem is to calibrate outcomes so they are developmentally comparable. If all the 
trials use the same instrument to measure response at multiple periods of outcome but the 
observation times differ across trials, then growth models can be used to standardize the change in 
response through time. This standardized coding allows intercepts and slopes to have the same 



meaning across all trials. Let Yijt represent the response of subject i in trial j at the tth time point. A 
linear growth model specifies that these observations are the sum of an individual linear component 
with random intercept aij and slope bij, and a unique independent error εijt about this line, 

 
Here τijt is the tth time point of observation for this subject. Even though time points may vary 
across the trials, and across subjects within trials, the modeling of how intercepts and slopes are 
affected by intervention and other covariates provides a standardized way of assessing change. In 
particular, a moderation model for the slope that involves covariate X and intervention condition T 
becomes,  

 
In this last expression the coefficient γ4 gives the magnitude of this moderating effect. This model 
allows the slope to be related to the subject's own intercept, since change is often correlated with 
one's initial level. A different type of model for moderation is one where the initial level, or 
intercept, interacts with intervention condition. Here one's change in outcome over time depends on 
one's latent intercept and intervention. 

 
 
The coefficient δ3 measures the differential effect of intervention on the slope as a function of 
baseline level. Analytic methods exist for fitting such models. In fact, to obtain good quality fits to 
the data, we may need to include more terms that allow the random slope to be affected nonlinearly 
by one's random intercept. The following model provides a quadratic relationship between one's 
random intercept and slope. 

 
By coding treatment status Tij as 1 for intervention and 0 for control, the coefficient δ4 expresses the 
quadratic relationship of the intercept on the slope in the control group, and δ5 as the difference in 
this quadratic relationship between intervention and control. Thus δ3 and δ5 measure the moderating 
influence of the baseline level on the slope. Computationally these models can be fit using software 
in Mplus (Klein & Moosbrugger, 2000; Muthen & Asparouhov, 2003b; Muthen & Muthen, 1999). 
 
Three Data Sharing Strategies for Combining Information Across Trials 
 
In the previous section we presented a range of analytic models and methods that could be used in 
synthesizing moderation findings across trials. The specific modeling that can be done depends on 
the type of data that are available from the different trials. This availability ranges from published 
summaries of moderator analyses at one extreme to fully available individual level data from all 
trials at the other. The quality and precision of the modelling will depend on the level of data and 
the completeness of data that can be assembled, and this availability depends on the level of data 
sharing. In this next section we describe three strategies for combining information across trials, 
based on the degree to which data sharing occurs. We will find that two of these strategies are quite 
useful in synthesizing findings about moderation. 
 
Standard Meta-Analysis of Moderator Effects with No Sharing of Data 
 
Meta-analysis has been used as a tool for synthesizing study results for more than 30 years (Glass, 
1976, 1977; Glass, McGaw, & Smith, 1981; Glass & Smith, 1978; Glass & McAtee, 2006; Smith & 
Glass, 1977) and is the primary technology used in evidence-based medicine, particularly by the 
Cochrane Collaboration (Higgens & Green, 2008). In its basic form, meta-analysis combines 



published findings across similar studies by placing summary statistics from each of these findings 
in a common metric, such as an effect size (ES), a standardized mean difference between 
intervention and control, or relative risk (RR) type measure for dichotomous outcomes. These 
provide a single measure of impact representing overall effect across trials. Methods for assessing 
heterogeneity are available (Cook, 1992; Hedges & Olkin, 1985; Wilson & Lipsey, 2003), including 
those involving random and discrete mixtures (Brown, Wang, & Sandler, 2008). 
 
There has been extensive improvement in the meta-analytic method over the years as it has been 
extended to examine a range of topics, including the effects of prevention programs on depression 
(Horowitz & Garber, 2006; Jane-Llopis, Hosman, Jenkins, & Anderson, 2003) and on mental health 
for youth (Durlak & Wells, 1997), as well as the effect of antidepressants on symptom reduction 
(Bridge et al., 2007). The method can greatly increase power to detect important effects and reduce 
the risk to detect effects due to chance. When Bridge and colleagues (Bridge, et al., 2007) began 
their meta-analysis of antidepressant effects, very few of the 27 existing randomized trials 
demonstrated significant findings. By combining trials through meta-analysis, Bridge and 
colleagues demonstrated a highly significant cross-study effect (61% reduction on medication 
versus 50% on placebo) that was not apparent in single trials. 
 
Systematic review begins with a specification of inclusion and exclusion criteria for trials, followed 
by an extended search for such trials in the published and fugitive literature, in order to avoid 
publication bias. Based on information provided in these reports—and occasional clarification with 
the research team—findings from each trial are combined together by mean of the metanalysis to 
assess overall effects (Cooper, 1999; Cooper, 2010; Cooper, Hedges, & Valentine, 2009; 
DerSimonian & Laird, 1986; Hedges & Olkin, 1985; Mosteller & Colditz, 1996). An important 
strength of this standard meta-analytic review is that great care is taken to identify the complete 
universe of studies in order to avoid publication bias in estimating an overall effect. Unlike the 
other two methods described below, there is no requirement for sharing of data for meta-analysis, so 
main effect analyses for all trials contribute to the assessment of overall intervention effects. If the 
meta-analysis uses a more limited search, it will preferentially exclude trials with null findings 
because these are less likely to be published or known. 
 
To conduct a meta-analysis of moderator effects, we would make use of all findings of moderator 
analyses that are taken from available reports. All those involving the same variable or subgroup 
would then be combined with standard meta-analytic techniques. Others have raised concerns about 
the use of meta-analysis to examine moderation (Kraemer et al., 2002; Lipsey, 2003; Shadish & 
Sweeney, 1991), and we find there are two major limitations with this approach, ones that are so 
problematic that we do not recommend using this meta-analytic summary strategy for moderation 
analyses. The first problem is that while all trials can be expected to publish main effect analyses, 
whether or not they are significant, the same is not true with models involving interactions. It is far 
more likely for significant interactions to be published and non-significant interactions to be absent 
from papers, so publication bias in moderator analyses can be large. In a recent meta-analysis on 
antidepressants, for example, only 9 of 15 trials reported any analyses involving duration of 
disorder and outcome, so fully 40% of these trials were excluded from this moderation analysis 
(Bridge, et al., 2007). 
 
The second problem with conducting meta-analyses on moderation analysis is that such analyses 
can often be conducted quite differently across studies, and therefore these differences in the 
analytic model make it much more difficult to combine findings. Figure 1a shows that the synthesis 
step in meta-analysis relies exclusively on input from published summaries that are out of the direct 
control of the synthesis researchers. This can be especially problematic when examining moderation 
with continuous covariates, such as baseline risk score. Risk scores can be dichotomized at different 



cut-off points; even if they are treated as continuous variables, the need to look for nonlinear effects 
(Brown, 1993; Brown, Wang, Kellam, et al., 2008; Hastie & Tibshirani, 1990) or transformations of 
the data lead to different analyses being presented. Furthermore, missing data may be handled 
differently across studies, and all of these factors contribute to a method variance that would be 
difficult to account for. 
 
Integrative Data Analysis for Moderator Effects 
 
In contrast to traditional meta-analysis, the integrative data analysis (IDA) strategy assembles all the 
individual level data into one dataset, treating trial as the highest level in a multilevel modeling 
framework (see Figure 1b). IDA, which has sometimes been called patient level or individual level 
meta-analysis, is a type of pooled analysis that has been shown to have great promise in 
longitudinal research (Bauer & Hussong, 2009; Curran & Hussong, 2009; Curran et al., 2008; Hofer 
& Piccinin, 2009; Hussong et al., 2008; Shrout, 2009). It has seen limited use so far in randomized 
trials (Berlin, Santanna, Schmid, Szczech, & Feldman, 2002; Cooper & Patall, 2009; Higgins, 
Whitehead, Turner, Omar, & Thompson, 2001) and even less in the examination of moderator 
effects. 
 
Despite great potential, there are three major challenges in this type of integrative data analysis for 
moderator effects. One challenge involves how to conduct a combined analysis of different datasets 
all within one analytic model whose outcomes are measured at different times; our discussion of 
growth models above handles this situation. Another challenging problem occurs when trials use 
different assessment instruments and covariates. There are procedures that provide some flexible 
ways of dealing with different measures across trials. These include collapsing of a scale until 
common categories can be obtained (i.e., similar income categories), using “anchoring items” that 
are common across different instruments and item response theory to provide comparable scaling 
(Bauer & Hussong, 2009; Curran & Hussong, 2009; Curran, et al., 2008; Hofer & Piccinin, 2009), 
and use of missing data procedures. 
 
The third challenge with IDA is procedural; all the relevant datasets must be shared with a research 
team whose responsibility then involves conducting a full analysis. If some of the datasets are not 
shared, then an IDA synthesis project can easily introduce selection bias in its findings. Thus IDA 
typically requires a complete or nearly complete set of trials to contribute their individual level data. 
In a recent paper that examined different effects of antidepressants as a function of baseline level of 
depressive symptoms, one synthesis group was only able to obtain individual level data for 6 of 23 
trials contacted (Fournier et al., 2010). This suggests high selection bias. 
 
Obtaining individual level data from trial research groups is often hard to accomplish, as there are a 
number of valid reasons why research groups are often reticent to share their data. These include 
prior agreements with communities, scientific and ethical committees or participants not to share 
these data, concerns about confidentiality and misuse of these data, storage of older data in ways 
that are difficult to access and utilize, incorrect interpretation of the data in the hands of statisticians 
not involved in the study, prior commitments made by the trialists to permit others to analyze their 
data, and competition between the data synthesizing group and their own research group over 
publication of findings. In the past, such concerns have limited access to data and greatly impeded 
synthesis. Recently, the NIH policy on sharing data 
(http://grants.nih.gov/grants/policy/data_sharing/) has brought about a cultural shift in collaboration, 
but there are still enormous challenges. 
 
 
 



Parallel Analysis Strategy for Conducting Moderation Analyses 
 
This third strategy for synthesizing data from multiple trials balances the need to conduct equivalent 
analyses in each of the trials and the very real challenges in full sharing of data. The parallel 
analysis strategy has each of the respective trial research groups conduct analysis on their own data, 
following standardized analysis protocols. Results of these analyses done in parallel are then 
combined into a synthesis, as shown in Figure 1c. 
 
The parallel analysis approach has several advantages and potential challenges. First, because this 
approach obviates the need for sharing of individual level data and maintains control of the analysis 
in the hands of the original research group, it is more likely that research groups will be willing to 
join in the synthesis project. Our experience conducting parallel analyses as part of the United 
States-European Union (US-EU) Drug Abuse Prevention Project suggests that this approach can 
improve the likelihood of participation in synthesis projects. This collaborative project funded by 
the National Institute on Drug Abuse and the European Monitoring Centre for Drugs and Drug 
Addiction, combined two large drug prevention trials: the US's Adolescent Substance Abuse 
Prevention Study and the EU's Drug Abuse Prevention Study. It has permitted the examination of 
moderation effects beyond what could have been accomplished by either of these trials alone. 
 
Just as important, there is an advantage to having the original research team analyze its own data. 
Because of the trialists' intimate knowledge, they are less likely than those conducting an IDA to 
misinterpret their own data or conduct flawed analyses. Such occurrences can be commonplace with 
analysts who are unfamiliar with all the intricacies of the data, and the tacit knowledge available to 
the original research team is often very difficult to make explicit to outsiders. Some of the 
challenges in using this method are that the original research team may not have the resources, time, 
or motivation to conduct these parallel analyses on their own data. Also, some loss of information 
can come from the combining of the separate analyses in a two-stage analytic procedure, compared 
to one that combines all the data into one analysis. Also, parallel data analysis makes model 
checking much more difficult to conduct. 
 
Conclusions 
 
We have noted the very real power limitations in conducting moderation analysis in a single trial, 
but considerable opportunity to strengthen findings about moderation through combining data from 
multiple trials. Our conclusion is that unless the heterogeneity across trials is large, the power to 
detect moderation is almost always increased by combining data across trials compared to that 
available in a single trial. 
 
In this paper we have laid out a new set of models in Tables 1 and 2 that can be used not only to 
assess an overall strength of moderation but allow us to examine sources of heterogeneity both 
within and between trials. These sources may be decomposed into measured as well as unmeasured 
or unassessed factors that can occur both within and between trials. One important challenge in 
conducting moderator analyses across multiple trials is calibrating different times of measurement. 
Growth modeling techniques allow us to summarize growth patterns as random intercepts and 
slopes whose meaning transcends specific measurement times. 
 
We discussed advantages and disadvantages in using three different ways of combining data across 
different trials. The traditional meta-analytic method does not use individual level data, and because 
moderator analyses are often not reported for some trials, or are conducted using different analyses, 
this method is often not appropriate for synthesis of moderator effects. The other two methods 
described, integrative data analysis, and parallel analysis, do provide viable choices for synthesis. 



This paper has concentrated on analytic modeling, but interpretations of findings have to take 
account of alternative ways that trials can differ from one another, otherwise there may be little 
meaning in combining effects. These differences occur in four general categories: individual factors, 
contextual factors, intervention condition factors, and trial design factors. The most direct to deal 
with are trial differences in measured individual level factors, i.e., distributions of baseline risk and 
protective factors. We can account for these through multilevel models in Tables 1 and 2. 
 
Contextual factors, including neighborhood and other socio-cultural factors can have major  impact 
on behavioral outcomes. One interesting example is to assess whether a parent-based training 
program works equally well when delivered in Spanish to mono-lingual parents, compared to 
delivery in English (Dillman Carpentier et al., 2007). This question has clear policy implications 
about whether different intervention components would be needed to deal with the known 
variations in risk factors for first generation versus later generation immigrants. Analytically, we 
may test for differences in effectiveness through a test of an interaction; alternatively we could 
examine whether there is evidence to support similar effects through equivalence testing (Barker, 
Luman, McCauley, & Chu, 2002). Other contextual differences may be more subtle but relevant. 
For example, behavioural interventions that targeted HIV risk early in the AIDS epidemic had to 
overcome more stigma than recent ones, as HIV is now treatable. 
 
Besides these individual and contextual level factors, differences in response across trials can be 
due to differences in the intervention conditions themselves. Across trials, the intervention 
conditions can differ in dosage, intensity, fidelity, modality, or person who delivers the intervention. 
Likewise different trials can vary in their control condition; one school could have no active 
prevention program while a second may be exposing some of the students to another prevention 
program. 
 
Finally, differences in the trial designs themselves can lead to variation. We have discussed how to 
account for different times of measurement and different outcome measures, but sample recruitment 
and follow-up procedures can also affect findings as well. One important issue for implementation 
of behavioral interventions is whether a trial is conducted in an efficacy mode, where high fidelity 
is consistent across the study, or in an effectiveness mode, where larger variations in fidelity can 
occur. 
 
There are two general ways of handling such differences in intervention conditions across trials. If 
there is a clear measure that distinguishes interventions, such as duration or dosage, this can be 
treated as a covariate or moderating factor as shown in Column 2 of Table 1. However, we often do 
not have sufficient quantitative information to account for these differences, and even if we do, we 
may still have residual unexplained heterogeneity in moderation. It is always important to allow for 
and test for trial level variation through multilevel modeling, in both main effect and moderation 
analyses. The models in Table 1 provide for testing of unexplained heterogeneity in the absence of 
covariates (Column 1) and in their presence (Column 2). The remaining two columns allow for 
discrete mixtures, and it may be that both discrete classes and continuous random effects may be 
needed (Brown, Wang, & Sandler, 2008). 
 
There are a number of limitations to the methods described in this paper. This paper has concerned 
itself exclusively with the examination of a single moderator variable thought a priori to affect 
impact. At the other extreme are moderator analysis involving more global subgroup differences in 
response. One example is in the search for genetic factors that may interact with an intervention. 
Here we may have upwards of 1,000 candidate markers, coded 0, 1, or 2 depending on the number 
present in one's DNA, which can be screened for significant effects. One would need to adjust for 
multiple testing using methods such as false discovery rates (Benjamini & Hochberg, 1995). 



If there are a limited number of trials available for understanding moderation, then power to detect 
heterogeneity in models for Table 1 may be very low. In the United States-European Union (US-
EU) Drug Abuse Prevention Project, we have had success, combining data from two randomized 
trials, provided the trials themselves are large and there are levels of clustering, such as schools 
within trials, that provide enough degrees of freedom to examine heterogeneity at that level. 
 
The ultimate success or failure of any synthesis project that uses parallel analyses or integrative data 
analyses hinges on the collaborative partnership that is formed. While there are clear advantages for 
the science and the public in synthesizing findings across trials, full use of all the data at any given 
time is often not possible to achieve. Those who have designed these complex studies have 
commitments to publish results on their studies in a timely fashion, and those related to synthesis 
projects can either compete for this time or not take into account the unique features necessary to 
conduct complex modeling that incorporates all the strengths of that particular trial. Handing over 
data to a centralized analysis unit may lead to incorrect use of these data unless there is an ongoing 
relationship between the synthesis group and the individual trial groups. On the other hand, 
synthesis projects can help facilitate the work conducted on the separate trials as well. Such projects 
can provide additional expertise in methods, and they may uncover unique aspects of one trial 
relative to others that can then be pursued more effectively through more detailed analyses 
conducted by that particular research group. This can encourage individual groups to collaborate 
with the synthesis project, resulting in new research questions and publication opportunities for 
these research groups. It is also possible to combine statistically the data and findings from all three 
types of data sharing in one analysis; which may be necessary to accommodate different sharing 
agreements. All these challenges and opportunities need to be addressed in a synthesis project, so 
that the partnership fulfills the collective and individual needs. 
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