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Ternary choices in repeated games and border collision bifurcations

Arianna Dal Forno Laura Cardini ̂  Ugo Merlone'^

A B S T R A C T

Several recent contributions formalize and analyze binary choices games with externalities as 
those described by Schelling. Nevertheless, in the real world choices are not always binary, 
and players have often to decide am ong m ore than two alternatives. These I<inds of inter
actions are exam ined in gam e theory where, starting from the well I<nown rocI<-paper-scis- 
sor gam e, several other I<inds of strategic interactions involving m ore than tw o choices are 
exam ined. In this paper we investigate how the dynamics evolve introducing one more 
option in binary choice gam es with externalities. The dynamics we obtain are always in 
a stable regime, that is, the structurally stable dynamics are only attracting cycles, but of 
any possible positive integer as period. W e show that, depending on the structure of the 
gam e, the dynamics can be quite different from those existing when considering binary 
choices. The bifurcation structure, due to border collisions, is explained, showing the exis
tence of so-called big-bang bifurcation points.

1. Introduction

The problem of repeated choices has been studied from 
different perspectives, especially in economics. For exam
ple in [8] the first chapter is devoted to the theory of indi
vidual decision making. According to these Authors “The 
starting point for any individual decision problem is a set 
o f  possible (mutually exclusive) alternatives from which the 
individual must choose”. In many texts (see e.g. [13]), for 
the sake of simplicity, the analysis is limited to choices be
tween two alternatives such as consumption goods. In an 
important contribution appeared in the Journal of Conflict 
Resolution, Schelling [10] analyzes situations in which the 
consequences of the choices of an actor are affected by 
other actors’ actions, that is, the population of agents that 
form the social system as a whole. In particular, he consid
ers agents who are asked to choose between two alterna
tives and each player’s payoff depends on the number of

agents who choose either one action or the other. These 
kinds of interaction are called binaty choices games with 
externalities.

Recently, after providing a mathematical formalization, 
the analysis provided in [2] extends Schelling’s contribu
tion introducing a dynamic adjustment process. The 
dynamics was analyzed thoroughly in [3] where the ana
lytic expressions of the border collision bifurcation curves 
are given. Furthermore, [4] extends such analysis consider
ing the case in which the payoff functions have two inter
sections as in some examples provided in Schelling [10]. In 
this case the one-dimensional map consists of three linear 
partitions separated by two discontinuity points.

Nevertheless, in the real world the choice set does not 
always consist of two alternatives. This is well known in 
economics, for example [9] when surveying quantal choice 
analysis provides a classical illustration. The example is the 
following: “. . .  suppose subjects are offered a choice of a 
bicycle or a pony.... Suppose the choice is now expanded 
to include a second bicycle which differs from the first only 
in color and trim.” Examples considering more than two 
choices are not limited to quantal choice analysis; game 
theory also examines situations in which players have at



least three available alternatives. In [5], several examples 
are provided, from pricing games with price matching to 
sport examples. Furthermore, even for simple games such 
as the well known rock-paper-scissor, externalities effects 
arise when they are played as stage games in random 
matching supergames [7]. Finally, it is also possible to ob
tain an example similar to those provided in [10] when 
considering the dilemma of commuting by car or public 
transportation examined in [12], and introducing a third 
choice: commuting by bicycle.

In this paper we investigate how introducing one more 
option in binary choices games with externalities affects 
the complexity of the dynamics. We will show that, 
depending on the structure of the game in terms of the 
payoff the dynamics can be more complex than the one 
when considering binary choices.

The choice of linear payoff functions will lead to two- 
dimensional maps defined by linear pieces. Thus the 
dynamics shown via several examples is the one typical 
of piecewise linear maps with one or two discontinuity sets. 
In these maps the bifurcations are different from those 
occurring in smooth systems, and are due to the collision 
of some cycle with the border in which the definitions 
change. The effect of such a border collision bifurcation is 
not an easy task to investigate, especially in two-dimen- 
sional piecewise linear maps. It is indeed an open research 
field, in which only a few results have been published, and 
mainly for continuous piecewise smooth maps. For discon
tinuous maps, as it is in our model, the existing results are 
almost negligible. However, the examples considered in 
this work allows us to investigate the bifurcations via a 
one-dimensional discontinuous map. In such a case we 
are able to understand and classify the bifurcations occur
ring in the map (making use of recent results in [6,1,11]).

Our results show how considering binary choices to 
simplify the problem formulation may lead to miss the 
complex dynamics of the system under analysis, although 
the structurally stable attracting set always consists in 
some fe-cycle, fe >  1, as divergent dynamics or chaotic behav
iors cannot occur.

The structure of the paper is the following. The model is 
presented in Section 2. The analysis proceeds from the case 
of only stable equilibria (Section 3), through the examina
tion of the coexistence of a stable equilibrium and cycles 
(Section 4). The cases shown here can be considered as 
reflecting the result of two choices plus one. Differently, 
in Section 5 we shall illustrate a case in which the three 
different choices are cyclically changing, which occurs 
when there are no stable equilibria. Section 6 is devoted 
to the conclusions and open problems.

2. The model

We consider a repeated game where a continuum of 
players chooses actions from a set A = {L,M,R}. Each player
updates its choice at each time t = 0 , l , 2 ....... The set of
players is normalized to the interval [0,1]. We introduce 
the following notation:

• x [ e [ 0 ,1] denotes the fraction of players choosing
action L at time t.

• x f e [0 ,l ]  denotes the fraction of players choosing 
action M at time t,

• x f e [ 0 ,1] denotes the fraction of players choosing 
action R at time t.

Since we are considering ternary choices, when at any 
time t a fraction x[ of the population chooses action L 
and a fraction xf chooses action R, then a fraction 
x f =  1 -  x[ -  xf chooses action M. We rule out the option 
of not choosing any action. As it holds x[ +  x f +  xf =  1 it 
is possible to represent the state of the system on A^, the 
standard 2-simplex with vertices P Í(1,0,0),P ¡^(0,1,0), 
Pr(0,0, 1), as in Fig. 1(a).

Assuming x f  =  1 -  x[ -  xf it is possible to consider only 
two independent coordinates (x[,xf) and in the following 
we will omit x“  (given as complement value).

Thus our phase space (the set of feasible vectors 
Xt =  (x[,xf)) is a triangle in the plane which has to be 
considered as the projection (bijective) of the standard 2- 
simplex A^:

=  {xt =  {x'i, xf) e : 0 <  +  xf <  1}.

Therefore the vertices of A^ become the vertices of D :̂

P* =  (1,0), P*M =  (0,0), F , =  (0 ,i) ,

respectively, as depicted in Fig. 1(b). 
Obviously:

a)

• if Xt =  (x[,xf) =  (0,0) then the whole population 
chooses action M,

• if Xt =  (x[,xf) =  (0,1) then the whole population 
chooses action R,

• if Xt =  (x[,xf) =  (1,0) then the whole population 
chooses action L.

They can be named unanimity vertices since in each of 
them the whole population is choosing the same action.

The payoff functions are common knowledge and are 
assumed to be linear functions depending on the vector 
X = (x^x*^); they are:

• L : ^  R is the payoff associated to action L:

L(x) =  Ql x ‘‘ +  bix'̂  +  Ci, (2)

Fig. 1. In (a) standard 2-simplex (shaded area) and in (b) its projection 
on the horizontal plane (shaded area).



• M : ^  R is the payoff associated to action M:

M(x) =  Omx'- +  bux'  ̂+  Cm, (3 )

• R : ^  R is the payoff associated to action R:

R{x) =  aRx‘- +  bRx'̂  +  CR. (4)

We assume that each pair of payoff functions are not 
identically the same. Then defining:

Ti (x) =  L(x) -  M(x) =  (Oi -  Om)«'- +  (bi -  bM)x'  ̂+  (Q -  c „ ) ,

T2(x) =  L(x) -  R{x) =  (Oi -  aR)x‘- +  (bi -  bR)x'  ̂+  (q  -  Cr),

Ta (X) =  ]?(X) -  M (X ) =  {Or -  Om)«'- +  (bR -  bM)x'^ +  {Cr - C „ ) .

(5)

We are interested in the following regions:

]?i =  | x e D ^ :  T i(x) > 0  and T 2 (x )> o | ,

]?M =  { x e D ^  Ti(x) < 0  and T 3 (x )< o } , (6)

]?j; =  | x e D ^ :  T2(x ) < 0 and T3(x) >  o |.

We assume that not all these sets are empty, in which case 
the regions are convex, as intersection of convex sets. In 
the region Ri we have that action L dominates both M 
and R; in Rm action M dominates the other payoffs L and 
R; and in Rr it is R that dominates L and M. As usual, the 
set of feasible vectors Xt =  are such that
x [+ x f  si 1 forali t.

The agents are homogeneous and maximize their next 
period utility. At time t + 1 vector X[ becomes common 
knowledge, and each agent can observe payoffs L(xt), 
M(xt) and R(X[). We assume that if at time t a fraction 
chooses action L and a fraction xf chooses action R and 
the payoffs are such that R(xt) > L(xt) and R(xt) > M(xt), then 
a fraction of the x[ agents who chose action L and a fraction 
of the 1 -  x[ -  xf agents who chose action M will both 
switch to action R at next time period t + 1. This is the same 
for all actions which give the larger payoff In other words, 
at any time t all the agents decide their future action for 
time t + 1 comparing payoffs L(xt), M(xt) and R(xt) accord
ing to the following rule:

Xt+i =  F(Xt) (7)

with Xt =  (x[,xf) e F: and the map:

if X[ e  Rr then:

=  (fi(xt), FrÌ^ì))

is defined as follows:

(8)

if Xt e Ri then:

i Fi(Xt) = +  ¿¿g(A(L(x,) -  M ix,))) (1 -  -  xf ) +  ¿¿g(A(L(x,) -  fi(xt)))xf, 
1 Fb(x,) = xf -  <5ig(A(L(Xt) -  fi(x,)))xf,

if Xt e Rm then:

' fi(Xt) = x f -  S„g{X{M{Xt) -  L(xt)))x^,

 ̂pRiXt) =  xf -  SMg(MM(Xt) -  R(xt)))xf,

Fi(x,) = 4 -  Sj!g(À(R(x,) -  L(x,)))xf.
Fb(x,) =  xf +  <5Bg(A(ii(x,) -  i.(x,)))x[ +  <5Bg(A(ii(x,) -  M (x,))) (1 -  x[ -  xf).

The function g : R+ ^  [0,1] is continuous and increasing, 
withg(0) = 0 and limz^+oog(z) = 1; it models the impulsivity 
of agents (see [3]), as the parameter i  e R+ represents the 
agents’ speed of reaction as a consequence of the compar
ison between the payoffs.

The parameters 3i, 3m, and 3r, assumed belonging to the 
range [0,1], represent how many agents may switch to ac
tion L, M, and R respectively. When two or more of these 
parameters are equal, there are no differences in the pro
pensity to switch to any of the actions involved.

An interesting limiting case is obtained as X goes to 
infinity, as considered in [3]. This is equivalent to consider 
g( ) = 1. Therefore, the switching rate to a different action 
just depends on the sign of the difference between the pay
offs, no matter to what extent (impulsive agents). In this 
case the dynamical system becomes Xt+i =  F(Xt) as follows:

Xf^i =

i l  =  (1 -  h)x\ -
■R

Sl

=  ^L)xf

X^l =  (1 -  ¿m)xJ 
=  (1 -  SM)xf

=  (1 -  Sr)x^
=  (1 -  0 R ) x f  H

''t+1

^t+1

if Xt e Rl,

if Xt e Rt,,

if Xt e R r .

(9)

We can see that in the map in (9), each of the expressions 
defining x[^, and xf^, is a linear function only of the same 
state variable, and not of the other one. However, depend
ing on the payoff values, the state variable may change the 
region to which it belongs to, and this leads to a change in 
the dynamics. That is, the function which is applied to the 
state variables changes as a consequence of the change of 
the region.

The peculiarity of this two-dimensional map F is that 
the conditions on the parameters determining the slopes 
of the linear functions, and thus the eigenvalues of the 
map in the linear pieces, lead to all contractions. A point 
x e R a  has the Jacobian matrix:

7(xSx'') =

whose eigenvalues are real and both equal to (1 -  3a), so 
that they belong to the range (0,1], except for 3^ = 0, in 
which case the eigenvalues are both equal to 1.

Under such conditions we can only have stable cycles,^ 
as all the eigenvalues of the components are positive and 
less then one, or at most equal to 1, any possible k -  periodic 
cycle (/c >  1) has eigenvalues which are necessarily also po
sitive and smaller than or equal to one.^ Thus no chaotic 
behavior can occur, neither divergence (as the map is de
fined from onto D )̂. We have so proved the following:

’ Except for particular structurally unstable parameter values at which 
quasiperiodic trajectories exist.

2 recall that the eigenvalues of a cycle are given by the eigenvalues of 
the product of the Jacobian matrices in the periodic points.



Proposition 1. The map F in (9) can only have regular 
dynamics: either k -  cycles fo r  any k ^  1 or quasiperiodic 
trajectories.

In the next sections we shall see several examples. 
There, the particular structure of the map often leads to 
one-dimensional maps by which it is possible to analyze 
the dynamic behaviors and bifurcations which may occur. 
Also, it may happen that, depending on the structure of the 
regions, we can have one of the two state variables inde
pendent from the other. An example is given in Section 5.

3. Analysis of stable fixed points

When in any of the three vertices, P*, a  e  {L,M ,R}, the 
correspondent payoff dominates the others, then such a 
vertex may be a stable fixed point. P* is a real fixed point 
if it belongs to the proper region Ra, otherwise is called vir
tual. In fact, if P* e R„ then, given the definition of the map 
in (9), it attracts all the points in its region. In other words, 
a unanimity vertex is locally stable iff it belongs to the re
lated dominance region, as proved in the following 
proposition.

Proposition 2. A vertex o f  is a stable fixed point if  
P^ e Ra, where a  e  {L,M,R}, and explicitly:

PI € Rl if (ai +  Cl) >  max (a« +  Cm, Or +  Cr),
P*m € R m if Cm >  max (Ci,CR),
P*R € Rr if (bR +  Cr) >  max (bi +  Q, fa« +  c „ ) .

Proof. Given the definition of the map in (9) it is immedi
ate to observe that a unanimity vertex P* which belongs to 
the related region is a fixed point, as Xt =  P* implies 
Xt+i =  P*, and it attracts all the points in its region. In fact, 
since the eigenvalues are both equal to (1 -  and in the 
range [0,1], a point X teR a  implies Xt+i e  Ra. As a conse
quence, for 0 < (5̂  sg 1, P* is an attracting fixed point with 
monotonic convergence, and from the structure of the map 
the trajectories belong to straight lines issuing from the 
fixed point. While for 6^ = 0 every point of the region R^ 
is fixed, and the fixed points are so-called stable but not 
attracting.

Then we can see the conditions leading a point P^ to 
belong to the related region R^. For the vertex P[ we have:

(^i) =  Oi -  ÜM +  Ci -  Cm >  0 , 
T2 ( P l ) = a i , - a R  +  C i,-C R > 0 ,

for the vertex P¡̂  we have:

(̂ ivf) =  Cl -  Cm <  0, 
'̂ 3 (Pm) =  Cr -  Cm <  0 ,

for the vertex Pg we have:

T2(Pr) =  b i -  bR +  Ci -  Cr <  0, 
T3(Pr) =  t)R -  bM +  Cr -  Cm >  0,

which ends the proof □

(10)

(1 2 )

This proposition allows us to generalize some of the re
sults discussed in [10, p. 403]. In fact, with Proposition 2 
we have sufficient conditions for respectively all-Right, 
all-Middle and all-Left equilibria. This is the analogous of 
Schelling’s case in binary choices of coexistence of all-Right 
and all-Left equilibria. In the following example we illus
trate a case in ternary choices which leads to coexistence 
of three stable equilibria.

Example 1. Consider the following payoff functions:

L(x) =  x'-, M(x) =  -x'- -  +  1, R(x) = x ’’ , (13)

then we have:

Ti (X) =  L(x) -  M(x) =  2x'- +  x*̂  -  1 ,

T2 (x) =  L(x) -  R(x) = x ‘- - x ‘̂ ,

T3 (X) =  R(x) -  M(x) =  x'- +  2x*̂  -  1.

In this case the map to be studied is (9) with the following 
regions:

=  |x e 1 -  2x^

x e D " X" <  mm (14)

The conditions given in Proposition 2 hold, therefore we 
have three stable equilibria whose basins of attraction are 
illustrated in Fig. 2. In Fig. 2(a) we show (at ¿¿ = 0.3, 
3m = 0.2, and ¿r = 0.7) the three different regions which also 
correspond to the basins of attraction with three stable 
equilibria. In Fig. 2(b) three trajectories are shown, which 
are converging to the three stable equilibria at the vertices.

As mentioned above. Example 1 generalizes to three 
equilibria the case of coexistence of all-Right and all-Left 
equilibria in [10]. In our example we have the coexistence 
of the three unanimity equilibria which are equivalent in 
terms of payoff Yet it is not difficult to have other situa
tions with the coexistence of three equilibria which are 
not equivalent in terms of payoffs. For example, consider
ing the payoff functions L(x) = x̂ , M(x) = -x'" -  x*̂  + 1 and 
R(x) = 2x'̂ , we still have the coexistence of three unanimity 
equilibria, where the all-Right one provides a higher payoff 
and therefore is preferred. Still if either everybody chooses 
Left or everybody chooses Middle, nobody is motivated to 
choose otherwise, unless enough others do so to have the 
population entering the region where Right dominates.

As a consequence of Proposition 2 we have that, 
depending on the shape and number of regions covering 
D ,̂ we can have all the possibilities: either all three equi
libria belong to D ,̂ or only two, or only one, or no fixed 
points belong to D .̂

In the examples of this section we have seen cases in 
which all three equilibria coexist. Clearly also the case of 
only two regions in and coexistence of two stable fixed 
points can occur. However, this case is less interesting, as 
the same as those of a binary choice.

A more relevant case is the coexistence of a stable fixed 
point with a stable cycle, that we shall see in the next 
section.



Fig. 2. In (a) the three regions of Example 1, which are also basins of attraction of the three stable equilibria, at 4  = 0.3, Sm = 0.2, and Sg = 0.7. In (b) three 
different converging trajectories.

4. Coexistence of stable equilibria and k  -  cycles, k > 1

In this section we shall illustrate a few examples in 
which we always have bistability. This occurs whenever 
we have one fixed point belonging to its proper region, 
while something else occurs when the vector Xt =  
belongs to one of the other two regions, thus leading to 
bistability. In general, we can have coexistence with any 
single stable equilibria, when:

P* e Rff holds for only one a  e {L, M, Rj,

and the other two regions have a non empty intersection 
with and are without fixed point (that is, the relative 
equilibrium points must be outside each of these two re
gions). This implies (due to the structure of the map) that 
periodic orbits (i.e. fe-cycles of any period k) exist in the 
other two regions without fixed points. To clarify this situ
ation let us consider the following example.

Example 2. Consider the payoff functions defined as:

L (x )= x S  M (x)=x '^ , ]?(x) = - x '- -  +  a (15)

with a >  1. Then we have:

Ti(x) =  L(x) -  M(x) =  x'- -  x‘̂ ,

T2(x) =  L(x) -  R{x) =  2x̂ - +  x‘̂ ~  a,

Tsix) =  R(x) -  M(x) =  -x'- -  2x*̂  +  a.
In this case the map to be studied is (9) and for a = 1.5 

we have the following regions:

I '
^-2x^^ <x^

R 3 xM
' ^ > 4 - 2 } ’

,2 ^"" ’ 4

=  | x  e : x‘-€

]?M =  |x  e : X -̂ €

=  | x  e : x^-e

(16)

The regions Ri, Rm, and Rr are represented in Fig. 3(a) at 
(5l = 0.75, (5jv( = 0.5, and ¿r = 0.3. One can immediately see 
that the fixed point PJ belongs to its region, and thus it is

, x^ <  min
’4

an attracting fixed point, while the other fixed points P̂  
and Ph are not in the proper regions, thus they are virtual 
(i.e. in this case they are not fixed points of the map). Thus, 
what is the dynamics of the vector Xt =  when it be
longs to the other two regions? From the definition of the 
map we can see that if we consider an initial condition in 
the region Rm the state variable will decrease, as 
x[^, =  (1 -  <5m)x[. Similarly if we consider an initial condi
tion in the region Rr the state variable x[ will decrease, as 
x[^, =  (1 -  <5r)x[. It follows that the asymptotic behavior 
necessarily leads to x  ̂= 0. This means that the dynamics 
will necessarily converge to some attracting set belonging 
to the vertical line of the state space, where only x*̂  varies, 
and it necessarily follows the asymptotic behavior of the 
one-dimensional map defined by the dynamics of this var
iable in the related regions, that is:

f  ^  I ÌM(xf) =  (1 -  Su)xf
\ /,(x f) =  ( l - 5 , ) x f  +

| < x f  < 1 ,  
o ^ x f  < | .

(17)

At the parameter values of Fig. 3(a) the trajectories con
verge to a 4-cycle, and the shape of the one-dimensional 
m ap /is  as shown in Fig. 3(b).

This means that independently on the values of the 
parameters ól, Sm and 6r, the qualitative behavior can be 
described as follows: the stable fixed point PI (whose basin 
of attraction is the related region Ri) coexists with an 
attracting fe-cycle belonging to the line of equation x  ̂= 0 
(whose basin of attraction is the region Rr u Rm)- The peri
od fe can be any positive integer, and several different cy
cles also exist with the same period but different periodic 
points, i.e. having a different number of periodic points 
on the right and left side of the discontinuity between 
the two branches /m and /r.

In this case, at any fixed value of 61 we have a one
dimensional piecewise linear map with one discontinuity 
point, depending on two parameters Sm and ór which give 
the slopes of the two linear pieces. This map has been 
already investigate in [3]. Due to the fact that the slopes 
are less than 1 in modulus, we have that no unstable cycle 
can exist (and thus no chaos at all). The asymptotic dynam
ics can only converge to a cycle (periodic orbit of any period



Fig. 3. In (a) regions associated witli Example 2 in (15) at a = 1.5, Si = 0.75, Sm = 0.5, and < 
given in (17) at the same parameters as in (a), showing the attracting 4-cycle.

j = 0.3. The attracting set is a cycle of period 4. In (b) the map /

fe > 1), or be quasiperiodic in the absorbing interval 
bounded by the two offsets at the discontinuity point: 
I = LWd), /i;(d)] where d = 0.75 in the example of Fig. 3.

The change in the period of the attracting cycle can only 
occur via border collision bifurcations (BCB), and the bifur
cation curves can be detected analytically. It is proved that 
two different cycles cannot coexist, and the periodicity re
gions follow the so-called period adding structure. This 
means that between two periodicity regions of cycles of 
period p and q also the regions of an attracting cycle of per
iod (p + q) exists, and it is also possible to obtain the ana
lytical expression of the border collision bifurcation 
curves that bound the periodicity tongues in the parame
ters plane, of any level of complexity (as is called the orga
nization used to get all the infinitely many cycles). For 
more details we refer to [6,1].

An example for our map is shown in Fig. 4(a). Notice 
that it represents both the bifurcation diagram of the 
one-dimensional m ap/in  (17) and the bifurcation diagram 
of the two-dimensional map of Example 2 in (15). The cy
cle of/coexists with the stable fixed point for F. An exam
ple of the periodic orbits existing in the vertical line = 0 
as a function of only one parameter ¿r is shown in the 
bifurcation diagram of Fig. 4(b), keeping fixed the other 
parameters at 3i = 0.75, 3m = 0.5, and following the vertical 
path shown in Fig. 4(a). We can see that the attracting set 
is a periodic orbit (structurally stable, which means that it 
is attracting for parameter values always in an interval) 
and the periods change quickly as a function of the param
eter tending to zero (so that one slope tends to 1).

Another example, with a different constant in the func
tion in (15), is shown considering the value a = 1. Then we 
have the following regions:

]?i =  { x e D ^ :  1 -2x'^ <x'^

' l 'ì 
^ ’2 - 2 (18)

]?R =  | x e D ^  x ' " < m i n ( ^ l - 2 x S i - ^

The regions Ri, Rm, and Rr are represented in Fig. 5(a) at 
3l = 0.75, 3m = 0.5, and 3r = 0.3. Clearly also here the fixed 
point PI belongs to its region.

In this case the asymptotic dynamics on the vertical line 
where only x  ̂varies, follow the asymptotic behavior of the 
one-dimensional map defined by the dynamics of this var
iable in the related regions, that is:

/  : =
_  i ÌMixf ) =  (1 -  Su)xf if 
^  \ fR {x f  ) =  (1 -  5R )x f +  Sr if

l < x f  < 1 ,  
0 sS xf <  1.

(19)

With respect to the previous case, the asymptotic dynam
ics are determined by the same map with a different posi
tion of the discontinuity point. But except for a change of 
variable the two cases have the same results, that is the 
two maps given in (17) and in (19) are topologically conju
gated. Also the border collision bifurcations curves are re
lated via an homeomorphism. For example, at 3l = 0.75 
fixed, a two-dimensional bifurcation diagram as a function 
of 3m and 3r is shown in Fig. 5(b). The attractor at 3m = 0.5 
and 3r = 0.3 is a 5-cycle, as shown in Fig. 5(a).

The cycles observed in this family of examples are sim
ilar to the oscillatory behavior observed in [2], and, as al
ready remarked, the two-dimensional bifurcation 
diagrams (and related dynamics) of this family are identi
cal to those considered in [3]. The difference is that, while 
in the previous papers the model was for binary choices, 
here we are considering ternary choices, and the observed 
cycles are coexisting with an attracting fixed point PJ. Thus 
Example 2 shows that when considering more than two 
choices there may be coexistence of the stable equilibria 
and the cyclic behavior studied in the discrete time math
ematical formalization by Schelling [10]. It is possible to 
link this example to the illustration provided in [9]. In fact, 
assume that agents may use either ponies or bicycle as a 
means of transportation. We add the further alternative 
to choose between two different colors of bicycles. Those 
whose previous choose was ponies keep having the same 
preference, but those who preferred bicycles may now 
want to distinguish themselves choosing at each period 
the less common color. Then, if the number of agents riding 
ponies is large enough, everybody will ride ponies as all 
roads will become not viable by bicycles. On the other 
hand, if the number of agents riding bicycle is large enough 
everybody will do so, with the color switching dynamics.



Sl = 0.75 Sl= 0.75 «M = 0.5

Fig. 4. In (a) two-dimensional bifurcation diagram in the ¿r) plane for Example 2 in (15) and for the m ap/given in (17) at a = 1.5, 4  = 0.75. Different 
colors correspond to periodicity regions of cycles with different periods. In (b) the one-dimensional bifurcation diagram of x® as a function of Sr along the 
vertical path shown in (a), at Sm = 0.5.

Sl= 0.75 Sm =  0.5

Fig. 5. In (a) regions associated with Example 2 in (15) at a = l ,  Si = 0.75, Sm = 0.5, and iSb = 0.3. The attracting set is a cycle of period 5. In (b) two- 
dimensional bifurcation diagram in the plane for Example 2 in (15) and for the m ap/given in (19) at a = 1, = 0.75.

4.Î. Coexistence with non connected basins

A different example of coexistence, in which the basins 
are disconnected, is given as follows:

Example 3. Assume that the payoff functions are:

L(x) = M(x) =  a, R {x )= x ‘- - x ‘̂  (20)

with a  e  (0,1). Then we have:

Ti (x) =  L(x) -  M(x) =  - x ‘- +  x‘̂  -  a,

T2 (x) =  L(x) -  R{x) =  -2x'- +  2x' ,̂

T3 (x) =  R{x) -  M(x) = x ‘- - x ‘̂ ~  a,

and the map to be studied is (9) with the following regions: 

]?i =  | x e D ^ :  x'^>x'^ +  a|;

]?M =  | x e D ^ :  x‘- - a < x ' ^  < x ‘- +  a j ;  (21)

]?R =  | x e D ^ :  x '^ < x '^ -a | .

The extension of the regions depends on the value of a. 
In particular, region Rm is a strip (centered on the line 
x  ̂= x^) whose width depends on a. The other regions R̂  
and Rfi are on opposite sides of the strip Rm and the fixed 
points do not belong to the related regions. The case shown 
in Fig. 6(a) is with a  = 0.03.

It is clear that, given the structure of the map, if we take 
an initial condition in the region Rm the trajectory will con
verge to the stable fixed point Ph, and thus its basin of 
attraction includes for sure this region. But as before we 
are interested also in the dynamics occurring for points 
in the other two regions. An example is shown in 
Fig. 6(b), at 3i = 0.6, 3m = 0.5, and 3  ̂= 0.25: any initial con
dition in the white region of leads to an attracting 3-cy- 
cle belonging to the diagonal (of equation = -x^  + 1 ). 
However not all the points of Rr u  R^ are converging to this 
3-cycle. In Fig. 6(b) we show in green other strips of points 
whose trajectory is convergent to the stable fixed point P^.

This is an important property of the map which can be 
explained. In fact, from the structure of our map in (9) we



Fig. 6. In (a) regions associated with Example 3 at a = 0.03, Sl = 0.6, Sm = 0.5, and Sr = 0.25. The attracting set is a cycle of period 3 shown in (b), where it is 
also shown, in color, the basin of attraction of the stable fixed point F^.

see that we can consider the dynamics of the state 
variable:

(2 2 )

which becomes governed by the one-dimensional map Z 
given by

7i(zt) =  (1 -  Si)zt -  Si
7. : Zt+i =  < fM(Zt) =  (1 -  Sm)Z(

[/«(Zt) =  (1 -  5R)Zt +  Sr

a <  Z( sj 1, 
- a < Z t  < a ,
-  1 sS Zt <  - a .

(23)

The dynamics of this one-dimensional map may represent 
the asymptotic behaviors of the two-dimensional map of 
Example 3 in (20). The asymptotic state of (23) in the re
gions where the functions and fa  are defined is, when 
existing, an attracting k -  cycle which coexists with the 
stable fixed point in z = 0. This k -  cycle corresponds to 
an attracting cycle of the two-dimensional map, existing 
on the diagonal, and coexisting with the stable fixed point 
PI,. The one-dimensional map (23) also gives the basin of 
attraction of the fixed point and (by complement) the basin 
of the other cycle. The parameters used in the example 
shown in Fig. 6(b), at 6i  = 0.6, 6m = 0.5, and ¿r = 0.25, are 
used in Fig. 7 to illustrate the stable 3-cycle, coexisting 
with the stable fixed point in z = 0 (corresponding to PI,). 
The basin of the fixed point in the origin is obtained by tak
ing all the existing preimages of the segment ( - a ,  a), which 
in this case are three more segments (in green in Fig. 7), 
and represent the intersection with the diagonal 

+ 1 of the basin of P¡̂  in D .̂
In this case the dynamics of the map Z (23), and thus the 

dynamics of Example 3 in (20), lead to a different kind of 
bistability, with respect to those of Example 2. A difference 
is clearly due to the structure of the basin, which here is 
necessarily disconnected. However, the main difference is 
due to the structure of the one-dimensional map repre
senting the bifurcations: with two discontinuity points 
here, with only one discontinuity in Example 2. While in 
Example 2 all the cycles necessarily exist in some periodic
ity region (and the regions follows the period adding 
scheme), in the present case, the middle branch of the

- « " 'o  a

Fig. 7. One-dimensional map (23) at the parameters used in Fig. 6. The 
attracting sets are a 3-cycle and the origin. In green the basin of attraction 
of the origin. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

map Z (23) implies that several k -  cycles now cannot ex
ist. The appearance/disappearance of the existing cycle is 
always due to a border collision with one of the disconti
nuity points (z = - a  and z = a), but all the preimages of this 
middle branch lead to the destruction of many k -  cycles. 
Two examples of the bifurcation diagrams occurring in this 
family are shown in Fig. 8. They have been numerically 
computed for the two-dimensional Example 3 in (20) at 
two different values of a  and it is clearly identical to the 
bifurcation diagram numerically computed for the map Z 
in (23). As we can see, increasing the parameter a  the basin 
of attraction of the fixed point in the origin also increases, 
leading to the disappearance via border collision bifurca
tion of more and more cycles. The two-dimensional bifur
cation diagram in Fig. 8(b) shows the disappearance of 
many periodicity regions, and the destruction of the adding



Fig. 8. Two-dimensional bifurcation diagram in the ((5i,(5R)-plane for the map of Example 3 in (20) and for the map/given in (23) at a = 0.01 in (a),a = 0.03 in 
(b), and ¿ l  =  0.75. The initial condition is ( x ^ . x ^ )  =  (0.45,0.55). The yellow points represent convergence to the origin. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

structure. When a  is big enough all the other cycles disap
pear, leading to a unique stable fixed point in the origin.

So, even if Example 3 is apparently quite similar to 
Example 2 in terms of coexistence of stable fixed point 
and cycles, there are some important differences. In fact, 
in the latter we can observe the transition from the cyclic 
behavior which characterizes binary choices with over
shooting [2] to the stable fixed point in [10]. Example 3 
shows that there are situations in which the two behaviors 
observed for binary choices coexist but not as in Example 2 
where we could decompose a 3-choice problem as a 2- 
choice plus one more. In the next section we show how 
considering ternary choices the behavior can be radically 
different from what has been observed for binary choices.

5. The case of no stable equilibria

In this section we shall see how new kinds of dynamics 
can occur in the ternary choices, when the parameters of 
the model are such that no stable equilibria exist. In order 
to investigate this case, in which no fixed point belongs to 
the related dominance region, i.e. P* 4 Kx for any a, we 
consider the following example.

Example 4. Let the payoff functions be given by 

L { x ) = x ’̂ , M(x) = ]?(x) = - x V l ,  (24) 

then we have:

T i ( x ) = L ( x ) - M ( x ) = | x '^ - | ,

T2(x) =  L(x) -  R{x) = 2 x ‘̂ - l ,  (25)

T 3 (x )= ]? (x )-M (x ) =  - l x V i ,

and the map to be studied is (9) with the following regions:

15
<  x*̂  si 1

Rr =  I x € D ^ :  0 ^ x ' ^ < l \ .

(2 6 )

From the definition of the regions, it is immediately evi
dent that now the state variable x*̂  is decoupled from x^ So 
all the bifurcations of the system can be investigated via 
the one-dimensional map xf^, = / (x f )  given by

/  : =

/i(xf) =  (1 -  S,)xf 

fM(xf) =  (1 -  ¿M)xf 
[ M x f )  =  ( i - S R ) x f  +  SR

(27)

and the values of the other variable depend on the follow
ing function h:

X t,i =

' hi(xf) =  (1 -  0i)xf +  ÔL if 
hM(X̂ ) =  (1 -  Ôm)x'î if
hR(xf) =  (1 -  0R)xf  if

< x f  <  1 ,
^  8 
< Ï 5 >

0 sS xf < |.

15

2 ^  yl5 < X ,

(28)

The dynamic behavior of the state variable x  ̂depends on a 
discontinuous map with three branches, each one repre
senting a region of D ,̂ and the existing cycles may have 
periodic points on three partitions. This example differs 
from the one-dimensional map that we have seen in the 
previous section, also with three partitions. In fact, while 
for the map in (23) the branch in the middle has a stable 
fixed point, in the one here considered there are no fixed 
points. This makes a great difference in the dynamic 
behavior.

As we already know, the peculiarity of the one-dimen- 
sional map /  in (27) is that the conditions on the parame
ters determining the slopes of the linear pieces lead to all 
contractions for the single functions /¡. Under such condi
tions we can only have stable cycles as persistent attrac
tors (i.e. structurally stable) or quasiperiodic trajectories 
(at structurally unstable parameter constellations), be
cause all the slopes are positive and less than one, so that 
any possible k -  periodic cycle has an eigenvalue which is 
necessarily positive and smaller than one^. Thus, as already 
remarked, no chaotic behavior can occur. This kind of

 ̂ We recall that the eigenvalue of a cycle is the product of the slopes of 
the function in the periodic points.



Fig. 9. Stable cycles in the phase plane (x^x^). In (a) a period 20 stable cycle. In (b) a period 5 stable cycle.

Fig. 10. One-dimensional map/. In (a) and (b) at the same parameter values as in Fig. 9(a) and (b), respectively.

6 l = 0 .5|/ 3 ;
2 p*

(a) (b)

Fig. 11. Two-dimensional bifurcation diagram in the ((5i,(5R)-plane for Example 4 in (24) and for the map/given in (27) at Sl = 0.5 in (a) and Sl = 0.75 in (b).

one-dimensional maps, witii two discontinuity points, lias 
been recently considered in [11], and in our model we shall 
find results similar to those described in the cited paper (with 
periodicity regions following particular adding structures).

The existing cycles may have periodic points either 
belonging to all the three partitions (leading to truly new

ternary choices), or to only two partitions. A few attracting 
sets of the two-dimensional map (9) in this specific case 
(24) can be seen in Fig. 9. In Fig. 9(a) we show a stable cycle 
of period 20 at Si = 0.75, Sm = 0.2, Sr = 0.23, having periodic 
points in the three partitions. In Fig. 9(b), after a small var
iation of Sr , at Sr = 0.229, a stable cycle of period 5 exists.



Fig. 12. Two coexisting cycles of period 2 at = 0.5, = 0.45, ¿b = 0.3. In (a) two periodic points are x® = 0.2683 and x® = 0.4878. In (b) two periodic points 
are x® = 0.2857 and x® = 0.5714.

Fig. 13. One-dimensional bifurcation diagram of x® as a function of < 
along the vertical path shown in Fig. 11(a).

with periodic points only in two partitions. The bifurcation 
occurring from Fig. 9(a) to b is a border collision bifurca
tion due to the merging of a periodic point of the 20-cycle 
with the border where the map changes its
definition.

The example shown in Fig. 9 shows that, after the bifur
cation leading from the attracting set of Fig. 9(a) to that of 
Fig. 9(b), we have not only an attracting cycle of different 
period, but also with asymptotic points on the line =  0. 
That is, while in the20-cycle we have periodic points leading 
to vectors ) with three non zero components and
x f  =  1 -  xf - x [ ,  in the 5-cycle the states are: (x f,x f ,0), 
with x f  =  1 -  xf (and we return in a 2-choice case).

As mentioned above, this kind of bifurcation is due to 
the fact that the 20-cycle shown in Fig. 9(a) has periodic 
points in all the three regions, while after a small perturba
tion of the parameter (5r (leading to a border collision) the 
5-cycle shown in Fig. 9(b) has periodic points only in

two regions: Rm and Rr. The reason why of this dynamic 
behavior can be immediately understood making use of 
the one-dimensional map /  given in (27). In Fig. 10 we 
show its graph at the same parameters’ values as those 
of Fig. 9. We see that the maximum value is taken from 
the offset of the function/«(xf) in the discontinuity point 
x** =  |, as in fact the asymptotic dynamics occur in the 
absorbing interval given by / =  [/i(^),/R(f)]. which in
cludes all the three regions. However a periodic point is 
very close to the second discontinuity point, that is, very 
close to its border collision bifurcation. This bifurcation 
has already occurred when the parameters are as those 
in Fig. 9(b), and the map becomes as in Fig. 10(b). The 5- 
cycle belongs now to an absorbing interval given by 
/ =  [/m(|),/r(|)], which includes only one discontinuity 
point and involves only two regions (Rm and R r ).

The kind of bifurcation diagrams which characterize our 
map can be observed in Fig. 11: when fixing 6i  = 0.5 and 
6i  = 0.75 we can draw a two-dimensional bifurcation dia
gram in the parameter plane (6m, <5r). The two-dimensional 
bifurcation diagrams shown in Fig. 11 are exactly the same 
for the one-dimensional map /  and for the two-dimen- 
sional map since, as remarked above, the state variable x*̂  
is independent from the other, x̂ , and all the bifurcations 
are due to border collision bifurcations involving also /. 
Thus we can partially reduce the dimensionality of the 
map to study, at least regarding the bifurcations, which 
must necessarily occur in the x  ̂variable.

As already remarked, for the one-dimensional map /  in 
(27) the asymptotic behavior is necessarily a stable cycle, 
or (more rarely) a quasiperiodic trajectory, and the changes 
in the periods can only occur via border collision, i.e. a peri
odic point which is merging, or colliding, with a disconti
nuity point, or borderof the definition of the map. 
However, due to the existence of two discontinuity points, 
regions o f  coexistence o f  two attracting cycles are possible, 
which indeed occur in the overlapping of periodicity re
gions which are also visible in Fig. 11.

In fact, as remarked in [11], another peculiarity of dis
continuous maps with increasing branches and two dis
continuities is the possibility of at most two coexisting 
cycles (this is due to the fact that each cycle must be



associated with a discontinuity point). In the same paper it 
was also evidenced the existence of particular points, 
called big-bang bifurcation points, which are associated 
with the intersection of two bifurcation curves. Such points 
are peculiar because infinitely many border collision bifur
cation curves are issuing from them. And in the case of 
increasing branches (as we have) each big-bang bifurcation 
point is the issuing point of bifurcation curves which fol
low the period adding scheme. This means that for parame
ters in any neighborhood of a big-bang bifurcation point 
we can have a stable cycle of any period. For example, 
the point P* in Fig. 11(a) occurs at the intersection of two 
BCB curves, one associated with a 2-cycle having periodic 
points in the branches /m and /r (see Fig. 12(a)) and the 
other associated with a 2-cycle having periodic points in 
the branches f i  and /r, as shown in Fig. 12(b). This is one 
more relevant difference with respect to the case o f  binary 
choices.

To appreciate the different periods that the attracting 
cycles can have, in Fig. 13 a bifurcation diagram of the var
iable as a function of Sr is shown, at fixed 3m = 0.45 and 
(5l = 0.5 along the vertical path shown in Fig. 11(a).

This last example shows how considering ternary 
choices may lead to behaviors that are radically different 
from those observed for binary choices. In fact, here we 
can have cyclic behaviors in which all the three states are 
changing, and also coexistence of two such cycles may oc
cur. The bifurcation diagrams in this case (a map with two 
discontinuity points) is very much different from those 
occurring when only one discontinuity exists -a few exam
ples of which have been shown in Section 4.

This means that, when considering the dynamics, the 
simplifying choice of two alternatives may be too reduc
tive. It is not only the elimination of one alternative per  
se rather, and more important, it careless ignores the 
underlying complexity.

6. Conclusion

In this paper we have investigated the dynamics of re
peated games with three choices, described by two-dimen- 
sional models in discrete time, evidencing the differences 
with respect to models with binary choices. Our analysis 
has raised interesting findings at least from two different 
perspectives. The first one involves the applied aspect of 
the problems and the second one is in terms of bifurcation 
structures which can be observed.

We have found dynamics that, in some cases, are the 
analog of those described in the literature about binary 
choices. In fact, we have shown both situations with the 
coexistence of unanimity equilibria as described in [10] 
and also situations with cyclic behaviors as those analyzed 
in [3]. Furthermore, by introducing a third alternative we 
can have the coexistence of these two situations. Then 
we have investigated the case of pure three choices which 
can be considered as the juxtaposition of two choices to 
additional one. Further analysis has shown dynamics

which are different from those observed for binary choices. 
The complexity of our Examples 3 and 4 leads to the ex
pected result that ternary choices cannot be simply consid
ered as a binary choice plus one.

As it concerns the dynamics, the analysis of the illus
trated examples has evidenced bifurcation structures 
which were impossible to observe in binary choices. While 
on one hand we could find also for the ternary choice mod
el the same border collision bifurcation structure (adding 
scheme) which was analyzed in [3], on the other hand in 
the last example we have found more complicated bifurca
tion diagrams, with the existence of big-bang bifurcation 
points leading to new border collision bifurcation struc
tures. This is something that cannot be found in binary 
choice models. In particular, we have also described re
gions in the parameter space associated with overlapping 
periodicity regions, leading to bistability between two cy
cles of different periods, none of which is a fixed point.

In future research we will further the analysis along two 
main avenues. On one hand, it is interesting to analyze the 
mathematical properties of piecewise linear maps; on the 
other hand, it would be quite interesting to relax the 
assumption of impulsive agents introducing other kinds 
of behavior.
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