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Molecular fingerprinting of some Mentha 

species by sequencing and RFLP analysis of 

the 5S-rRNA non-transcribed spacer region 

A. Capuzzoa & M. E. Maffeia*  

Abstract 

The genus Mentha is of particular economic importance. The development of new methods for the 

characterisation of Mentha species is crucial for their unequivocal identification. Amplification of 

the non-transcribed spacer (NTS) of the 5S-rRNA gene was used to characterise some Mentha 

species, which revealed a high-specific variability. Cloning and sequencing of all amplified NTS 

fragments enabled the discrimination among almost all species. In silico and experimental analyses 

identified specific restriction sites on the amplified 5S-NTS regions, facilitating the rapid and 

unambiguous discrimination of all the different species by polymerase chain reaction–restriction 

fragment length polymorphism. A direct comparison between essential oil composition and DNA 

fingerprinting confirmed a relationship between chemical and molecular data. 
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Introduction 

The genus Mentha L. (Lamiaceae) has been valued since ancient times because of its aromatic and 

therapeutic properties. Mentha is used for its antioxidant, tonic, digestive, antiseptic and refreshing 

properties (Dorman et al. 2003; Hayes et al. 2006; McKay & Blumberg 2006). Mentha is defined as 

a taxonomically complex genus (Harley & Brighton 1977; Tucker et al. 1980; Tucker & Naczi 

2007); 18 species are reputed part of the genus and 11 natural hybrids are recognised as originating 

from the breeding of five Eurasian and African sexual species included in the section Mentha (i.e. 

M. aquatica, M. arvensis, M. longifolia, M. spicata and M. suaveolens) (Tucker & Naczi 2007). 

Many attempts have been made to clarify the relationships between species and hybrids and to 

introduce a unique classification of the genus. Over the past years, cytological and morphological 

data/features/traits/characteristics as well as essential oil composition analyses have been used for 

classification purposes. However, although cytological and morphological traits may be insufficient 

for a taxonomical discrimination, the chemical composition of an essential oil can vary depending 

on endogenous (e.g. anatomical, physiological and biochemical characteristics of the plant) and 

exogenous (e.g. climatic and environmental conditions) factors, which lead to the differentiation of 

ecotypes and/or chemotypes in plants of the same species (Barra 2009). In this context, as 

environmental conditions vary, a genotype may express different chemical phenotypes, whereas 

different genotypes, subjected to the same environmental pressures, may develop similar 

phenotypes. This is due to the fact that secondary metabolites are adaptive traits of an organism that 
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can be selectively expressed by environmental conditions (Wink 2003). To solve this problem, new 

approaches have been proposed to analyse the genus Mentha, using biomolecular data as support 

for taxonomical identification. Works based on chloroplast and nuclear DNA sequences (Gobert et 

al. 2002; Bunsawat et al. 2004) have been successfully used to confirm assumptions previously 

made by the use of conventional morphological and chemical analyses. 

Recently, the phylogenetic relationships of many higher plant species have been elucidated and 

examined by sequence analysis of the 5S-rRNA gene spacer region (Gnavi et al. 2010a). The 5S-

rRNA gene sequence is a key component of the ribosome complex in cells and cellular organelles 

except for the mitochondria of some species (Brown & Carlson 1997). In higher eukaryotes, the 5S-

rRNA sequences are transcribed from hundreds to thousands of genes, which are separated by the 

coding sequences of 18S-rRNA and 26S-rRNA, and are organised in tandem repeats. The entire 

cluster sequence has portions coding the 5S-rRNA and spacer sequences called non-transcribed 

spacers (NTS), which can be distributed in one or more parts of the genome (Park et al. 2000). The 

high conservation level of the coding sequences is related to the precise and fundamental function 

of the 5S-rRNA-like components of the large subunit of the ribosomes of all eukaryotes. Some 

regions are more conserved than others, and this is explained by the mechanisms of transcriptional 

regulation (Negi et al. 2002). 

The high degree of conservation of coding sequences and the high variability of the spacer regions 

allow the analysis of the organisation, evolution and multigene variability of many plant species 

(Scoles et al. 1988; Cox et al. 1992). Based on these considerations, NTS regions have been used to 

assess the inter- and intraspecific variabilities of many plant species, map 5S-rDNA arrays; assess 

the evolution of the genome and to perform phylogenetic reconstructions (Udovicic et al. 1995; 

Baker et al. 2000; Gnavi et al. 2010a). Furthermore, the use of characteristic restriction profiles 

[also called restriction fragment length polymorphism (RFLP)], coupled with capillary gel 

electrophoresis, allowed a further molecular discrimination of species, subspecies, hybrids and 

chemotypes (Bertea et al. 2005; Bertea et al. 2006; Rubiolo et al. 2009; Gnavi et al. 2010a, 2010b). 

A biomolecular approach using sequencing and RFLP of the 5S-rRNA NTS was used in this study 

to unequivocally characterise and discriminate some of the most taxonomically and economically 

important species of the genus Mentha. The study describes the development of new, reliable, rapid, 

highly sensitive and easily applicable protocols based on molecular biological methods for the 

unequivocal determination of Mentha species. 

Materials and methods 

Plant materials 

Mentha species (M. arvensis L. PI557584, M. cervina L. PI557634, M. gattefossei Maire PI557639, 

M. pulegium L. PI557771, M. requienii Benth PI557781, M. spicata L. PI557810, M. suaveolens 

Ehrh. PI557894) were kindly provided by the USDA Arctic and Subartic Plant Gene Bank of 

Palmer (Fairbanks, AK, USA) as rhizomes. Stolons of M. longifola and M. aquatica were collected 

from populations growing wild in the Piedmont region, Italy, and a voucher specimen has been 

deposited at the Hortus Botanicus Taurinensis Herbarium. Plants originated from rhizomes were 

grown in plastic pots with sterilised peat and vermiculite (v/v 4:1) at 23°C and 60% humidity using 

daylight fluorescent tubes at 270 μE m− 2 s− 1 with a photoperiod of 16 h. 

Genomic DNA extraction 

Leaf samples of different plants originating from different rhizomes were pooled, frozen in liquid 

nitrogen and ground to a fine powder with a Tissue Lyser (Qiagen, Hilden, Germany). Genomic 

DNA was extracted from the ground powder using the Nucleospin Plant II Kit (Macherey Nagel, 
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Düren, Germany) following the manufacturer's instruction. The quantity and quality of the DNA 

were assessed by spectrophotometric analyses using the Nanodrop ND-1000 (Thermo Fisher 

Scientific, Waltham, MA, USA). 

PCR amplification, subcloning and sequencing 

Approximately 20 ng of genomic DNA isolated from powdered leaf material of each sample was 

used as a template for polymerase chain reaction (PCR) amplification with forward primer 5S-P1 

(5′-GTGCTTGGGCGAGAGTAGTA-3′) and reverse primer 5S-P2 (5′-

TTAGTGCTGGTATGATCGCA-3′) flanking the NTS of the 5S-rRNA gene (Sugimoto et al. 1999; 

Gnavi et al. 2010a). The amplification was carried out in a 50-μl reaction mixture containing 5 μl of 

10 ×  PCR buffer (Fermentas, Glen Burnie, MA, USA), 0.2 mM deoxynucleoside triphosphates 

(dNTPs), 20 pmol of forward and reverse primers and 0.5 U of Taq DNA polymerase (Fermentas). 

PCRs were carried out in a Whatman Biometra T-Gradient Thermalcycler (Whatman Biometra, 

Goettingen, Germany). Cycling conditions consisted of an initial 4 min at 94°C, followed by 30 s of 

denaturing at 94°C, 45 s of annealing at 54°C and 45 s of elongation at 72°C, repeated for 30 cycles 

and with 5 min of final extension at 72°C. One microliter of the amplification reaction mixture was 

analysed by capillary gel electrophoresis using the Agilent 2100 Bioanalyzer (Agilent 

Technologies, Santa Clara, CA, USA) and the DNA 1000 LabChip Kit (Agilent Technologies) 

following manufacturer's instructions. The DNA 1000 LabChip Kit provides sizing and 

quantification of dsDNA fragments ranging from 25 to 1000 bp. PCR products were also analysed 

by a 2% agarose gel electrophoresis and visualised by ethidium bromide staining under UV. From 

this gel, bands ranging from 168 to 483 bp were purified using the Nucleospin Extract II Kit 

(Macherey Nagel) and then subcloned into pGEM-T Easy vector (Promega BioSciences, San Luis 

Obispo, CA, USA). The ligated products were transformed into Escherichia coli Subcloning DH5α 

Efficiency Competent Cells (Invitrogen, Paisley, UK). Colonies containing DNA inserts of the 

correct size were picked and grown overnight in 5 ml of Luria-Bertani liquid medium. The mini-

preparation of plasmid DNAs was carried out using QIAprep Spin Miniprep Kit (Qiagen, Valencia, 

CA, USA) following manufacturer's instructions. Plasmid DNAs were used as a template for 

sequencing at least twice both the strands of DNA. The sequences were detected by an ABI 377 

automated sequencer according to the manufacturer's protocol (Applied Biosystems, Foster City, 

CA, USA). 

Cluster analyses 

Sequences were aligned with ClustalX2 software (Larkin et al. 2007) using default parameters to 

check the integrity of each sample sequence. Multiple sequences (one per sample) were then 

aligned by modifying the Gap Opening and Gap Extension Cost values to 15 and 1, respectively. 

From this last alignment, Phylogeny Tree was constructed using ClustalX2 Software. Neighbor 

Joining statistical method was selected and relationships were tested with 1000 Bootstrap replicates, 

considering gaps in the Pairwise Deletion option. Salvia divinorum 5S-NTS sequence (Bertea et al. 

2006) (GenBank accession number DQ230979) was used as outgroup. 

Essential oil cluster analysis was carried out on reference data from essential oil composition of the 

Mentha species under study. Data were analysed using Systat 10 using hierarchical clustering 

classification with Euclidean distance and Ward linkage. 

PCR–RFLP 

Purified PCR products of the 5S-rRNA gene spacer region were first digested in separate reactions 

with 10 U of BglI, MscI, NdeI and XhoI (NEB, New England Biolabs, Ipswich, MA, USA) at 37°C 

for 1 h (3 h for NdeI), then inactivated by thermal treatment at 65°C for 15 min (except for TaqI, 
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incubated at 65°C for 1 h, with the addition of 20 mM EDTA for inactivation). One microlitre of 

digestion reaction mixture was fractionated by Capillary Gel Electrophoresis (CGE) using the 

Agilent 2100 Bioanalyzer (Agilent Technologies) and DNA 1000 LabChip Kit (Agilent 

Technologies) following the manufacturer's instructions. Reproducibility was assessed by repeating 

digestions with different enzyme concentrations and timings, whereas for each set of runs, a 

different calibration curve was assessed by the DNA 1000 LabChip. 

Results 

DNA amplification, sequence and cluster analysis reveal differences in the 5S-

rRNA NTS region of Mentha species 

Two primers flanking the 5S-rRNA spacer region were used in the PCR analysis of genomic DNA 

isolated from different samples of Mentha species. The amplified fragments were in the range of 

approximately 160–490 bp (Figure 1A). Sequence analyses (NCBI GenBank accession numbers 

JF775651–JF775665) were aligned using ClustalX2 software (see Table S1). In general, the 

consensus sequence showed highly conserved regions in the first and last 60 bp along with a 

conserved region from 260 to 450 bp. Each fragment shown in Figure 1A was sequenced and 

named progressively (I, II, etc.) based on fragment length, as described in Figure 1B. A single DNA 

fragment, ranging from 450 to 490 bp, was present in five of nine species, whereas M. longifolia 

(Chambers & Hummer 1994) showed a single band of about 375 bp (Figure 1B). M. spicata (SPI) 

showed two fragments (354 and 473 bp), M. suaveolens (SUA) showed three fragments (389, 477 

and 480 bp), whereas M. gattefossei (GAT) showed four fragments (230, 310, 408 and 483 bp) 

(Figure 1B). 

Figure 1 (A) Capillary gel electrophoresis of PCR products generated by primers 

flanking the spacer region of the 5S-rRNA gene using DNAs from different Mentha 

accessions. Single fragments were produced by 12 of 18 species and hybrids. M. 

spicata (SPI), M. suaveolens (SUA) and M. gattefossei (GAT) produced multiple 

fragments. (B) Sequence alignment diagram of 5S-rRNA spacer region fragments 

separated by CGE. Gaps (blank spaces) are introduced for the best alignment. In 

case of multiple fragments, sequences are named by bp size. Box A, IE, Box C and 

the TATA Box are indicated. The vertical dotted lines indicate the site of NdeI 

digestion. 
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The nucleotide sequence analysis revealed a 5S intragenic promoter sequence (from 1 to 32 bp of 

the consensus sequence, including the forward primer) composed of a partial sequence of Box A 

(1–4 bp), intermediate element (IE, 13–14 bp), Box C (23–32 bp, conserved in the majority of the 

sequences) and a TATA box inside the medium-conserved region (467–470 bp), approximately 

30 bp upstream of the transcription start (represented by the trinucleotide GGG), which was highly 

conserved in the majority of sequences, preceded by a 20-bp GC-rich region and followed by a 10-

bp AT-rich sequence (Figure 1B and Table S1). 

Cluster analysis (neighbour-joining distances) showed a cluster linking M. gattefossei with M. 

cervina (Figure 2). Another cluster linked M. arvensis and M. aquatica. A third cluster was made of 

two subclusters: the first connected M. requienii and M. pulegium, whereas the second subcluster 

linked M.spicata, M. suaveolens and M. longifolia (Figure 2). 

Figure 2 Cluster analysis was carried out on sequence data using ClustalX2 

Software. The tree was rooted using Salvia divinorun as an outgroup. The analysis 

clearly separates M. cervina and M. gattefossei which have been classified in the 

section Eriodontes from the other Mentha species. Bootstrap values are indicated on 

the nodes. 
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RFLP analysis unequivocally discriminates Mentha species 

To better discriminate species showing close bp fragment lengths, RFLP analysis was carried out. 

The TaqI restriction enzyme was able to discriminate most of the species under study (Figure 3), 

with the exception of M. arvensis (ARV) and M. requenii (REQ), which did not have sufficiently 

discriminating differences in fragment length. To better discriminate these two species, a specific 

restriction enzyme BglI was used. BglI enzyme digestion of the M. requenii 472-bp fragment 

(shown in Figure 1 and Table S1) produced two distinct fragments (266 and 206 bp) and the 

restriction enzyme was ineffective on M. arvensis (Figure 4). 

Figure 3 Capillary gel electrophoresis of restriction fragments produced by the 

action of TaqI endonuclease on amplified PCR products. A complete discrimination 

was obtained for most of the species, with the sole exception of M. requienii (REQ) 

and M. arvensis (ARV), showing similar patterns. For abbreviations, see Figure 

1(B). 
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Figure 4 Capillary gel electrophoresis of the restriction fragments produced by the 

action of BglI endonucleases on M. requieni (REQ) and M. arvensis (ARV). BglI 

enzyme digestion of M. requenii produced two distinct fragments (266 and 206 bp), 

but the enzyme was ineffective on M. arvensis. 
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In an attempt to identify a molecular marker able to discriminate the genus Mentha, RFLP analysis 

was carried out using NdeI. Based on sequence analysis, the enzyme was found to cut between base 

375 and 382 of the consensus sequence (Figure 1B and Table S1). Although this enzyme was 

unable to perform a cut on M. cervina (CER) sequence, in all other samples, NdeI generated a 

common fragment between 127 and 137 bp, in addition to other fragments (Figure 5). 

Figure 5 Capillary gel electrophoresis of NdeI enzymatic digestion of the PCR 

products shows the generation of a common fragment between 127 and 137 bp, in 

addition to other fragments. NdeI enzymatic digestion was ineffective on M. cervina 

that is not included in the CGE (see discussion in the text). For abbreviations, see 

Figure 1B. 

 

 
To validate the feasibility of this procedure, an in silico comparison was made with 5S-rRNA NTS 

sequences of other higher plants using the NCBI GenBank database [including species related to the 

genus Mentha such as Salvia divinorum, S. officinalis, Perilla frutescens var. frutescens and P. 

frutescens var. purpurascens (accessions DQ230979, DQ230980, EF673041 and EF673039, 

respectively) and unrelated species such as Artemisia absinthium, Acorus calamus, Arabidopsis 

thaliana and Oryza sativa (accessions EU816952, AY812747, NC003076 Cr.5 11184853–

11185320, D26370, respectively)]. The NdeI restriction site was not found to produce the same 

specific fragment as in the Mentha accessions (data not shown). 

Essential oil composition shows clustering patterns similar to DNA fingerprint 

To assess whether molecular fingerprinting patterns obtained with the above analyses showed 

possible correlation with the essential oil composition of the Mentha species under study, a cluster 

analysis was done on reference data-sets. The Mentha species under study are characterised by the 

presence of various monoterpenes, including carvone (typical of M. spicata), piperitenone oxide 

(typical of M. suaveolens and some chemotypes of M. longifolia), pulegone (typical of M. requienii, 

M. pulegium, M. gattefossei and M. cervina), menthofuran (typical of M. aquatica) and 3-octanone 

(typical of M. arvensis) (Lawrence 2007a, 2007b). The cluster analysis was carried out only on the 

major essential oil components of the above species which revealed a close statistical linkage 

between species producing pulegone (M. requienii, M. pulegium, M. gattefossei and M. cervina) 

(Figure 6). Another cluster was made of two subclusters: one gathering M. longifolia and M. 

suaveolens (for their content in piperitenone oxide) and the other linking the remaining species (see 
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Table S2 for essential oil data and references). Several attempts to include also minor essential oil 

components in the cluster analysis did not provide a significant difference with respect to using only 

major components (data not shown). 

Figure 6 Cluster analysis of the main essential oil components taken from reference 

data. A cluster gathers all species producing pulegone (M. requienii, M. cervina, M. 

gattefossei and M. pulegium). All other species are linked in the second cluster 

composed of a first subcluster linking M. longifolia and M. suaveolens (for their 

content of piperitenone oxide) and a second one linking all other species. Essential 

oil components and reference data are listed in Table S2. 

 

 

Discussion 

Previous studies on the sequences of plastid and nuclear DNA of the genus Mentha (Gobert et al. 

2002; Bunsawat et al. 2004; Gobert et al. 2006; Saric-Kundalic et al. 2009) revealed important 

aspects of the evolutionary origin of this group of plants. In this study, sequencing of the 5S-RNA 

NTS region along with RFLP analysis allowed the complete molecular discrimination of some 

Mentha species. 

Alignment analyses revealed significant differences between Mentha sequences, which were 

characterised by a high number of insertion/deletion events. In the case of Mentha, the high 

variability between different species indicates that the genus is still very vital, where vitality reflects 

the ability of species to produce interspecific hybrids. M. aquatica, M. arvensis, M. longifolia, M. 

spicata and M. suaveolens are the sexual species of the genus, characterised by a high interbreeding 

ability that generates much of the diversity observed (Harley & Brighton 1977; Gobert et al. 2006; 

Tucker & Naczi 2007). 
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Cluster analysis further confirms previous taxonomical classifications. M. reqienii and M. pulegium 

sequences are clustered in the same group. These two species belong to the same intrageneric 

division (section Pulegium), whereas M. cervina and M. gattefossei have been classified in the 

section Eriodontes (Tucker & Naczi 2007). 

The analysis of nucleotide sequences was in agreement with previous observations in other plant 

species (Bhatia et al. 1993; Cloix et al. 2002; Negi et al. 2002), and showed that the 5S intragenic 

promoter sequence is composed of the partial sequence of Box A, IE and Box C. Another regulatory 

sequence observed was the TATA box, preceded by a GC-rich region and followed by an AT-rich 

sequence. These may contribute to facilitate the opening of the double strand of DNA in the 

transcription direction and to keep it closed in the opposite direction. 

The use of restriction enzymes after amplification of the variable region of interest (NTS) has 

proved to be a fast, sensitive and reliable method for the distinction of different Mentha species. 

Although the restriction enzyme TaqI was not able to generate different restriction profiles (e.g. 

ARV, REQ), the use of BglI allowed to obtain an effective complete characterisation. In addition, 

the restriction reaction operated by NdeI allowed the identification of a potential genus-specific 

marker consisting of the 127–137 bp fragment. Regarding M. cervina, it was not possible to obtain 

the same digestion profile as in other samples. The latter fact points to an interesting and puzzling 

taxonomical problem. M. cervina, because of its morphological diversity with respect to other 

mints, has been classified in a separate section of the genus (Eriodontes) together with M. 

gattefossei (Tucker & Naczi 2007). The clustering of these two species further confirms their 

taxonomical diversity with respect to other mints. 

A remarkable agreement was found between essential oil chemical data and molecular 

fingerprinting, with particular reference for the pulegone-producing species. Furthermore, M. 

arvensis and M. aquatica were clustered together both on chemical and molecular analyses, 

whereas M. spicata and M. suaveolens were found to belong to the same subcluster in both 

molecular and chemical clustering. The positive correlation between molecular and chemical data 

confirms previous reports obtained on different species of the same family and to different families 

(Bertea et al. 2005, 2006; Rubiolo et al. 2009; Gnavi et al. 2010a, 2010b). 

In conclusion, these results clearly support the view that Mentha species show a remarkable 

variability, at both the genomic and gene product (secondary metabolites) levels. This study, by 

showing genomic difference in the 5S-rRNA spacer regions and consistent chemical variation in the 

terpenoid profile, enabled the unequivocal biomolecular fingerprinting discrimination of some 

Mentha species. Combined “omics” approaches are becoming a useful tool not only for basic 

science but also for industrial plant characterisation. Owing to the commercial relevance of several 

Mentha species, the identification of TaqI and NdeI sites can be used for rapid and precise species 

identification, complementing the essential oil chemical analysis. 
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