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Abstract

Single-walled zigzag Beryllium Oxide (BeO) nanotubes are simulated wigtbanitio quan-
tum chemical method. The,Q) family is investigated in the range from= 8 (32 atoms in
the unit cell and tube radilR = 3.4 A) ton = 64 (256 atoms in the cell aril= 27.1 A). The
trend towards the hexagonal monolayeBeO) in the limit of large tube radiuR is explored

for a variety of properties: rolling energy, elastic modulus, piezoelectnsi@ant, vibration
frequencies, infrared (IR) intensities, oscillator strengths, electrardaaclear contributions
to the polarizability tensor. Three sets of IR-active phonon bands arelfm the spectrum.
The first one lies in the 0 - 300 cm frequency range and exhibits a very peculiar behavior:
the vibration frequencies do tend regularly towards zero wRércreases while their IR in-
tensities do not; the nature of these normal modes is unveiled by establishomecton
between them and the elastic and piezoelectric constariisBefO. The second (680 - 730
cm~1) and third (1000 - 1200 cnt) sets tend regularly, but with quite different slope, to the
optical modes of thie-BeO layer. The vibrational contribution of these modes to the two com-
ponents (parallel and perpendicular) of the polarizability tensor is alsagied. Simulations
are performed using theR¥ STAL program which fully exploits the rich symmetry of this class

of one-dimensional periodic systems1 gymmetry operators for the generalQ) tube.

Introduction

Since their discovery,carbon nanotubes (CNTSs) have attracted the attention ottaetsic com-
munity for their unique electrical, mechanical and therpralperties? The search for non-carbon
nanotubes started soon after in the domain of highly ampatiayered phases such as hexagonal
boron nitride (BN) and transition metal disulfides, which edso adopt cage-like structures such as
fullerenes®=° Indeed, it is known that inorganic compounds overcome orte@main problems

in the technological use of CNTs that is, the dramatic depecelef their electronic properties
on rolling direction and tube diameter. Nowadays, part efititerest in nanotubes is redirected

to isotropic semiconducting and inorganic materfalsmong these, metal oxides stand out as



some of the most versatile compounds, with possible agmitaranging from microelectronics
to catalysis and chemical sensors productidn.

In this respect, beryllium oxide (BeO) is an interesting matewhich constitutes a limit case
between ionic compounds and semiconducting binary mégestiah as BN or Zn3:1°1n contrast
with other alkaline earth oxides, crystalline BeO shows nigpical properties of covalent solids:
beryllium and oxygen atoms are bound togetheispyhybridized bonds in a compact wurzite-
type structure. It combines insulating behavior (band dgap 0.6 eV) with very high thermal
conductivity and high melting point, so it is often used a®faactory material in metallurgy or
heat-removing insulator in electroniés1? A graphitic meta-stable layered phase, analogous to
the stable hexagonal BN, was also predictd.

Recently, BeO nanotubes have been proposed as rolled up jersthat are isoelectronic
to carbon and BN nanotubes and exhibit the same structurie,tiét main difference being the
increased polarity of the bontf.A larger band gap and properties weakly dependent on na@otub
radius and chirality - even more so than for BN nanotubes - eaaxpected. It has been suggested
that BeO nanotubes can be synthesized by plasma-chemicéibrear through chemical vapor
deposition'* a method that has successfully been applied to other meati# arnotubed:®

Recent theoretical investigations, performed within tha$dy Functional Theory (DFT) with
linear density approximation (LDA) and self-interactiooriected LDA confirm their insulating
character and mechanical properties comparable to tho&&®5.141° The effect of impurities
and defects has been investigated theoretid8lly,as well as their adsorption properttl€sand
optical response in the high-frequency rar§e.

In the present work we study the properties of BeO nanotub#segh,0) family (fromn=8
to n = 64) throughab initio quantum mechanical simulations performed with the hybrit\83
(Becke, three-parameter, Lee-Yang-Parr) functidf&l The same approach has been successfully
applied to the investigation of CNT&;22BN nanotube£4-27Zn0O nanotube$® imogolite 2° and
chrysotile3? Recent improvements in theRESTAL program permit to fully exploit the symmetry

of the system (the point group contains as many symmetryatgasras there are atoms in the unit



cell, up to 64«4 = 256 for then = 64 tube) and to drastically reduce the computational ddsts,
we are now able to extend our simulations to larger tube diarsevith respect to calculations
reported in the literature so fap,and, as a consequence, to improve the description of theconv
gence of a variety of tube properties to those of the cormedipg flat monolayer. The total energy
and its difference with respect to the BeO hexagonal monoldgy8eO), relaxation geometries
and energies, elastic moduli and piezoelectric constaifitsgtional frequencies and infrared (IR)
intensities are all investigated as a functiomof he polarizability of the tube (electronic and nu-
clear contribution) is also explored. Some emphasis isgirethe relative speed with which each
property converges to corresponding value of the monola#the above mentioned properties
but the elastic one are here computed and discussed for $hérfie in the literature as concerns
BeO nanotubes. From the accurate simulation of these caveseg, some connections are dis-
cussed between physical properties of nanotubes and flablayan: the relationship between a
particular set of IR-active vibration modes of the nanotubegth vanishing vibration frequency as
a function ofn, and the elastic and piezoelectric constants-BeO is illustrated and discussed.
The paper is organized as follows. A detailed descriptiotheimethodological and computa-
tional setup used is presented in Section , in particulaegards the calculation of the vibration
frequencies and related properties with a full exploitatd symmetry. Results are presented and

discussed in Section , conclusions drawn in Section .

Computational Method

All the calculations reported in the manuscript are perdnwith the program €ysTAL for ab
initio quantum chemistry of solid stafé:32 An all-electron atom-centered Gaussian-type-orbital
basis sets (BS) is adopted in conjunction to the popular tyfomctional B3LYP2%:21 The BS
used has been obtained by partially splitting sfpecontractions and re-optimizing the outermost
exponents of a standard 6-31'16plit-valence BS: the exponents, in bofyof the most diffuse

functions are 0.1222 and 0.5580 fgp andd Be orbitals and 0.2720 and 1.2500 f&gpandd O



orbitals. The adopted BS is reported on theySTAL website33

The level of accuracy in evaluating the infinite Coulomb andtiéa-Fock exchange series is
controlled by five parameter®, for which values of 8,8,8,8,16 are used. The threshold ohter
ing the energy convergence of the self-consistent-field |38 of the procedure is set to 0
hartree for geometry optimizations, 1% hartree for the calculation of the electronic contribution
to the polarizabilities and 131 for the calculation of vibrational frequencies and IR irsities.
Reciprocal space is sampled according to a sublattice withkshg factor set to 8, correspond-
ing to 5, 10 and 50 independekdpoints in the irreducible part of the first Brillouin zone imet
nanotubes, monolayer and bulk BeO, respectively. The DFTange-correlation contribution
to the energy is evaluated by numerical integration ovewittiecell volume. The most accurate
predefined pruned grid available in th&ZTAL program (namelyXXLGRI D keyword) is used
for numerical integration whose accuracy can be estimatekeerror in the electronic charge per
unit cell: 2.5x104|¢e| out of a total of 384¢] for the (16,0) BeO nanotube, for instance.

All the structures have been optimized by using analytinatrgy gradients with respect to both
atomic coordinates and lattice paramet&rs° with a quasi-Newton scheme combined with the
BFGS algorithm for Hessian updatifg-°The convergence of the optimization has been checked
on both gradient components and nuclear displacementshioh the default values are chos&h.

The calculation of the vibrational frequencies at theoint (.e. at the center of the first
Brillouin zone;k = 0) is performed within the harmonic approximation; the raasighted Hessian
matrix W is constructed by numerical differentiation of the anaigtigradients with respect to the

atomic Cartesian coordinates:

1 0%E
ro._
Wal,bj \/WNIb (araidrbj> ) (1)

whereMy and My, are the atomic masses of atom&ndb andr,; is the displacement of atom
a from its equilibrium position along theth Cartesian direction. Details on the calculation of

vibrational frequencies with RysTAL can be found elsewhett*? as well as some examples of



application®*~%° Integrated intensities for IR absorptiaf, are computed for each mogeby
means of the mass-weighted effective mode Born charge vﬁﬁ;ﬁﬁ‘“evaluated through a Berry

phase approacff*°
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whereNa is Avogadro’s numberg the speed of lightd,, the degeneracy of the-th mode, i the
cell dipole momentQ,, the normal mode displacement coordinate. More details @cdfculation
of the infrared intensities can be found elsewh¥e.

The electronic contribution to the static polarizabilgyevaluated through a Coupled-Perturbed
Kohn-Sham/Hartree-Fock (CPKS/HF) schethadapted to periodic syster@$.This is a pertur-
bative, self-consistent method that focuses on the dessripf the relaxation of the crystalline
orbitals under the effect of an external electric field. Tleetgrbed wave-function is then used to
calculate the dielectric properties as energy derivatiVleg reader who might be interested in both
the method and its implementation in th@ & TAL code can find all the details elsewhefe>3—°6

The total static polarizability© is the sum of the electronic and the vibrational contrilnsio

2
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: (4)
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wherevy, is the vibrational frequency of the mogeandi, j = x,y, zlabel Cartesian directions.

The elements of the elastic tensor, for 3D systems, arelysiefined as®’

1 0%

Cu= V ds&,d¢, . ’

(5)

wheree¢ is the rank-2 symmetric tensor of pure strain and Voigt'satioh is used according to
whichvu=1,...6 (L=xx 2=yy, 3 =2z 4 =yz 5 =xz 6 =xy).%8 Since volumeV is not

defined for 1D and 2D systems, it is here omitted (length ofasercould be used instead) and



Figure 1: (color online) Graphical representation of thhacure of (a) the 3D wurzite-like BeO,
(b) the h-BeO monolayer and (c) the (10,0) BeO nanotube. These pichaes been prepared
using the J-ICE online interface to Jnfdi.

all the elements involving non-periodic directionszfor 1D andz for 2D systems) are null by
definition.

The piezoelectric tens@relements (rank-3) can be defined as (in Voigt’s notatisy°

_9R
C d&y ]

Ev (6)

whereP is the polarizationi(= 1,2,3) and the derivative is calculated at zero strain. RYETAL
the polarization can be computed either via localized Wenfunctions or via the Berry phase
(BP) approacH? The latter scheme is used in the present study. Again, sircedlume is not

defined for 1D and 2D systems, here the polarizaflarduces to a dipole moment.



Results and Discussion

Bulk and monolayer

In this section we briefly discuss structural, electronid abrational properties of BeO in its bulk
form, that is, with a wurzite-type structure, and flat mogelaform with hexagonal symmetry.
The structure of the bulk, slab and (10,0) nanotube of BeO mehically compared in Figure 1.
The data reported in this section will serve as a referentieeimext ones.

The calculated lattice parameters for the bulk@re2.701 A andc = 4.383 A, corresponding
to a Be-O distance of 1.649 A. In the monolayer, the bond distasrinks of 4% to 1.537 A,
corresponding to a lattice parameter 2.662 A. The polarity of the bond in-BeO is also found
to be reduced with respect to the bulk with atomic Born chacpesiging from 1.84e| to 1.52|e.
The calculated electronic band gap in the bulk is 10.1 eVe@dmpared with an experimental
value of 10.6 e\P? while for the slab an indirect gap of 9.6 eV andl alirect gap of 10.2 eV are
predicted. The energy difference between bulk and monplay&16 mHa per BeO formula unit.

The IR spectrum of the bulk consists of two modes: a non-dagée and a twofold degenerate.
The longitudinal (transverse) optical frequencies are @8D9) and 725 (1123) cmt and the
corresponding IR intensities 1192 and 2256 km/mol, resgsgt Thel vibration modes for the
flat monolayer are three: a non degenerate mode at 721 and two degenerate modes at 1016
cm~1, with intensities of 48 and 1371 km/mol respectively.

The electronic polarizability of the bulk is almost isotiopwith af, = ag = 1.974 A® and
ag,= 2.030 A3. A certain degree of anisotropy appears in the static tatkdrjzability tensor:
agy = ad, = 4.742 whilea,= 5.308 A%. The in-plane polarizability dfi-BeQ is somehow similar
to the one of the bulkof = 2.254 A and aﬁJ = 4.925 A3, Conversely, the out-of-plane polariz-
ability is much lower:a® = 0.708 A% anda? = 1.076 A3,

Elastic and piezoelectric constantsteBeO have been computed with the automated algo-
rithms implemented in the &¥STAL program?®’ The nonzero components of the elastic tensor

of the monolayer ar€;1 = Cyp = 2.223 Ha,Cy2 = 0.810 Ha andCgs = 1/2(Cq1 — C12) = 0.707
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Figure 2: Rolling energ\AE with respect to the slab (red squares) and geometricataisba
energydE (blue circles) of BeO nanotubes of theQ) family as a function oh. All energies are
reported per BeO unit. For the rolling energy, the result ofta§ with the functionAE = a/n?

is shown as well. The inset shows the effect of the structalalxation as concerns Be and O

subrings for the (8,0) nanotube (side and front views).

Ha. The only independent component of the piezoelectrisaeise;; = —e120 = —exg = 0.926
le| x bohr; here units follow from neglecting the volume (not define@i@D system) in the defi-

nition of elastic and piezoelectric constants.

Structure and stability

The formation of a BeO nanotube is endothermic. The energyafats formation is quantified
by the rolling energyAE, defined as the difference between the energy of the relass and
that of the relaxed monolayer. The rolling energy can bersggd in a positive contribution, the
cost of constructing the unrelaxed tube simply by rollinghgrelaxed monolayer, and a negative
contribution resulting from the subsequent relaxation.thiéa define the relaxation energy of the
tube,dE, as the difference between the energies of the relaxed arthyad tube structures.

Both quantities are reported in Figure 2 as a function.oFor the smallest tuben(= 8) 6E

is about 1 mHa per BeO unit, then it rapidly decreases at64 it is two orders of magnitude



smaller, 11uHa. The rolling energ@E turns out to be four-five times larger thak and exhibits
a clear 142 behavior; in order to highlight this aspect, the rolling eyyehas been fitted to the
function AE = a/n? and the results reported in Figure 2. This behavior is inegent with the
predictions of the classical theory of elastictas already noticed for carbon nanotulsé§vhile
atn= 8 AE has a value that is comparable with the energy differenced®at bulk and monolayer,
atn =64 it is almost negligible, 7uHa.

The explicit values ofAE and dE for eachn are reported in Table 1. The rolling energies
of the BeO nanotubes are found to be lower, at comparable, thdin those reported for BN
nanotubeg?® This is promising for actual production of BeO nanotubesalgh we also notice
that the formation of BeO monolayers from bulk crystals isawofable with respect to the BN
case.

Structure parameters are also reported in Table 1. Forredhk unrelaxed tube radiusg,Ras
obtained simply by rolling up the monolayer without allogiany atomic relaxation) is reported as
well as Rse and Ry that represent the radii of Be and O subrings after atomizadéilan. Relaxation
is relatively small in all cases, with the exception of theafiest tubes. Both Be and O atoms tend
to move outwards, in order to reduce the strain. f-er8, the radius of the Be subring increases by
0.02 A whereas O atoms move further by 0.06 A, in order to redteric repulsion due to enhanced
population of valence atomic orbitals; the inset in Figush@ws the effect of structural relaxation
as concerns Be and O subrings for the (8,0) nanotube. Fortlsinge, Be-O interatomic distances
are the same as in the slab (1.537 A), while for the smalléststihe two inequivalent distances
have a slightly different length (the difference being 0f0for the n = 8 tube, for instance) with
the resulting formation of BeO units which are separated foom another. Lattice parameters are
stable within 5%o, and correspond {@a, wherea is the monolayer lattice parameter. lonicity of
Be-O bonds can be estimated by means of the Born charges whigfage from about 18| for

n=8to 1.5|¢| for n = 64, already at thb-BeO limit.
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Table 1: Calculated properties of the ,0) series of BeO nanotubes and BeO monolayer
(h-BeO). 0E and AE are the relaxation and rolling energies, respectively (seext for a defi-
nition); their values are in uHa per BeO unit. R, is the unrelaxed radius of the tube;Rge and
Ro are the radii of the Be and O subrings after relaxation (in A). The band gap (BG) is re-
ported in eV. Ys is the modified elastic modulus in TPanm and eis the piezoelectric constant
in a.u. (je|x bohr) per BeO unit. all and at are the longitudinal and transverse components
of the electronic a® and static a® polarizabilities per BeO unit (in A3). The last row reports
the n — oo limit deduced from monolayer properties; see text for the devation in the case of
elasticity and polarizabilities.

al at
n OE AE Ru Ree Ro BG Ys e a® a® a® a®
8 -1007 4003 3.389 3.412  3.473 9.09 0.130 -1.452 2.265 5.034 .1661 1.874
10 -571 2501 4236 4255  4.302 9.32 0.132 -1.380 2262 5012 .1941 1.948
12 -358 1722 5.083 5.099 5.138 9.38 0.134 -1.337 2.260 5.001 .2191 2.019
14 -246 1269 5930 5944 5977 9.43 0.135 -1.316 2259 4.994 .2401 2.084
16 -187 982 6.777 6.790 6.819 9.47 0.135  -1.299 2.258 4.990 2591. 2.143
20 -113 652 8.472 8.482  8.505 9.50 0.136 -1.282 2.257 4.984 2891. 2.245
24 -79 463 10.166 10.175 10.194 9.51 0.136 -1.273 2.256 4.982 1.312 2.328
32 -44 254 13.555 13.561 13.575 9.53 0.136 -1.264 2.255 4.976 1.345 2.452
48 -19 124 20.332 20.337 20.347 9.54 0.137 -1.258 2255 4.976 1.383 2.611
64 -11 71 27.110 27.114 27.121 9.55 0.137 -1.257 2.254 4.973 .4051 2.703
0 9.58 0.137 -1.255 2.253 4971 1.476 3.065
Monolayer 9.62 0.137 -1.263 2.254 4.982 1.481 3.088

Elasticity and piezoelectricity

A technologically interesting and widely discussed feafrnanotubes is their response to uniax-
ial strain along the nanotube aXi€® This property is described by Young’s modulus:

_10%
Vg2 ’

e=0

Y (7)

wheree is the applied strain. This expression looks a bit ambigumtise case of nanotubes where
the definition of the volum& requires a conventional choice for the thickness of a mamot
layer. Different conventions for the shell thickness hagerbamong the main causes of the scat-
tered values obtained for Young’s moduli in the early stadieCarbon nanotubes. An alternative
definition which is independent of shell thickness was itticed by Hernandest al.;%°

o
- Sg¢? ’

e=0

S

(8)

11



whereS = 2nR,L, with R, tube radius and. length of the tube cell. Our calculated valuesyef
for BeO nanotubes are reported in Table 1 and are consisttnthaise obtained at LDA leveP

The elastic modulus is seen to be quite independent of teensiA comparison with the
corresponding elastic constabt; of the h-BeO monolayer is not straightforward. When a nan-
otube is stretched (compressed) in the axial directioneedd the radius reduces (increases) in
order to minimize the total energy. In a corresponding defdion of the monolayer Poisson’s
effect has necessarily to be taken into account, that igjéf@mation of a material orthogonally
to the applied strain. As shown in Appendix , in the infinitdites limit, the Young modulus of the
nanotubes tends td — 02)Cy1, whereo is Poisson’s ratio(1 — g2)Cy; = 0.137 TPa nm is then
the value reported in the last row of Table 1.

The calculated values of the Young modulus are about 30%wosktheported for Carbon nan-
otube$® and 40-50% of those reported for BN nanotulyé® with the same radii: these are still
rather high values, that make BeO nanotubes potentiallyastiag for the synthesis of highly
resistant insulating composite materials.

BeO nanotubes also exhibit a longitudinal piezoelectriposase, with the values reported in
Table 1. The values are about 25% higher with respect to BNtohae of comparable radii,
which in turn are already quite large among those of low-disienal system&® The comparison
of those values with that of the monolayer requires agaiake into account Poisson’s effect: the
limit value is then—(e11 — oejp) = —1.263 a.u. as shown in Appendix . The minus sign comes

from the inversion of the direction between slab and nanotube geometry.

Vibration Properties

As happens for single-walled nanotubes of any compositi@nlR-active vibration modes of,0)
BeO nanotubes can be subdivided into distinct groups, wélr thbration frequencieg tending
to either an optical frequency of the monolayer or z&@here are eight of this modes regardless
of tube size: three modes are characterized by vanishiggérecies while increasing tube radius

(to be referred to as A modes), two modes have vibration waavebersy = v /c, with ¢ speed of

12
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Figure 3: Vibration wave-numbets= v /c of the A set of IR active modes as a function ghln
the (,0) series of BeO nanotubes. The results of a linear fittindneridur largest tubes are shown
as well.

light, that tend to 721 cm' (B modes) and three to 1016 cth(C modes).

The vibration wave-numbers of the eight IR active modes ohdabe are reported in Table 2
as well as their IR intensity, computed according to equai®). In that table, all non-degenerate
modes belong to the totally-symmetric irreducible repnéstgon (irrep) of the group while all
twofold degenerate modes, marked with an asterisk, betotigetsame two-dimensional irrep. The
most intense IR peaks correspond to modes C2,a08 BT, following the notation introduced in
Table 2. All B and C modes look very close to the correspondiogolayer optical modes and,
with the exception of C3 they are characterized by vibration frequencies almaspendent of
the tube size. The frequencies of the A modes decreasellivei#ln 1 /n (see Figure 3) and tend to
zero asn increases; these are collective modes without a direcespandence in the vibrational

spectrum of thér-BeO monolayer, as explained in what follows.

Collective Modes and Monolayer Elasticity

The A set contains three collective IR active modes: the &ingt third ones, A1and A3, are

twofold degenerate.€. the two degenerate modes only differ by a permutation betvagtemic

13



displacements alongandz). In A1l*, Be and O atoms are both displaced towafdsat the top

of the ring and towards-x at its bottom x being the periodic direction of the tube. The overall
dipole moment variation alongis null but minor displacements of the Be and O atoms produce
a dipole moment in thgzplane. The A2 mode corresponds to ring breathing; while rabste
vibration takes place in thgzplane, small opposite displacements of Be and O atoms alorake

it slightly IR active in the axial direction. The third mod&3*, corresponds to the rigid clockwise
rotation of half the ring in the/z plane and anti-clockwise of the other half ring. It is slight

IR active in theyzplane. Due to their IR activity, these three modes contethatthe vibrational
polarizability of the nanotube according to equation (4whver, only AT and A2 contributions
are non-vanishing in the limit of large tube radius.

It has recently been illustrated for BN nanotubes, that, éldinge radius limit, all these modes
can be related to elastic deformations rather than to vidranodes of the monolayéf. The
appearance of these vibration modes in the 1D nanotubdstesacan be interpreted in terms of
the reduction of elastic degrees of freedom observed frod @2 1D system. Due to hexagonal

symmetry of theh-BeO monolayer, its elastic tens@rexhibits the following structure:

Ci1 Cr2 0
C=|Cpn Cn 0 : ©)
0 0 3(Cu—Ci)

The elements of this tensor are known as elastic constaritgsy flave been computed with the
fully automated procedure implemented in theYGTAL progran?’ for the h-BeO monolayer
where just two of themCy1; andCy, are independenCy1 = Cyr = 2.223 hartree an@;2 = 0.810
hartree, so thalgs = 1/2(C11 — Cq2) = 0.707 hartree.

By imposing equality between elastic and vibration straiargies, in then — o limit, the
coefficient of the linear behavior of these wave-numbersvshia Figure 3, can be expressed as a

function of the elastic constants of the 2D monolayer: fetance, for the Aland A2 modes we

14



Table 2: Vibration wave-numbers V = v/c (cm™1) and IR intensities .# (km/mol per BeO
unit) of the IR active modes of the (1,0) series of BeO nanotubes. Twofold degenerate modes
are indicated with an asterisk.

n Al* A2 A3* B1* B2 CI* C2 C3
v 7 v g v 7 v v B B v B v I
8 134.9 0.16 234.0 0.88 315.6 0.06 678.6 58.6 727.3 0.82 100209 0 1005 679 1161 291
10 1083 012 1888 054 2500 003 6878 574 7252 049 10007 1009 681 1158 326
12 90.4 0.10 158.0 0.36 218.8 0.02 693.6 56.3 723.9 0.30 101m5 01011 682 1150 356
14 775 0.08 135.8 0.27 189.1 0.01 697.6 55.4 723.1 0.20 101104 0 1012 682 1143 381
16 67.8 0.07 119.1 0.20 166.3 0.01 700.5 54.7 7226 0.15 101203 01013 683 1135 403
20 543 005 954 013 1339 000 7045 536 7218 0.09 10102 0.1014 683 1121 440
24 452 004 796 009 1120 000 7072 528 7215 006 10101 0.1015 684 1109 468
32 33.9 0.02 59.8 0.05 84.3 0.00 710.7 51.7 721.2 0.03 10151 0.@015 684 1093 508
48 226 001 399 002 564 000 7143 506 7211 001 10151 0.0016 684 1072 556
64 16.9 0.01 29.9 0.01 42.3 0.00 716.0 50.0 721.1 0.01 1016 0 0.2016 684 1063 584
get
Css 1
VAL = , (10)
(Mge+Mo) n\a%D’
Va2 = (11)

(Mge+Mo) n[aZP|
whereMge and Mg are the atomic masses of Be and O atoms zaﬁ‘?dis the transverse lattice
parameter oh-BeO. A similar expression holds for A3 vaz- = v2vas. The values resulting
from this procedure argéa- = 10796/n cnm i, Vap = 19153/n cn ! andvag- = 27086/n cnt L,
in agreement with those obtained by fitting the wave-numbeiSigure 3 forn > 24: va« =
10843/n cntl, Vao = 19132/n cnT! and Vaz- = 27018/n cnTl. Bearing in mind that the
properties involved in the comparison (vibration frequesof the nanotubes and elastic constants

of the monolayer) are computed quite differently, agredreeremarkable.

Polarizability

In Table 1 we also report the values of the electronic and &tgic polarizability for the BeO
nanotubes. The nuclear contribution to the polarizabitisglected in previous studiéd;is here
found to be as relevant as the electronic contribution indihefrequency range, at variance with

both Carbon and BN nanotubés.
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The last row of Table 1 reports the corresponding monola®®) (imit values, to be defined

in this section. The longitudinal component of electronidapizability a”

tend to the in-plane
monolayer value. The static polarizabiliqé of the tubes contains the contribution due to mode
A2, which is not present in the monolayer value. Analogotsiye relationship between vibration
frequencies and elasticity (discussed in Section ), a adiomecan be established between the vi-
bration contribution of collective modes to the polarizitpand the monolayer piezoelectrici/.

In this case:

al(n— «) = a)(2D) + 212 = (4.925+ 0.057) A3, (12)

sz
wheree;, is a piezoelectric constant bfBeO. As concerns the transverse component of the elec-
tronic nanotube polarizabilitgrs-, it can be shown by circular averagftigthat in the large radius

limit the following relation holds with the monolayer poizability values:
1
ag(n— o) = > (ael(ZD) +alD )) . (13)

As in the case ofr!, in order to discuss the limit of the total static polariipiwe need to take
into account the contribution of the collective modes: thfad3* vanishes ah — o and is, in any
case, negligible for alh values. The contribution of Alis again connected with the piezoelectric

properties of the monolayer, so that:

ag (N — o) = % (aoi(ZD)qLaO(ZD ) ;22

= (%(1.076+ 4.925) +0.088> A3, (14)

whereeyg = €17 is another piezoelectric constantieBeO.

A very satisfactory agreement is observed in the convergeasca function oh of all these
properties. Figure 4 reports longitudinal (upper pane) aansverse (lower panel) total static
polarizabilities of BeO nanotubes of the@) family as a function oh. The corresponding mono-

layer limit values are reported as dotted lines. The lomtital (a!) components converge rapidly
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Figure 4: Longitudinab| (upper panel) and transverae- (lower panel) total static polarizability
of BeO nanotubes of then0) family as a function oh. Also shown: the results of a fit with a
third-order polynomial in (1n) for the six largest tubes (solid lines), and monolayertlivalues
as defined in the text (dotted lines).

with n. The convergence af* is much slower, with a difference up to 40% for the smalleetb

Conclusions

This paper reports the results of ah initio quantum chemical study of a variety of properties
of single-walled zigzag Beryllium Oxide nanotubes, of th@) family and, in particular, of their
connection with the properties of the hexagonal monolay&€0). Nanotubes are investigated in
the range fronn = 8 (32 atoms in the unit cell and tube radRs- 3.4 A) ton = 64 (256 atoms in
the cell andR= 27.1 A) that is, much larger radii than previously reportéithration frequencies,
infrared (IR) intensities, piezoelectric constant and eactontributions to the polarizability tensor
are among the properties that are here discussed for theiriestas concerns these materials.
Rolling energy, elastic modulus and electronic polarizgbére also computed and discussed.
BeO nanotubes are confirmed to be wide band gap insulatorgovatrerties weakly depen-

dent on the tube diameter and elastic moduli comparable tiwitke of carbon nanotubes. Their
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piezoelectric response is also found to be large, making thatable for nano-electromechanical
applications. The nuclear contribution to the static paéility is comparable with the electronic
one.

Recent improvements in theRESTAL program permit full use of symmetry (the point group
contains as many symmetry operators as atoms in the urjibeellto drastically reduce computa-
tional cost. Thus, we can perform accurate simulations afhmarger tubes than before and im-
prove the description of the convergence of a variety of fuloperties to the flat monolayer. From
a careful analysis of such convergences, connections taklisked between physical properties
of nanotubes and flat monolayer: the relationship betweesrtzcplar set of IR-active vibration
modes of the nanotubes, with vanishing vibration frequexscg function oh, and the elastic and
piezoelectric constants bfBeO is illustrated and discussed.

IR-active vibration modes are separated into three distatd. The first set, in the 0 - 300
cm~1 frequency range, is characterized by vanishing vibratieguencies at infinit® while their
IR intensities do not vanish; the nature of these normal masléllustrated by establishing a
connection between them and the elastic and piezoelecingtants oh-BeO. The second (680 -

730 cnT1) and third (1000 - 1200 cnt) sets tend regularly to the optical modes of the monolayer.
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Connection between Nanotubes and Monolayer Elastic Constants

The definition of elastic constants given in equation (5¢taikito account relaxation of the nuclei
upon strain, thus allowing to go beyond the so-called “clachjpn” approximatior?®:6° but not
that of the lattice parameters orthogonally to appliedstfaoisson effect). It follows that, when

straing; is applied to a monolayer, no relaxation of the cell can o@cuine transverse direction;
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the case is different for a nanotube where the applicatian sfill allows to the system, to relax
along the transverse directione to change the tube radius). When comparingrihe oo limit

of the nanotube with the monolayer, we must consider thathémit includes Poisson’s effect
whereas the monolayer does not. The monolayer elastic Velsdo be modified according to

Poisson’s ratio™: 71
_dez  Cpo

“de Cw (15)

We can use the total derivative theorem to obtain the derevalf the energy with respect to the

strain applied to the monolayer, including Poisson’s effec

dE (e1,£2(e1))  OE N JE dgp d_E+d_EG
dSl N (381 082 d$1 N 081 582

(16)

Since we are here interested in calculating how Poissoféstedffects theC, 1 elastic constant of

h-BeO, we work out the following second derivative of the egerg

FE_ 0 (0E OE\, 0 (0 OE\_
dei2  de \dgr 0& o \0gy  08)

9°E 96 9°E o2 9°E
" 0g2 0£108 082
=C11+20C1p+0°Cz =
c2 Ci2 c?,
=C11— 2224 [ =2£) Cpp=Cy1— 22. 17
n-2¢> (sz) 22 =C11 sz (17)

The BeO monolayer is isotropic in the layer plane tha€ig,= Cy». It then follows that:

d2

P C11<1 a) . (18)
The Poisson-corrected monolayer value turns out t€he damped by a facto(l— 02>. For
h-BeO, withCy; = 2.223 hartree an@;, = 0.810 hartree, we obtaifw| = 0.364 and(1— ¢?) =
0.8672. The damping effect is significant in this case due todlaively high ionicity of the Be-O

bond. It is worth mentioning thdbc| < |0sn| < |0Bed|, SO that for Carbon and BN monolayers
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the (1— o) correction is almost negligible, amounting to factors &M and 0955, respectively.
Similarly, when considering the piezolectric effect in anaube we must take into account
the variation of the polarization vector due to the releom@tnf the tube radius. Analogously to

equation (16), the corresponding monolayer property is:the

dR (1. €2(£1)) _ 9B  9PRde, _ IR« IR
d81 N 581 (982 d81 N (981 582

g, (19)

wherex is the monolayer direction corresponding to the longitatishrection of the nanotube.

Then:

— =e11— e, (20)
11

according to the definition of piezoelectric constants inatpn (6).
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