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Abstract 

 

The structure of an unknown crystalline phase observed during the hydrogen absorption reaction of the powder mixtures 2NaH þ 

MgB2 at high pressure has been studied by ab-initio structure determination from powder diffraction. The sequence of un-overlapped 

peaks extracted from the X-ray powder diffraction pattern could be indexed with a prim-itive cubic cell with lattice parameter a ¼ 

7.319 A˚. The diffraction patterns of the peaks are matched with the Pa-3 space group. The stoichiometry of the hydrogen absorption 

reaction suggests the presence of a high-boron content phase in the compound under investigation. Assuming this phase to be 

composed only by boron atoms and therefore having a density similar to that found for boron polymorphs, the solution with a space 

group of Pa-3 leads to reasonable BeB interatomic distances. 

 

1. Introduction 

 

Light metal borohydrides, e.g. LiBH4, NaBH4 containing up to 18 wt% of H2, are considered as promising candidates for H2 storage. 

However, high thermodynamic stability and poor reversibility are important issues to be addressed before considering them as 

suitable energy carrier for vehicular and stationary applications [1]. In order to overcome these ther-modynamic constrains, the 

Reactive Hydride Composite (RHC) concept was developed [2e4]. This method allows accessing favorable reaction enthalpy while 

maintaining a high gravimetric hydrogen capacity. The approach by Reilly and Wiswall [5], which used reactive additives to 

facilitate hydrogen release at milder conditions, has been recently modified by using another hydride as additive to tune the 

thermodynamic properties of hydrogen storage materials while maintaining a high gravimetric hydrogen storage den-sity [6]. 

Systems to which this approach applies amongst others are 2NaBH4 þ MgH2, 2LiBH4 þ MgH2 and Ca(BH4)2 þ MgH2 [4]. In spite of 

the possibility to use selected hydride mixtures for tuning the thermodynamic properties of boro-hydrides, the issue of limited 

reversibility still remains a pri-mary challenge associated with this class of materials. This limitation is mostly due to kinetic barriers 

and to the formation of stable intermediate phases and side products. Recently, the sorption properties of the system 2NaH þ MgB2 

and of its reaction products were deeply investigated by several authors [7e17]. This mixture is considered a model system for 

studying the hydrogen sorption properties of reactive hydride composites based on MgB2. In a previous publication [12], we 

described the effect of the applied hydrogen pressure on the absorption reaction mechanism of the system 2NaH þ MgB2 [12]. As a 

main result, it was observed that the reaction path strongly depends on the applied hydrogen pressure. At 50 and 25 bar, the 

formation of NaBH4 was preceded by the formation of unidentified B-containing crystalline phases and NaMgH3; whereas under a 

hydrogen pressure of 5 bar led to the direct formation of NaBH4. The study of this unknown phase is of extreme interest. In fact, 

according to the magic angle spinning nuclear magnetic resonance (MAS NMR) analyses performed on partially hy-drogenated 

material this phase contains hydrogen. Moreover, its temperature of formation and melting are much lower than those observed for 

NaBH4 [12]. In order to give a struc-tural description of the unknown crystalline phase, a careful analysis of powder X-ray 

diffraction data (PXRD) is required. 

The ability to solve the crystalline structure of unknown compounds directly from powder XRD patterns is needed in all the cases, 

when the synthesis of single crystal of the analyzed compound cannot be achieved; and appears partic-ularly useful in the context of 

new phases created after hydrogen treatment. In fact, it is now possible to solve the powder patterns “ab-initio”, i.e., based only on an 

estimate of the chemical composition of the system under investigation. Recently, this approach has attracted considerable attention 

[18], in the fields of both pharmaceutical compounds [19], and material science [20e23]. The availability of numerical soft-ware 

[24,25] that accompanied the instrumental development in terms of high-temperature and high-pressure “in situ” measurements at 

synchrotron radiation facilities has strongly contributed to the application of this approach for crystalline structure determination. 

In the present work, we attempt to determine the crystal structure of an unknown phase observed to precede the for-mation of 

NaMgH3 and NaBH4 during the hydrogen absorption reaction performed at 50 bar of hydrogen pressure in the 2NaH þ MgB2 system. 

The PXRD patterns used to solve the crystal structure of the unknown phase are rather complex. In fact, the patterns consist of a 

series of diffraction peaks belonging to reagent and product phases, together with extra un-indexed peaks related to the unknown 



intermediate phase. Thus, the solution of an unknown phase represents a challenging application of the “ab-initio” approach. A 

considerable effort in this work stands on the separation of the diffraction peaks of the unknown crystalline phase from the whole 

complex pattern by using the Rietveld method. From the subtracted pattern, the crystal structure of a high-boron containing phase 

has been determined. 

 

2. Experimental 

 

NaH (95% purity) and MgB2 (99.99% purity) were purchased from SigmaeAldrich and Alfa Aesar, respectively. NaH and the MgB2 

in the molar ratio 2:1 were charged into a hardened steel vial and milled for 1 h in a Spex 8000 ball mill, with a ball-to-powder ratio 

of 10:1. Handling and milling were performed in a dedicated glove box under a continuously purified argon atmosphere. The 

hydrogenation of the material was per-formed in a PCTPro-2000 (SETARAM Instruments). Separate batches of partially 

hydrogenated mixtures have been pre-pared and used for the PXRD analysis. 

PXRD investigations were carried out at the Helmholtz-Zentrum Geesthacht (HZG) (Germany) using a Siemens D5000 

diffractometer in reflection geometry and at the Chemistry Department of University of Turin (UNITO) (Italy) with a PANalytical 

instrument in transmission geometry, respectively. Cu Ka radiation has been used in both cases. While in the first equipment the 

sample holder is a glass cir-cular cavity of 0.1 mm in depth with area 1.5 cm2, containing ca. 100 mg of powder, in the second 

system the sample holder is a capillary. In both cases the instrumental functions were determined using a LaB6 standard. The 

patterns were collected in the range from 15 to 90 in 2q with a step size of 0.025 , using a multidetector in the diffracted beam. 

The overall data collection lasted ca. 6 h, implying that for each step the counting is accumulated for 7.2 s. The comparison of the 

two patterns aims from one hand to assess the nature of products after the two synthesis reactions conducted under extreme 

conditions (kinetics reproducibility). On the other hand the DebyeeScherrer like configuration using a capillary as sample holder 

should ensure a high reliability of the 2q-scale of the pattern, i.e. absence of zero shift, and a powder preserved from oxidation 

phenomena during the measurement. 

 

3. Results and discussion 

 

Several attempts to maximize the formation of the unknown phase over the starting reactants NaBH4 and NaMgH3 were made by 

changing the hydrogenation parameters. It was found that the formation of the unknown phase was maxi-mized by heating the 

sample up to 310 C under 50 bar of hydrogen pressure with a heating rate of 20 C/min, then rapidly cooling down to cryogenic 

temperature using liquid nitrogen. 

The PXRD patterns of the partially hydrogenated 2NaH þ MgB2 mixtures collected at the HZG and at the UNITO are reported 

in Fig. 1.The patterns are expressed as a function of the reciprocal space variable Q ¼ 4psin q/l. From the PXRD analysis 

performed by the two laboratories, it turns out that the phase mixture obtained after the hydrogen absorption process of the 2NaH 

þ MgB2 is rather close for both batches. From a visual inspection of PXRD patterns, it can be noticed that the partially absorbed 

sample analyzed at HZG shows an amount of NaH smaller than that observed in the pattern ac-quired at UNITO. This suggests a 

higher conversion of the starting reactants into the hydrogenated products for the material analyzed at HZG. Other minor 

differences are observed in the peak-to-background ratio. This may be attributed to differences in specimen preparation and/or to 

differences in the counting resolution system employed in the two laboratories. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 e PXRD pattern of the partially hydrogenated 2NaH D MgB2. HZG [ PXRD pattern collected at the Helmholtz-Zentrum 

Geesthacht; UNITO [ PXRD pattern collected at the University of Turin. 

 

 

Among the phases present in the two analyzed samples, the Bragg reflections of starting reactants NaH (cubic, S.G. Fm-3m) and 

MgB2 (hexagonal, S.G. P6/mmm) are visible together with the hydrogenation products NaMgH3 (orthorhombic, S.G. Pnma) and 

NaBH4 (cubic, S. G. F-43n). In addition, several unassigned peaks are visible. These peaks have been related to an unknown 

intermediate phase. In order to index the unassigned peaks, the PXRD pattern collected at the HZG was used. In fact, due to the 

rather low amount of the NaH phase, it appears more suitable for indexing than the one collected at UNITO. The experimental 

pattern collected at HZG (dots line at the figure top) and the calculated pattern from the contri-butions of the four known phases 

(continuous line at the figure top) are reported in Fig. 2. The result of subtracting the calculated pattern from the experimental one is 

also shown in the same figure (continuous line at the figure bottom). It gives the sequence of positions and relative intensities of 

diffrac-tion peaks of the unknown phase to be submitted to indexing step. However, the selection of peaks may be affected by the 

presence of glitches (see magnification of Fig. 2). This effect may occur especially close to the most intense peaks. Such 

 

 

 

 

 

Fig. 2 e PXRD pattern collected at HZG (dots at the figure top) and calculated pattern from the contributions of the four known 

phases (continuous line at the figure top). The result of subtracting calculated from experimental pattern is shown as continuous line 

at the figure bottom. The series of hkl for the Pa-3 space group is reported as bars at the bottom of the figure. An enlargement is 

shown on the right hand side. 

 

deviations of the plot difference with respect to a smooth trend can be attributed to inadequacies of the analytical pro-file functions to 

account precisely for the intensity distribu-tion of real diffraction peaks. In fact, bimodal or multimodal size distribution of 

crystallites and/or peculiar disorder model in the crystallites may represent physical circumstances for which simulated patterns are 

difficult to express adequately with a single-shape profile function [26]. 

The 2q values of 10 extracted peaks free from significant overlapping and considered to belong to the unknown phase, are 

reported in Table 1. The sequence of peak positions was least squares refined using the Maud-software [27] performing a Le Bail 

type approach [20] and corrected for the misalign-ment of the instrument as supplied by the fit to the other crystalline phases. To 

index the peaks belonging to the un-known compound, the McMaille [28] and Dicvol06 [29] pro-grams were employed. As a result, 

two possible cubic geometries P and I with lattice parameters of a ¼ 7.319(7) and 10.347(4) A˚ respectively were obtained. The 

results were also confirmed using the Maud program performing the Whole-Powder Pattern Indexing approach based on a Genetic 

Algo-rithm [30]. This method works differently from those used by the two programs, because it does not need any peaks list but it 

uses as indexing input only the experimentally collected pattern. 

On the basis of the higher figure of merit (FoM) [31] ob-tained for the cell having lattice parameter equal to 7.319(7) A˚, we 

decided to focus our attention on the cell with shorter lattice parameter. For the selected unary cells, the indexing sequence is 



reported in Table 1. For this unary cell, the FoM is rather high (roughly 100) and, in principle, either P23 or Pa-3 space groups are 

compatible with the systematic absences/ presences of experimental peaks, but after an analysis of the systematic absences the Pa-

3 appears to be the most probable one. The series of hkl for the Pa-3 space group are reported at the bottom of Fig. 2. 

In order to solve the structure from the indexed pattern, information about the chemical composition and density of the phase 

is necessary. Unfortunately, such data cannot be achieved experimentally, due to the presence of other com-pounds in the 

mixture. As far as the chemical composition is concerned, the experimental PXRD patterns have pointed out 

 

 

Table 1 e List of ten hkl peaks that were indexed after analysis of the patterns of Fig. 1. 

 

Peak no. Observed Observed hkl 

 2q/ intensity/arb. un. indices 

1 21.000 72 (111) 

2 24.320 99 (200) 

3 27.230 24 (210) 

4 29.900 36 (211) 

5 34.650 170 (220) 

6 36.820 100 (221) 

7 42.800 50 (222) 

8 44.630 20 (320) 

9 49.840 10 (400) 

10 56.240 23 (420) 

    

 

 

Table 2 e Atomic coordinates of the boron-rich phase selecting the Pa-3 S.G. on the basis of a density of 2.197 g/cm3 and 48  

atoms in the unit cell. 

     ˚ 2       

  Atomic coordinates and isotropic displacement parameters (in A )       

  Atom Ox. Wyck. x/a y/b z/c B   

            

  B1 þ0 24d 0.13816 0.45200 0.80463 4.5000    

  B2 þ0 24d 0.66727 0.04242 0.72033 4.5000    

  Crystal data          

           

  Formula sum      B48   

  Formula weight      518.93    

  Crystal system      cubic   

  Space group      Pa-3 (no. 205)   

  

Unit cell dimensions 

     ˚   

       

a ¼ 7.3195(4) 

A   

  

Cell volume 

     ˚ 3   

       392.14(2) A   

  Density, calculated      2.197 g/cm3   

  Pearson code      cP48   

  Formula type      N   

  Wyckoff sequence      d2   



 

 

the presence of both reactants and products of the reaction. As mentioned earlier, in the HZG sample, almost all NaH was reacted. 

During the hydrogenation of the 2NaH þ MgB2 sys-tem, the unknown phase is observed to form just before the NaMgH3 formation 

[15]. Therefore, boron being not present in NaMgH3, we assume the occurrence of a boron-rich phase. In the absence of any 

experimental evaluation, we consider that this boron-based phase has density values similar to that of known boron allotropes. A list 

of calculated and measured densities for allotropes structures of boron (a,b,g and 

 

 

 

Fig. 3 e A: Rietveld fit to the total experimental pattern (dots) including the contribution of the proposed Pa-3 cubic (continuous 

line). Peak positions and residuals are shown in the bottom. B: Sketch of the B-atoms position in the unary cell, a cycle of twelve 

boron atoms. C: Alternating BeB bond length of 1.58 A˚ and 1.76 A˚. D: Six of twelve atoms of the interconnected B-atoms lie on a 

plane. 

 

tetragonal, respectively) has been reported in the literature [32e36], where values ranging from 2.20 to 2.52 g/cm3 have been 

reported. The shortest BeB interatomic distance is 1.60 A˚ in the tetragonal structure, but similar values of 1.62 A˚ are reported also 

in the b-phase. The presence of anomalously shorter BeB distances may be a hint to evaluate the correct-ness of the obtained 

structure. Thus, the unit cell of cubic geometry with lattice parameter a ¼ 7.319 A˚ may contain reasonably from 48 to 52 boron 

atoms. Note also that some of the structures given for solving the b-boron allotrope entail an interatomic BeB distances below 1 A˚, 

thus making doubtful some b-boron solutions as far as the fractional coordinates of atoms are concerned. 

A parallel computation was performed using the list of hkl intensities and positions from Table 1 and the simulated annealing 

program Endeavour [37], reaching approximately the same result reported below. The boron fractional co-ordinates for this space 

group are reported in Table 2. This solution has the merit of showing BeB distances comprised in the range of values between 1.58 

and 1.76 A˚. These BeB dis-tance values are similar to those reported for the tetragonal boron (tP50). The overall Rietveld fit using 

the four known phases (i.e. NaH, MgB2, NaMgH3 and NaBH4) plus the proposed cubic cP48 phase with space group Pa-3 is reported 

in Fig. 3A. A sketch of a possible connection scheme between alternating B1 and B2 Wyckoff sites shows the arrangement of two 

inter-connected hexagons, with BeB bond distance values of 1.581 and 1.757 A˚, and angle value B2eB1eB2 of 75.562 as reported in 

Fig. 3B and C. 

Six B-atoms lie on a plane and other six atoms are located above\under this plane, with B2-plane distances of 0.527 and 0.596 A˚, 

and B1-plane distance of 1.421 A˚ (Fig. 3D). 

 



The evaluation of such a description for the unknown phase using numerical indicators may not be entirely satis-factory 

because of the large number of phases present in the PXRD pattern. In particular, it is visible that some weak peaks are not taken 

into account in their intensity very accurately, thus suggesting to consider the possibility for a P23 space group. The adoption of 

this symmetry group leads to other proposals where the 48 atoms are located in 4 Wyckoff sites of j-type with multiplicity 12 (see 

Table 3). However, while adopting this space group, even if the Rietveld fit seems better, the presence of some BeB distances 

below 1.45 A˚ makes this solution less probable. It should be noted that other efforts to solve the structure with a larger unit cell 

of 10.347 A˚ and imposing cubic space group with inversion center I, ensuring the possibility to explore densities of 2.32 g/cm3 

were made. However, the given solutions failed again to give reliable interatomic BeB distances. 

 

 

 

 

Table 3 e The Rietveld refined fractional coordinates 

obtained from Maud after selecting the P23 space group.  

Atom Wyck. Site x/a y/b z/c 

˚ 2   

B [A ]   

B1 12j 1 0.72524 0.63871 0.96972 1.5    

B2 12j 1 0.50001 0.70038 0.72399 1.5    

B3 12j 1 0.75957 0.12208 0.42117 1.5    

B4 12j 1 0.94935 0.27861 0.86913 1.5    

          

 

 

The quantitative Rietveld’s analysis of the diffraction pattern made considering the two possible space groups (Pa-3 and P23) 

shows an amount of the unknown phase considered constituted only by B-atoms, higher than 60 wt%. These values are higher 

than expected. In fact, considering a total conversion of the starting reactants into hydrogenated prod-ucts, the total amount of 

boron should be roughly 35 wt%. These results may be due to a reaction environment not totally controlled, allowing loss of 

reactants in the walls of the reactor. 

Inclusion of other atoms like Mg and Na in the cubic lattice is possible in principle. Nevertheless, simulations in this sense 

suggested that other atoms inclusions must be kept low due to their different scattering factor. This is in agreement with a recent 

report on the MgeB phase diagram [38] where from semi-empirical thermodynamics calculations it was surmised that a B-rich 

phase may be privileged with approximate composition MgB20. Of course, the presence of hydrogen atoms in the lattice cannot be 

rejected. Unfortunately their position in the unknown phase cannot be identified, because of negligible contributions to the X-ray 

diffraction patterns. The possibility to investigate the material by neutron scat-tering technique was considered, however, the 

absence of a proper boron isotope and the complexity of a possible neutron diffraction pattern containing multiple phases 

prevented us from applying this technique. 

 

4. Conclusions 

 

The structure of an unknown crystalline phase observed during the hydrogenation at high pressure of the system 2NaH þ MgB2 was 

suggested. This phase can be envisaged by a cubic unit cell (a ¼ 7.3195(4) A,˚ S. G. Pa-3) containing 48 boron atoms (cP48). In view 

of the estimated nearest neighbor BeB interatomic distances, the proposed structure gives a suitable approximation of the 

experimental pattern. More complex solutions, using bigger cells and more atoms (larger number of fractional coordinates), certainly 

describe more accurately the progression of relative intensities. However, those solutions fail to account properly for the interatomic 

BeB short distances. 
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