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Abstract:  

Background: Chronic diseases, including liver cirrhosis, are often accompanied by protein-energy 

malnutrition and muscle loss, which in turn negatively affect quality of life, morbidity and 

mortality. Unlike other chronic conditions few data are available on the molecular mechanisms 

underlying muscle wasting in this clinical setting.  

Aims: To assess mechanisms of muscle atrophy in patients with liver cirrhosis. 

Methods: Nutritional (Subjective Global Assessment [SGA] and anthropometry) and metabolic 

assessment was performed in 30 cirrhotic patients awaiting for liver transplantation. 

Rectus abdominis biopsies were obtained intraoperatively in 22 cirrhotic patients and in 10 well-

nourished subjects undergoing elective surgery for non-neoplastic disease, as a control group. Total 

RNA was extracted and mRNA for atrogenes (MuRF-1, Atrogin-1/MAFbx), myostatin (MSTN), 

GSK3β, and IGF-1 was assayed.  

Results: 50% of cirrhotic patients were malnourished based on SGA, while 53% were muscle 

depleted according to Mid Arm Muscle Area (MAMA<5
th 

percentile). MuRF-1 RNA expression 

was significantly increased in malnourished cirrhotic patients (SGA B/C) vs well-nourished patients 

(SGA A) (p=0.01). The phosphorylation of GSK3β was up-regulated in cirrhotic patients with 

hepatocellular carcinoma (HCC) vs patients without tumor (p<0.05). 

Conclusions: Muscle loss is frequently found in end-stage liver disease patients. Molecular factors 

pertaining to signaling pathways known to be involved in the regulation of muscle mass, are altered 

during liver cirrhosis and HCC.  
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Introduction 

 

Protein calorie malnutrition and muscle wasting are a common finding in patients with 

advanced chronic liver disease (1, 2).
 
The loss of muscle  mass and strength (3) can ultimately affect 

patient’s mobility and function (4) and, more  importantly,  it is associated with a greater risk of 

morbidity and mortality in  patients with chronic liver disease (5, 6). Recently sarcopenia, which is 

defined as muscle atrophy and loss of muscle function (3), was shown to be associated with 

significantly increased post-transplant mortality in cirrhotic patients (7, 8).
 

The pathogenesis of muscle atrophy in cirrhotic patients is still largely unknown (9). Some authors 

have suggested that protein breakdown is increased, while others suggested that reduced protein 

synthesis is the main contributor (10, 11). Protein catabolism has been shown to be increased when 

these patients are following a low protein diet (12), while on the other  hand,  during long term 

refeeding, stable cirrhotic patients are capable of an efficient nitrogen retention and can increase 

protein synthesis (13). 

In recent years the molecular mechanisms involved in the regulation of protein turnover in muscle  

have  received great attention. A central role in muscle protein degradation has been attributed to 

the ubiquitin-proteasome system, which becomes hyper-activated in catabolic states associated with 

muscle depletion (14-16).
 
In experimental models of muscle atrophy, messenger RNA levels of the 

components of the ubiquitin-proteasome system are over expressed (16-19).
 

 Key enzymes in this process are the E3 ubiquitin ligases, which act as the substrate recognition 

component of the ubiquitin conjugation machinery. Among these, the two muscle ligases Atrogin-1, 

also known as MAFbx, and MuRF-1 have been identified to be hyper-expressed in several chronic 

conditions of muscle wasting such as diabetes, advanced cancer, and end-stage renal disease 

(3,20,21). Besides the degradative pathways, however, a down regulation of anabolic signaling 

might also be involved in the onset of muscle wasting. In particular, the potential role of insulin-like 
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growth factor-1 (IGF-1) and MSTN in the pathogenesis of chronic disease-associated muscle 

atrophy have gained increasing attention during recent years (22, 23). 

The anabolic growth  factor  IGF-1 stimulates  muscle  protein  synthesis  by activating the 

phosphatidyl-inositol 3-kinase (PI3K)-Akt pathway. Once activated, Akt phosphorylates an 

increasing set of substrates, including factors that induce protein synthesis, gene transcription and 

cell proliferation, and that block apoptosis. Furthermore, Akt inactivates glycogen-synthase kinase 

3β (GSK3β), which is known to be implicated in muscle atrophy (24, 25).
 
Moreover, it has been  

proposed  that  signaling  through  the PI3K/Akt pathway also inhibits the expression of atrogin-1 

and MuRF-1  preventing protein degradation (26). As IGF-1 over expression promotes muscle 

anabolism (27), its down regulation might contribute to a depletion of muscle mass (28). 

 Myostatin (MSTN), a member of the Transforming Growth Factors-β (TGF-β) superfamily, is a 

negative regulator of muscle mass (29)
 
 expressed by skeletal muscle, heart and fat tissue. In the 

MSTN gene knock-out mice, muscle mass increases three times more than in control animals, both 

due to muscle hyperplasia and hypertrophy (29) whereas systemic administration of MSTN in adult 

mice induces profound muscle and fat loss (30). An increase in MSTN activity could therefore also 

be involved in clinical conditions characterized by muscle wasting such as aging, denervation 

atrophy, or mechanical unloading (31, 32). Intracellular effects of MSTN are mediated by 

transcription factors belonging to the SMAD family.  

Data concerning the molecular mechanism involved in muscle depletion have been reported in 

patients with cancer cachexia, sepsis and renal insufficiency (33) but studies in cirrhotic patients are 

still lacking. The only data available in this context have been produced in the experimental model 

of portocaval anastomosis (PCA) rats (34-37). In this model the expression of the genes regulating 

skeletal muscle mass together with the proliferation and differentiation of satellite cells 

(mononuclear precursor stem cells in skeletal muscle) has been investigated. Four weeks after PCA 

the expression of MSTN was found to be higher while a reduction in the expression of IGF1 and its 

receptor was found. Moreover, markers of cell proliferation and markers of differentiation of 
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satellite cells were found to be lower in PCA rats compared to controls. The authors suggested that 

skeletal muscle atrophy seen in PCA rats was a consequence of impaired satellite cell proliferation 

and differentiation mediated, in part, by higher MSTN and lower IGF-1 expression (34). In a 

subsequent study, the same authors found that PCA caused an enhanced proteolysis during the first 

two weeks, as demonstrated by the increase in mRNA of ubiquitin proteasome components, 

followed, in the further two weeks, by a reduced muscle protein synthesis due to an increased 

expression of MSTN and a lower expression of IGF1 as well as markers of satellite cell function 

(35). The administration of follistatin, a functional antagonist of MSTN, in the same experimental 

model, caused an increase in body weight, lean body mass, and muscle weight in the PCA rats to 

levels that were even higher than those in the control animals suggesting that an impaired skeletal 

muscle protein synthesis due to an increased expression of MSTN is the primary mechanism for 

low muscle mass in PCA rats (36).  

Despite these interesting results, the PCA model may not entirely reflect the chronic nutritional and 

metabolic changes occurring in end-stage liver cirrhosis.  

Therefore, in the present study, we investigated changes in the expression of regulators of skeletal 

muscle mass in muscle specimens of patients with end-stage liver disease undergoing liver 

transplantation.  

 

Materials and Methods 

Patients 

Patients awaiting for elective Liver Transplantation (LT) for end-stage liver diseases at the 

Transplant Centre of Sapienza University of Rome, were considered for the study. All the patients 

were evaluated according to the standard protocol of our Transplant Centre. Demographic data, 

origin of liver disease, clinical examination and parameters of liver function were recorded. The 

severity of cirrhosis was classified according to Child-Pugh (38)
 
and MELD score (39).  A complete 
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nutritional assessment was always performed during a dedicated outpatient examination.  Thirty 

consecutive patients undergoing LT were included in the study. 

Ten patients matched for age and sex and with normal nutritional status, undergoing abdominal 

elective surgery for non-neoplastic disease, served as controls. The study was approved by the 

Ethical Committee of the University Hospital Policlinico Umberto I and a written informed consent 

was signed by all the participants before the enrolment. 

 

Methods  

 Assessment of nutritional status 

Anthropometric measurements and Subjective Global Nutritional Assessment (SGA)  were used for 

nutritional evaluation in each patient. Body mass index (BMI) was computed as body weight 

(kg)/height (m
2
). Body weight was measured after treatment of ascites and/or water retention, if 

present. In a few patients, dry weight was calculated by deducting an estimated weight for ascites 

and/or oedema. Mid-arm circumference (MAC, cm) was measured at the midpoint between the tip 

of the acromion and the olecranon process on the non-dominant side of the body by using a   

flexible tape measure. Triceps skin fold thickness (TSF) was also taken on the non-dominant side of 

the body, with the patients standing in a relaxed position, using a Harpender skinfold caliper (John 

Bull British Indicators Ltd., St. Albans, UK). Mid-arm muscle circumference (MAMC) and  mid-

arm muscle area (MAMA)  were calculated using the MAC and TSF according to standard equation 

and MAMA below the 5
th

 percentile were identified by comparison with an age- and gender-

matched population were recorded (40). Subjective global nutritional assessment (SGA) was carried 

out according to Detsky et al. (41) and based on the nutritional anamnesis (weight loss, dietary 

intake and gastrointestinal symptoms) and clinical examination (physical signs of malnutrition, such 

as depletion of subcutaneous fat and muscle mass) of the patients. Patients were classified as well 

nourished (SGA-A) and malnourished (SGA-B or -C). Furthermore, MAMA was utilized to stratify 
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patients with  or without  muscle depletion (MAMA < 5
th

 percentile or  > 5
th

 percentile, 

respectively). 

 

Muscle samples 

A biopsy specimen was obtained intraoperatively, during the initial phase of the operation, 

from the rectus abdominis muscle. After skin incision and dissection through the subcutaneous fat, 

the anterior sheet of the rectus abdominis muscle was opened with scissors and a muscle biopsy 

specimen weighing about 0.5 g was obtained. Small bleeding vessels were carefully controlled with 

ligatures and cautery after the muscle biopsy had been obtained, where after the operation continued 

in a routine fashion. No complications occurred from the biopsy procedure. The biopsy specimen 

was immediately frozen in liquid nitrogen and stored at -80 °C until analysis.  

Semiquantitative RT-PCR 

Total RNA was obtained using the TriPure reagent (Roche, Indianapolis, IN, USA) following the 

instructions provided by the manufacturer. RNA concentration was determined 

spectrophotometrically (SmartSpec 3000, Bio-Rad, Hercules, CA, USA) and its purity ensured by 

evaluating the 260/280 nm ratio. RNA integrity was checked by electrophoresis on 1.2% agarose 

gel, containing morpholino propanesulfonic acid (MOPS) 0.02 M and 18% formaldehyde.  

IGF-1, MSTN, Atrogin-1 and MuRF-1 mRNA levels were determined by semiquantitative reverse-

transcription polymerase chain reaction (RT-PCR) using the kit ‘Ready-to-Go RT-PCR Beads’ 

(Amersham Biosciences, Milano, Italy). Following manufacturer’s protocol, 0.5 g total RNA and 

400 nM mixture of each couple of primers were added to a RT-PCR reaction mixture containing 

~2.0 units Taq DNA-polymerase, 10 mM Tris-HCl pH 9.0, 60 mM KCl, 1.5 mM MgCl2, 200 µM 

dNTP, Moloney Murine Leukemia Virus (M-MuLV) Reverse Transcriptase, ribonuclease inhibitor 

and stabilizers to reach a final volume of 50l in each reaction tube.  
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Primers for GAPDH, IGF-1, MSTN, Atrogin-1 and MuRF-1 were obtained according to published 

sequences (Table 1; Invitrogen, Milano, Italy). Retrotranscription was performed at 42°C for 30 

min. Amplification was run as specified in Table 4. Positive and negative controls were performed. 

PCR products (GAPDH = 497bp; IGF-1 = 184bp; MSTN = 79bp; Atrogin-1 = 168bp; MuRF-1 = 

225bp) were electrophoresed on 2% agarose gels and visualized by staining with ethidium bromide. 

A 100bp-standard DNA ladder (Fermentas, Burlington, ON, Canada) was used to estimate PCR 

products length. Normalization was performed according to GAPDH expression. Groups were 

compared in the linear range of amplification.  

 

Western blotting  

About 100 mg of rectus abdominis were homogenized in 80 mM TRIS-HCl, pH 6.8 (containing 100 

mM DTT, 70 mM SDS, and 1 mM glycerol), kept on ice for 30 min, centrifuged at 15000 x g for 10 

min at 4°C, and the supernatant collected. Protein concentration was assayed according to Lowry et 

al. (42)
 
using BSA as working standard. Equal amounts of protein (30 g) were heat-denaturated in 

sampleloading buffer (50 mM TRIS-HCl, pH 6.8, 100 mM DTT, 2% SDS, 0.1% bromophenol blue, 

10% glycerol), resolved on a SDS-PAGE (12% polyacrilamide, 0.1% SDS) and transferred for 2h 

to nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). Protein transfer was checked by 

Ponceau S staining.  

The filters were then blocked with Tris-buffered saline (TBS) containing 0.05% Tween and 5% 

non-fat dry milk and incubated overnight with either a polyclonal anti-MSTN antibody (1:1000; 

Società Italiana Chimici, Roma, Italy) and raised against a synthetic peptide (aa 133-148) 

representing a portion of human GDF-8 encoded within exon 3 (LocusLink ID 2660), or a 

polyclonal antibody against phospho-GSK-3β (Ser 9, 1:1000; Cell Signaling Technology, Danvers, 

MA, USA), binding the ~46 kDa phosphorylated form of the kinase, or a goat anti phospho-

Smad2/3 polyclonal antibody (1:200; Santa Cruz Biotechnology, Santa Cruz, CA, USA) raised 

against a short amino acid sequence containing phosphorylated Ser 423 and Ser 425 of Smad3 of 
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human origin (~55 kDa). Goat anti-rabbit (Bio-Rad, Hercules, CA, USA) or rabbit-anti-goat 

(Millipore, Vimodrone, MI, Italy) peroxidase-conjugated IgG were used as secondary antibodies.  

The filters were then stripped by incubation in 62.5 mM Tris-HCl, pH 6.7, containing 100 mM 2-

mercaptoethanol and 2% SDS for 30 min at 50° C, and reprobed with a mouse polyclonal antibody 

directed against tubulin (~50 kDa; Sigma, St. Louis, MO, USA) to normalize sample loading. The 

membrane-bound immune complexes were detected by enhanced chemiluminescence (Santa Cruz 

Biotechnology, USA) on a photon-sensitive film (Hyperfilm ECL; Amersham Biosciences, Milano, 

Italy). Bands quantification was performed by densitometric analysis with specific software 

(TotalLab, NonLinear Dynamics, Newcastle upon Tyne, UK).  

Due to the variability in the muscle specimens size and the need of unfreezing for the extraction 

process the complete set of determinations could not be performed in all the patients and controls’ 

samples.  

 

Data analysis and presentation 

Data are expressed as mean ± SD.  Quantification of both RT-PCR and western blotting results was 

performed by densitometric analysis (TotalLab, NonLinear Dynamics, Newcastle upon Tyne, UK). 

Significance of the differences was evaluated by the t-test. A p value < 0.05 was considered 

significantly different. 

 

Results 

Patients characteristics 

Demographic, clinical and nutritional characteristics of the 30 cirrhotic patients are reported in 

Table 2. The origin of liver disease was mainly post-viral (67%) and 13% of patients presented 

history of alcohol abuse. All patients were alcohol abstinent from at least 6 months before LT. 

Concomitant hepatocellular carcinoma (HCC) within Milan criteria (43)
  
was present in 30% of the 

patients. Fifteen patients (50%) were malnourished, and sixteen patients (53%) were classified as 
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muscle-depleted. We also identified  a sub-group of 12 patients (40%) presenting both malnutrition 

and muscle depletion. No differences in nutritional status and anthropometric measurements were 

observed between post-viral and post alcoholic cirrhotic patients. According to SGA, 7 out of the 9 

patients with HCC were well-nourished (p= 0.04 vs non-HCC patients). According to MAMA 4 

patients with HCC had muscle depletion (p= 0.5 vs non-HCC). 

The control group included 5 males and 5 females, mean age 53+13 years, BMI 26+3 kg/m
2 

without 

a known history of liver disease. Reasons of surgery were elective colecistectomy (3 patients), 

umbilical hernia  (4 patients), ovary cystis (3 patients). 

 

Parameters of molecular regulation of muscle proteins 

A) m-RNA expression 

This analysis was performed in 10 end-stage liver disease patients and in 4 controls. Within the 10 

patients malnutrition was present in 4 patients according to SGA, while muscle depletion was 

observed in 6 patients according to MAMA. A diagnosis of concomitant HCC was also made in 6 

out of these 10 patients. Prevalence on malnutrition and muscle depletion was similar in patients 

with and without HCC (p= 0.06 and p=0.43, respectively). No differences in the gene expression for 

MSTN, IGF-1, Atrogin-1 and MuRF-1 were observed between the patients and controls (Table 3). 

When these parameters were examined in end-stage liver disease patients according to SGA, 

MuRF-1 RNA expression was significantly (p=0.01) increased in malnourished patients (SGA B/C) 

with respect to well-nourished patients (SGA A) (Figure 1). These patients were also muscle-

depleted according to MAMA.  

No influence of HCC on m-RNA expression for MSTN, Atrogin-1, MuRF-1, and IGF-1 was 

observed.  
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B) Protein levels  

This analysis was performed in 22 end-stage liver disease patients and in 10 controls. Malnutrition 

was present in 13 patients according to SGA, while muscle depletion (MAMA <5
th

) was observed 

in 13 patients. A diagnosis of concomitant HCC was also present in 5 of these patients.  

Prevalence of malnutrition and muscle depletion was similar in patients with and without HCC (p= 

0.32 and p=0.96, respectively). 

No differences in protein levels of MSTN, p-SMAD2/3 and p-GSK-3β were observed between  

patients and controls (Figures 2-4). When these parameters were examined stratifying end-stage 

liver disease patients according to MAMA and SGA, no differences were observed (data not 

shown).  

Influence of HCC on proteins levels was also evaluated and only p-GSK-3β was significantly 

(p<0.05)  up-regulated by the presence of the tumor (Figure 5). 

Post-transplant follow-up showed that malnourished and muscle-depleted patients presented a 

higher degree of complications. Bacterial and viral infections in post liver transplant were more 

frequent within these groups respect to well-nourished patients (p=0.01) and length of hospital stay 

was longer in patients with worse nutritional status and muscle depletion (based on SGA and 

MAMA) respect to well-nourished patients (p=0.01). These data confirm our previous observations 

(44). 
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Discussion  

The present study shows that molecular factors pertaining to signaling pathways involved in the 

regulation of muscle mass, are altered in liver cirrhosis and HCC.  

Our results also show that 50% of the patients in our series were malnourished according to SGA 

and 53% were muscle depleted according to MAMA. Muscle depletion in liver cirrhosis is a 

negative predictor of outcome (8), although it is noteworthy that loss of muscle volume does not 

necessarily indicate loss of muscle function. Recently, the prevalence of muscle atrophy was 

assessed by means of lumbar computed tomography scan (7) in a series of 112 cirrhotic patients 

evaluated for LT, with demographic characteristics similar to the patients enrolled in the present 

investigation. The CT-scan-measured prevalence of muscle loss (50% in men, 18% in women, 

average 45%) was similar to that diagnosed based on MAMA in our study.  

The mechanisms contributing to muscle atrophy in advanced chronic liver disease have not been 

completely clarified (9). We have investigated, in cirrhotic patients undergoing surgery for elective 

liver transplantation,  the mRNA expression of MSTN, IGF-1, and of components of the ubiquitin-

proteasome degradative system,  all belonging to signaling pathways involved in muscle atrophy 

and cachexia in several clinical conditions. To our knowledge, this is the first study investigating 

the possible role of these pathways  in the regulation of muscle protein metabolism in cirrhotic 

patients.  

From the overall comparison between cirrhotic patients and healthy controls, it would appear that 

the molecular pathways involved in the regulation of muscle mass are not altered in cirrhotic 

patients.  A possible explanation for this finding is the limited number of patients  included in the 

study and their heterogeneity. However, patient stratification according to their nutritional status 

revealed that, while no difference occurred as for Atrogin-1/MAFbx, espression, MuRF-1 mRNA 

levels were significantly increased in the malnourished group, suggesting that the ubiquitin-

proteasome degradation may be activated above control levels, contributing to muscle depletion in 
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chronic liver disease. In this regard, modulations of muscle mass not associated with changes of 

atrogin-1 mRNA expression were previously reported in experimental models of muscle atrophy 

(28, 45). The results from the present study, together with the data reported in the literature, suggest 

that changes of muscle mass and atrogin-1 mRNA levels might not be tightly coupled. Finally, the 

lack of convergence in the modulation of atrogin-1 and MuRF-1 mRNA levels in the skeletal 

muscle of cirrhotic patients may reflect the differential regulation impinging on the two ubiquitin 

ligases (46). 

Taking into consideration the anabolic/anticatabolic signaling pathway dependent on IGF-1, our  

results showed no significant changes as for IGF-1 mRNA expression or p-GSK3β levels in 

cirrhotic patients compared to controls, even when patients were stratified according to SGA  or to 

the presence of HCC. These observations suggest that the IGF-1 pathway is not down-regulated in 

the skeletal muscle of cirrhotic patients. Furthermore, cirrhotic patients with HCC showed increased 

levels of phosphorylated (inactive) GSK3β.  This kinase plays a crucial role in inhibiting the IGF-1 

signaling. Indeed, when the IGF-1 pathway is induced, GSK3β is inactivated by an Akt-dependent 

phosphorylation, removing the negative regulation it exerts on molecules involved in anabolic 

processes such as protein synthesis. Consistently with this role, GSK3β inhibition was shown to 

induce a hypertrophic phenotype in cultured myotubes (25). In the present study, p-GSK3β levels 

were significantly higher in cirrhotic patients with HCC vs patients without HCC, in spite of 

comparable muscle depletion, according to MAMA. This observation is in agreement with previous 

data obtained in both gastric cancer patients and cachectic tumor-bearing animals (47,48).
 

Therefore, it is possible that also in human HCC the anabolic signals are up regulated to counteract 

the catabolic stimuli induced by the presence of the tumor, suggesting that they might be more 

compelling than those resulting from end stage liver disease.  

 The lack of modulations of IGF-1 signaling lead us to verify if the MSTN pathway could be 

involved in muscle depletion in cirrhotic patients. In this regard, up-regulation of MSTN-dependent 
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signaling was proposed to result in increased expression of muscle-specific ubiquitin ligases (49, 

50). Increased MSTN expression and bioactivity were reported in different experimental models of 

cancer cachexia (51,52) as well as in gastric cancer patients (48).
 
We failed to find any differences 

in MSTN mRNA expression and protein levels in cirrhotic patients with respect to controls, even 

when stratified according to the presence of malnutrition or muscle depletion. These data are in 

contrast with the previous experimental evidences by Dasarathy et al., although in these studies 

muscle atrophy was induced in rats by portosystemic shunting a model which induces a liver 

dysfunction not exactly comparable to liver cirrhosis (34-37). 

The creation of a porto-caval anastomosis in experimental animals induces liver atrophy without 

liver failure. In particular, the microscopic changes in the liver demonstrate a secondary atrophy 

that is not accompanied by changes in hepatic architecture (53). 

Therefore the animal model of PCA mimics the situation induced in cirrhosis by porto-systemic 

shunting, but does not reproduce the condition of progressive liver insufficiency characteristic of 

this illness. It is also unclear if alterations in nutritional status and muscle depletion, which are 

observed in PCA rats, are determined by the same physiopathological mechanism of cirrhotic 

patients. In fact, the contributors of muscle depletion and malnutrition in cirrhosis are multifactorial 

and probably more complex.  

Cirrhotic patients have a long lasting chronic liver disease, and malnutrition is a progressive and 

gradual manifestation associated to the more advanced stages of the disease rather than a rapid short 

term event. For this reason the catabolic muscle pathways may be activated in some phases during 

the illness but, in the same way, counteracting mechanism may also occur to avoid the development 

of cachexia. These circumstances may explain way the muscle molecular pathways evaluated in our 

study were not completely activated in malnourished cirrhotic patients.  

Finally, we confirmed that muscle depleted/malnourished patients had increased post-transplant 

complications. Considering the well-established negative prognostic value of sarcopenia on survival 
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in both non-transplanted and transplanted cirrhotic patients (3,8)
 

further clinical studies are 

mandatory to better explain the mechanisms underlying muscle loss in end-stage liver disease. 

These could allow for the development of preventative and therapeutic strategies for muscle atrophy 

aimed at further improving quality of life and survival in liver cirrhosis. 
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Table 1 

Oligonucleotide sequences  

Gene Primer sequence Amplification Cycles 

GAPDH 

(NM_002046.3) 

FW: GGTGAAGGTCGGAGTCAACG 

RW: CAAAGTTGTCATGGATGACC 

1’   94°C 

1’   55°C 

1’   72°C 

 

24 

IGF-1 

(NM_001111283.1) 

FW: CAGCAGTCTTCCAACCCAAT 

RW: CACGAACTGAAGAGCATCCA 

30’’   94°C 

1’   60°C 

1’   72°C 

 

35 

MSTN 

(NM_005259.2) 

FW: TGGTCATGATCTTGCTGTAACCTT 

RW: TGTCTGTTACCTTGACCTCTAAAAACG 

1’   95°C 

1’   60°C 

1’   72°C 

 

35 

Atrogin-1 

(NM_058229.2) 

FW: TCACAGCTCACATCCCTGAG 

RW: AGACTTGCCGACTCTTTGGA 

1’   95°C 

1’   58°C 

1’   72°C 

 

25 

MuRF-1 

(NM_032588.2) 

FW: TGAGCCAGAAGTTTGACACG 

RW: TGATGAGTTGCTTGGCAGTC 

1’   95°C 

1’   58°C 

1’   72°C 

 

25 

 

Abbreviations: GAPDH: Glyceraldehyde 3-Phosphate Dehydrogenase; IGF-1: Insulin-like Growth 

Factor-1; MSTN: Myostatin 
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Table 2. Demographic, clinical and nutritional characteristics of cirrhotic patients (n=30). 

Age (years)(mean + SD)  54 ± 8  

Sex (male/females) (n) 24/6 

Origin of liver disease  (alcoholic / viral/ others) (n) 4 /20/ 6 

Concomitant HCC (>T1) ( n% pts) 9 (30) 

MELD score (mean + SD )  17.2 ± 6.7  

Child-Pugh class A/B/C (n)  5/11/14 

Weight (kg)(mean ± SD) 72.8 ± 13.7 

BMI (kg/m
2
)(mean ± SD) 25.3 ± 3.6 

MAMC (cm)(mean ± SD) 24.3 ± 2.6 

MAMA (cm
2
)(mean ± SD) 45.9 ± 9.1 

SGA A/B/C  (n) 15/12/3 

Serum Cholesterol (mg/dl)( mean ± SD) 110 ± 58 

Serum Triglycerides (mg/dl) (mean ± SD) 97 ± 61 

Serum total Proteins (g/dl)( mean ± SD) 6.5 ± 1.1 

Serum Albumin (g/dl)( mean ± SD) 3.7  ± 1.4 

Abbreviations: 

HCC: Hepatocellular Carcinoma; MELD: Model for End-stage Liver Disease; BMI: body mass 

index; 

MAMC: mid arm muscle circumference ; MAMA: mid arm muscle area; SGA: subjective global 

nutritional assessment. 
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Table 3  

Expression of mRNA by reverse semiquantitative transcription (RT-PCR) of components of 

the ubiquitin-proteasome pathway (MuRF-1and atrogin-1) and  of IGF-1 and MSTN  in end-

stage liver disease patients (differences between the 2 groups are not statistically significant).  

 

 Patients 

(n=10) 

Controls 

(n=4) 

MSTN 101 ± 19 

 

100 ± 8 

 

IGF-1 102 ± 30 

 

100 ± 25 

 

Atrogin-1 90 ± 22 

 

100± 8 

 

MuRF-1 101 ± 28  100 ± 40   

 

                        Data (mean ± SD) are expressed as percentage of controls (C=100%). 

                       Abbreviations: MSTN: Myostatin; IGF-1: Insulin-like Growth Factor-1 
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Figure legends 

Figure 1. Box Plot of  muscle MuRF-1 mRNA expression in muscle specimens from end stage 

liver disease patients according to Subjective Global Assessment (SGA) score. Data (means ± SD 

are expressed as percentage of the controls (C=100%). 

Well-nourished (SGA A): n= 6; malnourished  (SGA B-C): n= 4; * p= 0.01 Malnourished patients 

were also muscle-depleted according to MAMA.   

 

Figure 2. Myostatin protein levels in muscle specimens of end stage liver disease patients. 

Panel A: densitometric quantifications of myostatin protein levels normalized to GAPDH. Data 

expressed as means ± SD, n = 22 patients and 10 controls.  

Panel B: representative western blots for myostatin and GAPDH (loading controls).  

 

Figure 3. GSK3β protein levels in muscle specimens of end stage liver disease patients. 

Panel A: densitometric quantifications of  pGSK3β protein levels normalized to GAPDH. Data 

expressed as means ± SD, n = 22 patients and 10 controls.  

Panel B: representative western blots for pGSK3β and GAPDH (loading controls). 

 

Figure 4. pSMAD 2/3 protein levels in muscle specimens of end stage liver disease patients. 

Panel A: densitometric quantifications of pSMAD 2/3 protein levels normalized to GAPDH. Data 

expressed as means ± SD, n = 22 patients and 10 controls.  

Panel B: representative western blots for pSMAD 2/3 and GAPDH (loading controls). 
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Figure 5. Box Plot of  muscle p-GSK3β  in muscle specimens from end stage liver disease patients 

according to the presence of Hepatocellular Carcinoma (HCC). Data (means ± SD) are expressed as 

percentage of controls (C=100%) (HCC  n= 5, No-HCC n =17;  * p =0.04). 
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Fig.2.  
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Fig.3.  
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Fig.4.  
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Fig.5.  
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