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Abstract

We present preliminary updated global fits to the moments of semileptonic B decay distributions and extract |Vcb| in
addition to the heavy quark masses (mb,mc), and non-perturbative heavy quark expansion parameters (μπ, μG, ρD, ρLS ).
Included are both NNLO perturbative corrections and presently calculated perturbative corrections to the power sup-
pressed operators. We also discuss briefly the method of integration used to compute the O(αsΛ

2
QCD/m

2
b) corrections.
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1. Introduction

A precise theoretical determination of the CKM ma-
trix element Vcb is imperative for an accurate explo-
ration of heavy flavor phenomena. The b→ c transition
is important for the analysis of CP violation in the Stan-
dard Model(SM), and in constraining both flavor violat-
ing processes and the CKM unitarity triangle values of
ρ̄ and η̄.

The determination of Vcb from inclusive semileptonic
B decays is based on an Operator Product Expansion
(OPE) that allows us to express the widths and the mo-
ments of the kinematic distributions of B → Xu,c�ν as
double expansions in αs and ΛQCD/mb. These correc-
tions are now known perturbatively to O(α2

s)[1, 2, 3, 4],
O(αsΛ

2
QCD/m

2
b)[5, 6, 7], and to O(Λ3

QCD/m
3
b)[8, 9] in the

Heavy Quark Expansion (HQE)[10].
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In Equation 1 one can see the different elements of the
double expansion for a given observable. For the ob-
servables that concern us, the green terms have been
calculated previously, the blue terms are the new cor-
rections that have been added to the calculations of the
necessary observables, and the red terms are currently
being calculated or have been approximated in vari-
ous methods[11]. Each observable is dependent on the
masses of the heavy quarks, mb and mc, αs the strong
coupling constant, and the matrix elements of local op-
erators operating on the B-meson at increasing powers
of 1/mb. To the order currently calculated this includes
μ2
π and μ2

G at O(1/m2
b), ρ3

D and ρ3
LS at O(1/m3

b). These
matrix elements can be constrained by various measure-
ments of the first 3 central moments of the lepton energy
and hadronic mass distributions of B→ Xc�ν. Each ob-
servable is measured varying the low-energy cut-off of
the leptonic spectrum and these have been measured to
good accuracy at the B-factories, CLEO, DELPHI and
CDF.

Combining with the total semileptonic width, these
parameters can then be used to extract |Vcb| . In the past
this strategy has been quite successful and has allowed
for a ∼ 2% determination of Vcb from inclusive decays
[12]. Additional motivation for increasing the precision
of the extracted parameters is a desire to resolve a ∼ 2σ
discrepancy that exists between the current inclusive
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determination and the most precise |Vcb| determination
from the exclusive B → D∗�ν at zero recoil with a lat-
tice calculation of the form-factor [12, 13]. It should be
noted however that the zero-recoil form-factor estimate
based on heavy quark sum rules leads to |Vcb| in good
agreement with the inclusive result [14].

2. Theoretical Error and Correlations

The previous procedures used in the semileptonic
fits[15, 16, 17] have been recently re-examined and a
few relevant issues are worthy of ones concern : i) the
theoretical uncertainties and how they are implemented
in the fit, and ii) the inclusion of additional constraints
on the parameters. For a thorough overview we direct
the reader to consult [18]. In brief, considering 100%
correlation between an observable and the same observ-
able with a different cut on the leptonic energy is too
strong of a stipulation. This requirement is relaxed and
tested with various parametrizations of the correlations
between observables.

In these proceedings we will be using a limited se-
lection of the theoretical correlation options and addi-
tional mass constraints. The full results will be pub-
lished in a following submission. We choose to look
solely at the scenario that provided the most accurate
and reliable results at O(α2

s), which is the case of a func-
tional theoretical correlation between moments [D], and
using the constraints of mc = m̄c(3GeV), and not in-
cluding external mb constraints. This is performed with
αs(μ) = αs(mb) = 0.22, and μ2

G(μμG ) = μ2
G(mb).

3. Experimental Observables

The relevant quantities used in the fit are the first 3
moments of the leptonic energy spectrum as a function
of a cut on the lower energy limit,

〈En
� 〉E�>Ecut =

∫ Emax

Ecut
dE� En

�
dΓ
dE�∫ Emax

Ecut
dE� dΓ

dE�

, (2)

which are measured for n up to 4, as well as the ratio R∗

between the rate with and without a cut

R∗(Ecut) =

∫ Emax

Ecut
dE� dΓ

dE�∫ Emax

0 dE� dΓ
dE�

. (3)

R∗ is needed to relate the actual measurement of the rate
to one with a cut, from which one can then extract |Vcb|.

Due to the high degree of correlation in the first three
linear moments, it is beneficial to instead study the cen-
tral moments, including the variance and asymmetry of

the lepton energy distribution. In our procedure we will
consider only R∗ and the first 3 central moments,

�1(Ecut) = 〈E�〉E�>Ecut ,

�2,3(Ecut) = 〈(E� − 〈E�〉)2,3〉E�>Ecut . (4)

In the case of the moments of the hadronic invariant
mass distribution we similarly consider the central mo-
ments

h1(Ecut) = 〈M2
X〉E�>Ecut ,

h2,3(Ecut) = 〈(M2
X − 〈M

2
X〉)

2,3〉E�>Ecut . (5)

One will find below in Table 1 a list of the experimental
data used in our fit of the HEQ parameters and heavy
quark masses used in extracting Vcb .

experiment values of Ecut(GeV) Ref.
R∗ BaBar 0.6, 1.2, 1.5 [19, 20]
�1 BaBar 0.6, 0.8, 1, 1.2, 1.5 [19, 20]
�2 BaBar 0.6, 1, 1.5 [19, 20]
�3 BaBar 0.8, 1.2 [19, 20]
h1 BaBar 0.9, 1.1, 1.3, 1.5 [19]
h2 BaBar 0.8, 1, 1.2, 1.4 [19]
h3 BaBar 0.9, 1.3 [19]
R∗ Belle 0.6, 1.4 [21]
�1 Belle 1, 1.4 [21]
�2 Belle 0.6, 1.4 [21]
�3 Belle 0.8, 1.2 [21]
h1 Belle 0.7, 1.1, 1.3, 1.5 [22]
h2 Belle 0.7, 0.9, 1.3 [22]

h1,2 CDF 0.7 [23]
h1,2 CLEO 1, 1.5 [24]
�1,2,3 DELPHI 0 [25]
h1,2,3 DELPHI 0 [25]

Table 1: Experimental data used in the fits unless otherwise speci-

fied.

4. Phase Space Integration

In order to compute the contributions to the moments,
the analytic expressions of the O(αsΛ

2
QCD/m

2
b) correc-

tions given in Refs.[6, 7] need to be integrated over the
phase space. This is most easily accomplished numeri-
cally and it is relatively straightforward. However, when
a lower cut on the lepton energy is applied, or when the
lepton energy is fixed to compute the spectrum, a few
complications arise and it is worth describing the main
steps we used in the integration.
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Our starting point is the triple differential distribution:

dΓ
dÊ� dq̂2 dû

=
G2

Fm5
b|Vcb|2

16π3 θ[û+(q̂2) − û] ×

×
{
q̂2 W1 −

[
2Ê2
� − 2Ê�q̂0 +

q̂2

2

]
W2 (6)

+ q̂2(2Ê� − q̂0) W3

}
,

At the tree-level, only û = 0 is allowed, while gluon
emission is restricted by

0 ≤ û ≤ û+(q̂2) ≡ (1 −
√

q̂2)2 − ρ

0 ≤ q̂2 ≤ (1 −
√
ρ)2. (7)

To understand what happens when the lepton energy E�
is constrained to be larger than Ecut

E� ≥ Ecut ≡
mb

2
ξ, (8)

we first recall that without this cut the energy of the lep-
ton would be in the range

q0 − |�q|
2

≤ E� ≤
q0 + |�q|

2
(9)

where q0 and �q are the temporal and spatial components
of the lepton pair four-momentum, which are uniquely
determined for any value of q̂2 and û. We have two re-
gions identified by

A : 0 ≤ û ≤ γ(q̂2), 0 ≤ q̂2 ≤ A0 ≡
ξ(1 − ρ − ξ)

1 − ξ
;

B :

⎧⎪⎪⎨⎪⎪⎩
γ(q̂2) ≤ û ≤ u+(q̂2), ξ2 ≤ q̂2 ≤ A0

0 ≤ û ≤ u+(q̂2), A0 ≤ q̂2 ≤ (1 − √ρ)2

where

γ(q̂2) = 1 + q̂2
(
1 −

1
ξ

)
− ρ − ξ.

The integration over E� can be performed analytically
from the triple differential distribution and depends on
the phase space region, as explained above. We are left
with the integration over û and q̂2 in the various regions.
The expressions we have to integrate can be split into
three contributions: terms containing the Dirac delta
δ(û) and its derivatives δ(n)(û), terms containing the plus
distributions, and the finite part. Schematically,

d2ΓX

du dq2 = Di,X(û, q̂2) δ(i) [û]

+Ui,X(û, q̂2)
[

1
ûi

]
+

+ TX(û, q̂2) θ(û), (10)

where we distinguish between X = f ull, for region
B, and X = cut for region A. We next perform first
the û integration and reorganize the integral into three
contributions in order to avoid spurious singularities at
the boundary between regions A and B. In particular,
we write the contribution of region B as the difference
of two integrals starting from û = 0. If ξ < (1 − √ρ),
the integral over the phase space is the sum of

RI =

∫ ξ2
0

dq̂2
∫ γ(q̂2)

dû
d2Γcut

dq̂2dû
,

RII =

∫ A0

ξ2
dq̂2
∫ γ(q̂2)

dû
[

d2Γcut

dq̂2dû
−

d2Γ f ull

dq̂2dû

]
,

RIII =

∫ (1−
√

q̂2)2

ξ2
dq̂2
∫ u+(q̂2)

dû
d2Γ f ull

dq̂2dû
. (11)

When ξ ≥ (1− √ρ), only one integral must be evaluated,

RIV =

∫ A0

0
dq̂2
∫ γ(q̂2)

dû
d2Γcut

dq̂2dû
. (12)

The integral of δ(n)(û) reduces to a one-dimensional in-
tegral over q̂2 at û = 0, but the presence of θ[ûmax(q̂2)−û]
and θ[γ(q̂2)− û] from the û cuts induces pinched contri-
butions, i.e. terms containing δ(n)[ûmax(q̂2) − û]δ(û). In
the case of the integral of δ(1)(û) in RII , for instance, we
have

∫ A0

ξ2
dq̂2
∫
θ[γ(q̂2) − û] g(û, q̂2) δ(1)(û) dû =

−
∫ A0

ξ2

∂g
∂û

∣∣∣∣
û=0

dq̂2 +
ξ

|1 − ξ|
g(0, A0). (13)

A similar expression involving higher derivatives can
be derived for δ(2)(û). The resulting integrations can be
easily performed in all regions.

For what concerns the plus distributions, it is conve-
nient to use

f (û)
[
1
û

]
+

= û f (û)
[

1
û2

]
+

= û2 f (û)
[

1
û3

]
+

(14)

in order to have only one distribution with the maximal
power, which in the case of the λ1O(αsm−2

b ) corrections
is 3. The next step consists in applying the definition of
plus distribution given in [6]

I =
∫

f (û)
[

1
û3

]
+

dû

≡
∫ 1

0

f (û) − f (0) − û f ′(0) − 1
2 û2 f ′′(0)

û3 dû, (15)
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where f (û) = θ[ûm(q̂2) − û]g(û, q̂2), and ûm(q̂2) de-
pends on the region of integration. The differentiation
of the θ function leads to terms containing θ[ûm(q̂2)],
δ[ûm(q̂2)] and δ′[ûm(q̂2)]. While RI ,RIII can now be nu-
merically integrated without problems, in the case of RII

the θ[ûm(q̂2)] terms can be integrated over û but present
a logarithmic singularity in q̂2. The change of variable
q̂2 → q̂2+ − (q̂2+ − q̂2−) û, where q̂2± delimit the inte-
gration range in q̂2, moves the singularity to û = 0, and
make it possible to combine it with the singularity of the
δ[ûm(q̂2)] and δ′[ûm(q̂2)] terms; the singularities cancel
and their combination can be then be numerically inte-
grated.

Explicitly,

I =
∫ ûm(q̂2)

0

g(û) − g(0) − ûg′(0) − 1
2 û2g′′(0)

û3 dû

−
∫ 1

ûm(q̂2)

g(0) + ûg′(0) + 1
2 û2g′′(0)

û3 dû

+

∫ 1

0

(g(0) + g′(0)û) δ[ûm(q̂2)] − 1
2 g(0) û δ′[ûm(q̂2)]

û2 dû.

(16)

where g is always a function of q̂2 as well. Upon inte-
gration over q̂2 the second line has a logarithmic singu-
larity where the integration range of û vanishes, in the
lower right corner of region A. Instead, the third line
has a logarithmic singularity for û→ 0.

5. Preliminary Results

We first present the results of the numerical integra-
tion for each of the theoretical observables as a func-
tion of the letponic energy cut Ec in Figure 1. It is ap-
parent that the new O(αsΛ

2
QCD/m

2
b) corrections are non-

negligible, and compete with the NNLO contribution.
This also drives the importance of continuing the cal-
culation of the NLO corrections O(αsΛ

3
QCD/m

3
b) , as the

leading order 1/m3
b corrections have large coefficients,

and so one would similarly expect the NLO correction
to also be competitive.

We perform the global fit following the same method
as the previous determination [18], using for these pro-
ceedings only the case of [D] neglecting the external
constraints on mb. Provided as preliminary result we
obtain Table 2, although we stress that further analy-
sis is ongoing and will be presented shortly, and val-
ues are subject to minor adjustment. The right col-
umn of Table 2 is the results of the performed fit for
the matrix element parameters, quark masses, and the

Figure 1: Theoretical observables �1,2,3, h1,2,3 and R∗ as a function

of Ecut.

resulting determination of Vcb . We find the new cor-
rections lower Vcb by about 1%, leading to |Vcb|prelim =

(42.02 ± 0.8) × 10−3.

mc(3GeV)
[D] O(α2

s ,m
−2
b ) δ O(α2

s , αsm−2
b ) δ

mkin
b 4.541 0.023 4.551 0.022

mc 0.987 0.013 0.989 0.013
μ2
π 0.414 0.078 0.411 0.078
ρ3

D 0.154 0.045 0.123 0.044
μ2

G 0.340 0.066 0.320 0.064
ρ3

LS -0.147 0.098 -0.141 0.097
BRc�ν(%) 10.65 0.16 10.65 0.16
103 |Vcb | 42.42 0.86 42.02 0.80

Table 2: Preliminary results using scenario [D] and mass constraint

mc(3GeV)

Further discussion including the effects of the de-
pendence of the strong coupling scale αs(μ), the renor-
malization scale of μG(μR), and the effect of various
parametrizations of the theoretical correlation of ob-
servables have been calculated and will be presented
shortly.
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