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Abstract 

 

The influence of different titanium additives on hydrogen sorption in LiHeMgB2 system has been investigated. For all the composites 

LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, and TiC), prepared by ball-milling in molar ratios 2:1:0.1, Þve hydrogen uptake/release cycles 

were performed. In-situ synchrotron radiation powder X-ray diffraction (SR-PXD) and attenu-ated total reßection infrared 

spectroscopy (ATR-IR) have been used to characterize crystal phases developed during the hydrogen absorptionedesorption cycles. 

All the composites with the titanium additives displayed an improvement of reaction kinetics, especially during hydrogen 

desorption. The LiHeMgB2eTiO2 system reached a storage of about 7.6 wt % H2 in w1.8 h for absorption and w2.7 h for desorption. 

Using in-situ SR-PXD measurements, magnesium was detected as an intermediate phase during hydrogen desorption for all 

composites. In the composite with TiF4 addition the formation of new phases (TiB2 and LiF) were observed. Characteristic 

diffraction peaks of TiO2, TiN and TiC additives were always present during hydrogen absorptionedesorption. For all as-milled 

composites, ATR-IR spectra did not show any signals for borohydrides, while for all hydrogenated composites BeH stretching 

(2450e2150 cm 1) and BeH bending (1350e1000 cm 1) bands were exactly the same as for commercial LiBH4. 

 

1. Introduction 

 

Hydrogen can be one of the alternative energy carriers, which should replace the traditional fossil fuels in the near future. One of the 

promising materials for hydrogen mobile applica-tion which has been studied approximately for 10 years is LiBH4 [1]. Having high 

gravimetric and volumetric hydrogen density, this material, though, exhibits unfavorable kinetics and thermodynamics for real 

application in fuel cells. Recently, it was found that LiBH4 can be destabilized by the addition of MgH2, showing better 

decomposition kinetics with respect to the pure compound [2]. A detailed analysis of the reversible interaction between LiBH4 and 

MgH2 was made in [3] and can be summarized as follow: 

 

 

2LiBH4 þ MgH2 4 2LiBH4 þ Mg þ H2 4 2LiH þ MgB2 þ 4H2 (1) 

 

The direct reactions (1) take place at w400 C. Opposite reactions, with simultaneous formation of LiBH4 and MgH2 under 50 bar 

of H2, was conÞrmed at the temperatures 250e300 C [3]. It was observed that suitable additives might decrease reaction temperatures 

and improve kinetics of Eq. (1). Experimental evidence of kinetic improvement for reversible middle-temperature Na, Li and Al 

based complex hydrides doped by titanium additives appeared in 1997 [4]. It has also been reported that the kinetic improvement of 

the reaction (1) was reached by addition of 1 mol% of TiF3 [5]. The property enhancement arising upon this additive persists well in 

the subsequent hydrogen uptake/release cycles. Another prom-inent example of the additives effect was the composite 

LiBH4eMgH2eTi{OCH(CH3)2}4 mixed in molar ratio 2:1:0.1 [6]. After ball-milling TiO2 anatase was found and during 1-st 

hydrogen desorption Ti2O3 and TiB2 appeared to be stable after cycling. XPS analysis showed that the reduction of Ti(IV) to Ti(III) 

was coupled with the migration of titanium species from the surface into the bulk of the composite. The role of additives and 

microstructure reÞnement in LiBH4eMgH2 system were studied in [7,8], revealing that two main factors, proposed as potential 

driving force for kinetic improvement, were related to (i) favoring heterogeneous nucleation of MgB2 and (ii) increasing of 

interfacial area trough grain reÞnement. Tita-nium diboride (TiB2) has the same hexagonal lattice structure as MgB2 with very small 

(1.85%) directional and interplanar misÞt. This fact is a necessary condition for heterogeneous nucleation of MgB2 because of the 

interfacial energy lowering. The appropriate concentration of the additive and its homo-geneous distribution were found to be the 

main conditions for the efÞcient heterogeneous nucleation of MgB2. However because of no change of the limiting rate neither for 

hydrogen absorption (contracting volume model) nor for desorption (interfaced-controlled one-dimensional growth) [8], induced by 

the additives, the latter do not show catalytic behavior. The theoretical work [9] has shown that thermodynamic stability of point 

defects in complex hydrides deÞnes the ground or inter-mediate states or the driving force for atomic motion. Incor-poration of Ti 

cations in LiBH4 is energetically unfavorable suggesting that only surface effect takes place. 

In order to understand thoroughly the effect of titanium additives, where metallic part is Ti and non-metal is the element of 2-nd 

period of the Periodic Table from F to C, we have started a systematic investigation. In this work the study on the inßuence of several 

titanium additives (TiF4, TiO2, TiN and TiC) on reversible hydrogen reactions in 2LiHeMgB2 system during Þve hydrogen 

uptake/release cycles is presented. 

 

2. Experimental details 

 



Commercial LiH ( 95%, Sigma Aldrich) and MgB2 (>96%, Alfa Aesar) powders were used to prepare composite with titanium 

additives in molar ratios 2:1:0.1, respectively. TiF4 (98%, Alfa Aesar), TiO2 (rutile, 99.7%, Sigma Aldrich), TiN (97.7%, Alfa Aesar) 

and TiC (99.5%, Alfa Aesar) were chosen as additives. The composites of powders were high-energy milled for 5 h using Spex 8000 

M Mixer Mill in argon atmosphere. Stainless steel balls 10 mm in size with 10:1 ratio balls to powders were used. 

Hydrogen sorption measurements were carried out in a commercial SievertÕs type apparatus (PCTpro 2000). The milled 

composites were hydrogenated under 50 bar of hydrogen pressure at 330 or 350 C in a special high pressuree temperature sample 

holder. Hydrogen desorption was per-formed under 5 bar back pressure of hydrogen at 380 C, after previous absorption. Five 

complete hydrogen uptake/release cycles were performed. 

In-situ SR-PXD was performed in D3 beamline at DESY Hamburg (Germany). The samples were airtight encapsulated in 

sapphire capillaries to be installed in a special in-situ SR-PXD cell; further details are described in [10]. Samples after complete 

1-st hydrogen absorption were heated at 5 C/min from room temperature up to 380 C and kept in isothermal conditions for 2 h 

and then cooled down to room temperature. All handling and preparation of materials took place in a glove-box with continuously 

puriÞed argon atmosphere and oxygen and moisture values were less than 1 ppm. 

ATR-IR (Attenuated total reßection infrared) spectra were taken with a Bru¬ker-ALPHA Platinum spectrometer with ATR 

diamond crystal accessory. The spectra were recorded in 4000e375 cm 1 range with 2 cm 1 resolution. Sixty four scans were 

averaged for background and sample spectra. All the measurements were carried out in the nitrogen Þlled glove-box with oxygen 

and moisture levels less that 0.1 ppm. 

 

3. Results and discussion 

 

3.1. Hydrogen uptake/release cycling 

 

As a reference, a complete hydrogen uptake/release cycle for the LiHeMgB2 system without any additive has been per-formed. In 

Fig. 1, the results of volumetric analysis of hydrogen absorption at 350 C and 50 bar H2 and desorption at 380 C and 5 bar H2 for 

LiHeMgB2 in molar ratio 2:1 are presented. 

The reaction rate of hydrogen absorption and desorption is approximately six times different: w20 h are required for 

hydrogenation (w8.7 wt% H2) and more than 120 h for complete dehydrogenation. A two-step hydrogen release was observed, 

displaying: approximately w2.3 wt% H2 from MgH2 and w6.4 wt % H2 from LiBH4 decomposition. Absorption curve is very 

similar to that obtained in [11] at the same conditions. Probably, due to a slightly smaller desorption temperature (400 C in [11] 

and 380 C in present work) the process in our case was much slower although it showed the same two-step reaction. 

The 1-st hydrogen absorptionedesorption cycle in the LiHeMgB2eTiF4 system (Fig. 2) showed similar hydrogen absorption 

time (w20 h) but lower gravimetric capacity (w7.5 wt% H2) compared to that of the unmodiÞed LiHeMgB2 (Fig. 1). Because of 

slower reactions at the 1-st cycle (1-st hydrogen absorption and 1-st desorption), an activation process could take place. It might 

be explained by grain reÞnement in solid material under repeating of hydrogen sorption reactions. After that, the system displays 

three-step reversible reaction (w2.3 wt % H2 in w0.7 h; w6.6 wt% H2 in w2.2 h; and further to be complete) and (w2.3 wt% H2 in 

w0.6 h; w7.4 wt% H2 in w5.4 h; and further to be complete) on hydrogen absorption and desorption, respectively. It can be 

concluded that the rate of hydrogen absorption and desorp-tion at various steps is increased because of the addition of TiF4 to the 

LiHeMgB2 system, though hydrogen storage capacity was lowered by 1.2 wt% H2. 

For the LiHeMgB2eTiO2 system, at least two cycles were necessary to stabilize hydrogen absorption/desorption properties 

(Fig. 3). After the 2-nd cycle, the system showed w8.1 wt% H2 hydrogen storage capacity after w10 h of hydrogenation. 

Beginning from 3-rd cycle two reaction steps were very well distinguished and resulted to w7.6 wt% H2 in w1.8 h and 2.7 h for 

hydrogen absorption and desorption, respectively. In this case, rates for hydrogen absorption and desorption are rather similar. 

During the 1-st cycle, LiHeMgB2eTiO2 showed the same value of hydrogen gravi-metric density as the unmodified LiHeMgB2 

but with faster kinetics. 

The results of hydrogenation/dehydrogenation reactions in the LiHeMgB2eTiN system are shown in Fig. 4. After the 1-st 

cycle, the process is stable and requires w20 h to reach the maximum gravimetric capacity of w8.0 wt% H2. The hydrogenation 

curve does not show distinctive steps, however during the hydrogen desorption three separate steps are clearly visible. The 4-th 

desorption cycle displays only two steps (w2.6 wt% H2 in w0.5 h; w7.9 wt% H2 in w9.2 h); and the process is not completed. The 

LiHeMgB2eTiN system, indeed, showed 12 times faster desorption rate than the unmodified LiHeMgB2, though hydrogen storage 

capacity was reduced by w0.7 wt% H2. 

For the LiHeMgB2eTiC system at least four cycles were needed in order to have a stable hydrogen uptake/release reaction. 

Hydrogen storage capacity of w7.0 wt% H2 within w20 h was achieved at the 5-th cycle (Fig. 5). Only for hydrogen desorption it 

was possible to distinguish the Þrst step (w2.0 wt % H2 in w0.5 h; and further to be complete). We conclude that, among all 

presented system with titanium additives, the LiHeMgB2eTiC one showed the major reduction in hydrogen storage capacity (w1.7 

wt% H2), though much higher hydrogen desorption rates were observed with respect to the unmodi-Þed LiHeMgB2 system. 

In conclusion, all titanium additives in the LiHeMgB2eX systems (X ¼ TiF4, TiO2, TiN and TiC) demonstrated kinetic 

improvement, especially during hydrogen desorption. The system with the TiO2 additive showed faster rates for both hydrogen 

uptake and release, together with the lowest decrease in hydrogen storage capacity (w0.6 wt% H2). One important note that 

should be mentioned in this subtitle is the value of hydrogen absorption and desorption capacity. Theo-retically, during hydrogen 

uptake/release cycling the value of hydrogen storage capacity must be exactly the same as under complete absorption or 

desorption, of course if the system is stable. In present results (Figs. 1e5) quite often small uncer-tainties were present where 

hydrogen capacity under desorption was higher than that under absorption. It might be explained by a shorter incubation period 

before the system start to react, especially in the next cycles. It is suggested that during manual switching from dehydrogenation 

to hydroge-nation some amount of hydrogen could be absorbed when data acquisition had not been active yet. 

 

3.2. In-situ SR-PXD for LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, TiC) systems 

 

For all hydrogenated LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, TiC) systems in-situ SR-PXD analysis was performed (Fig. 6). Traces of 

MgB2 were found in all the samples after 1-st hydrogen absorption, suggesting that the hydrogenation process was not completed. At 



the beginning of Þrst hydrogen desorption reaction, pure magnesium phase was clearly visible, con-Þrming the occurrence of a two-

step reaction (1). 

In the LiHeMgB2eTiF4 system (Fig. 6a), after the 1-st hydrogen absorption step, the expected products (LiBH4 and MgH2) were 

present as the main phases. In addition, new phases TiB2 and LiF were detected in the sample, whereas there was no evidence of 

present TiF4. Most probably, LiF formed during milling (similar to TiF3 in [5]) by the following reaction: 

4LiH þ TiF4 / 4LiF þ TiH2 þ H2 (2) 

 

And TiH2 can easily react at higher temperatures with LiBH4 to produce TiB2 (estimated reaction enthalpy is w6.5 kJ/ mol H2): 

2LiBH4 þ TiH2 / 2LiH þ TiB2 þ 4H2 (3) 

 

Upon heating the hydrogenated LiHeMgB2eTiF4 composite started hydrogen desorption through MgH2 decomposition and Mg 

formation just before isothermal conditions. During the heat treatment two diffraction peaks characteristic of a cubic phase appeared. 

These peaks were quite broad, likely due to the superposition of reßections due to LiH and LiF phases. Upon cooling, the peaks of o-

LiBH4 reappeared. It should be denoted that, after the isothermal treatment of 2 h at 380 C, no diffraction peaks due to MgH2 or Mg 

phases were detected, suggesting that after this period the Þrst step of the reaction (1) was completed. 

The SR-PXD pattern of the LiHeMgB2eTiO2 system (Fig. 6b) after 1-st hydrogen absorption showed diffraction peaks due to the 

products of the reversible reaction (1) (LiBH4 and MgH2), together with a small amount of residual MgB2. Most of TiO2 peaks were 

present during whole SR-PXD experiment. It means that this additive might be chemically inert toward the reagents. During heating 

of the hydrogenated mixture, hydrogen desorption started just before 380 C, as it was already observed for the previous composite, 

showing pure magnesium as intermediate. After cooling, no diffraction peaks related to Mg or MgH2 phases were observed. 

The pattern of the LiHeMgB2eTiN system (Fig. 6c) showed diffraction peaks due to the products of reactions (1), similarly to the 

previous cases, together with evidence of the parent TiN phase. The additive was present during the whole SR-PXD measurement, 

conÞrming that no chemical reactions between the additive and the hydrides took place. Overall, the behavior of LiHeMgB2eTiN 

sample under heating and cooling was similar to that observed for LiHeMgB2eTiO2 mixture. 

The LiHeMgB2eTiC system (Fig. 6d ) also showed the products of hydrogen absorptionedesorption and unreacted titanium-based 

additive, similarly to the case of LiHeMgB2eTiO2 and LiHeMgB2eTiN mixtures. Four diffrac-tion peaks of TiC phase, indeed was 

observed SR-PXD patterns, confrming that the additive does not react with the hydrides. 

Based on SR-PXD observations, it can be concluded that only TiF4 additive was chemically reacting in the composite during ball-

milling, so that the new LiF and TiB2 phases were formed. 

 

3.3. ATR-IR spectroscopy of milled and hydrogenated LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, TiC) systems 

 

Infrared spectroscopy is a suitable tool for characterization of metal borohydrides since the molecular vibrations of [BH4] group are 

readily distinguishable in the spectrum. Further-more, the normal modes of [BH4] group are very sensitive to the surrounding so that 

the alterations in a borohydride chemical composition, lattice symmetry, and the bond type can be identiÞed in the spectrum (see 

reference [12] and references therein).Free [BH4] species belong to Td symmetry point group with four normal modes of vibration:, 

v2, v3, and v4, out of which the latter two triply degenerate modes are IR-active. The BeH stretching modes (v1 , v3) of [BH4] fall in 

the 2500e2100 cm region, HeBeH bending vibrations (v2 , v4) can be observed in the 1200e900 cm 1 region. In the Pnma space 

group of LiBH4, the site symmetry of [BH4] species is lowered till Cs, all modes become IR-active, and the degeneracy of normal 

modes is removed, giving rise to additional peaks in the spectra [13]. In this way, the IR spectrum of LiBH4 is indeed a unique 

fingerprint of this solid. 

The ball-milled LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, TiC) composites were tested by ATR before and after hydrogena-tion, in 

order to verify the formation of LiBH4. ATR spectra for the as-prepared composites are shown in Fig. 7. The spectrum of LiH is also 

reported for comparison. The spectrumv1 of LiH is characterized by a large absorption in the <1200 cm 1 region, due to the vibrations 

of the crystal lattice. It can be readily seen that this absorption is also present in all the LiHeMgB2eX composites. It is also 

straightforward that LiBH4 is not formed during ball-milling process, since no charac-teristic vibrations in 2500e2100 cm 1 and the 

1200 - 900 cm 1 regions are present. All the composites have the baseline absorption steadily increasing at the lower frequencies, 

which is characteristic for MgB2 (Fig. S1). No absorption peaks of TiF4 at ca. 750 cm 1 (see Fig. S1 in Supporting Information) are 

observed in the composite with TiF4 additive. The weak peaks at ca. 2800e3000 cm 1 and at ca. 1600e1400 cm 1 correspond to 

molecular vibrations of organic compounds (e.g. CeH stretching and bending of eCH3 groups in aliphatic hydro-carbons; C]O 

groups, eCeOeCe groups, etc.). These carbon species were likely originated during ball-milling, where vials were cleaned with 

ethanol and a rubber O-ring was used as a gasket for sealing. 

The IR-ATR spectra of ball-milled LiHeMgB2eX (X ¼ TiF4, TiO2, TiN, TiC) composites after 1-st hydrogen absorption are 

presented in Fig. 8. 

The characteristic [BH4] vibrational proÞle of LiBH4 is readily observable in the spectra of all hydrogenated composites. In 

general, the spectra of LiBH4 formed in the  

hydrogenation composites are similar to that one of the commercially available reference,  where  the  different components normal 

modes are clearly of v2  v3 and v4  distinguishable. The v1 mode is very weak in the IR spectrum and falls in the region of the strong 

v3 mode, such as it cannot be observed in the spectrum. In the spectrum of the composite doped with TiC, an additional peak at 1120 

cm 1, marked with the asterisk on Fig. 9, appears. This peak, however, rather belongs to the impurities that to the modiÞcations in 

LiBH4, since all other principle modes remain almost unaffected. As the vibrational proÞle of [BH4]  is almost the same in the As 

established by SR-PXD experiments, TiO2, TiN and TiC   spectra of all the composites, we can conclude that pure LiBH4 did not 

react with the composites. Therefore they could only   is formed in these samples after hydrogenation. The strong catalyze hydrogen 

sorption kinetics. It should be mentioned   absorption due to LiH in the <1200 cm 1 region, as on the that transition metal oxides are 

more promising additives for   Fig. 7, is not present, which evidences the disappearance of hydrogen kinetics than pure transition 

metals though the   LiH phase from these samples after hydrogenation.  latter have orders of magnitude higher activity to molecular   

The increase in baseline absorption (comparing to that of hydrogen dissociation [20e25].  



Obviously, the explanation of   the pure LiBH4) in the spectra of the hydrogenated composites catalytic effect by metal oxides should 

be found by tools of   evidences the presence of some binary compounds. As it can surface science. Indeed, the interaction of high 

surface area   be clearly seen on Fig. 9, the baselines of all the hydrogenation oxides (alumina, titania or their mixtures) with gas has 

been   composites Þt well with the vibrational proÞle of MgH2.  widely studied in heterogeneous catalysis. With respect to   Among 

the four composites, those with TiF4, TiO2, and TiC alumina or titania, the single phase aluminaetitania solid   (spectra 1e3 in Fig. 9) 

have very similar baseline proÞles in the acids [26] have stronger acid sites and higher acid site density.   low  energy  region  of  the  

ATR-IR  spectra,  whereas  the These facts, coupled with their high surface area produce the   composite with the TiN additive 

(spectrum 4) obviously has materials with an even larger number of acid sites per gram,   some additional absorption, which has the 

best Þt with the making them useful in heterogeneous catalysts. 

Probably, for   vibrational proÞle of TiN (the ATR spectra of other reference TiN and TiC catalytic effects also can be explained by 

their   compounds can be found in the Fig. S1 of the Supporting surface activity toward the molecular hydrogen since no   

Information).  

Even after hydrogenation, no absorption peaks chemical reactions with these additives were found.   due to TiF4 at ca. 750 cm 1 are 

observed in the composite with Because of high reactivity of LiBH4, it is not easy to Þnd an   TiF4 additive. It is not possible to 

identify the presence of other additive which is not consumed by chemical reaction. In most   phases, (LiF, TiB2, TiO2, TiC, Ti) 

from these spectra, since they cases, proposed in literature additives behave as reagents   all have rather similar proÞle in the low 

region (Fig. S1), producing intermediates but finally cannot be recovered to the   however, their presence cannot be excluded. Our 

conclusions parent reactants. For TiF4, TiO2, TiN and TiC, depending on the   are supported by the SR-PXD results.  non-metal, the 

standard enthalpy of formation are  1649.3;   3.4.  

General discussion  944.0;  338.1 and  184.5 kJ/mol, respectively [27]. Depending      on the free energy for the possible interactions 

between the      additives and LiH or LiBH4, their behavior can be different:   Theoretically a general catalytic mechanism for 

reaction chemical, physical etc. However, the kinetics of hydrogen   between LiBH4 and MXn  additive (where M is metal with n 

sorption is related to the surface properties of the additives.   valence; X is halogen) would be presented as follows:  We suppose that 

chemically unreacted titanium additives      (TiO2, TiN and TiC) could be the Òactive surface centersÓ,   nLiBH4 þ MXn / nLiX þ 

M(BH4)n (4) where dissociation of molecular hydrogen under hydrogenation and association of atomic hydrogen under 

dehydrogenation can be accelerated.   nLiX þ M(BH4)n / nLiX þ MBnþ 2nH2 (5) In recent work [28] the investigation of the effect 

of Ti,     TiH2, TiB2, TiCl3, and TiF3 additives on the hydrogen sorption kinetics in LiH/MgB2  mixture has been done. There it was   

nLiX þ MBn þ 2nH2 / MXn þ nLiH þ nB þ 2nH2 (6) concluded  that  all  these  titanium  additives  effectively     decrease the onset 

temperature of hydrogenation. Similar to          

This mechanism was observed in case of solid state reac- our present results, the TiH2, TiB2, TiCl3, and TiF3 additives   tion 

between LiBH4 and TiCl3 [14,15]. The reaction occurs at were  mostly  responsible  for  faster  hydrogen  desorption   room 

temperature with the formation of LiCl. Similar result kinetics and only metallic titanium in LiHeMgB2 composite   was observed in 

[16] for the interaction between LiBH4 and actively participates in both hydrogenation and dehydroge-   TiCl4:   nation process [28]. 

This is again the conÞrmation of more      pronounced role of anion (the more electronegative atom in   4LiBH4 þ TiCl4 / Ti(BH4)3 þ 

4LiCl þ 1/2B2H6 þ 1/2H2 (7) titanium additives) at association of atomic hydrogen than     dissociation of molecular hydrogen. From 

another hand,         It was concluded that the dehydrogenation temperatures of based  on  the  measurements  for  LiBH4eMgH2  

composite   Ti(BH4)3 was  298 K.  

Thus, at room temperature and ambient catalyzed by TiCl3, ZrCl4  and HfCl4  additives in [29], we   pressure  Ti(BH4)3   

decomposes  releasing  hydrogen  and suggest that regards to hydrogen desorption Ti cation might   possibly trace amounts of 

gaseous B2H6. Similar ion-exchange be the most signiÞcant element among all of IVB group in   interactions (4) could take place in 

case of LiBH4 with MgCl2 Periodic Table. In conclusion of the discussion, it would be   [17], MnCl2 [18] or ZnF2 [19], and as in 

the present paper, with reasonable to proceed the studying about the effects of tita-   TiF4. In case of RHCs, based on lithium 

borohydride, the nium additives on hydrogen sorption of LiHeMgB2 composite   additives likely react with LiBH4  in similar way. 

However, in order to Þnd suitable chemical structure and optimal   MgH2 plays an additional role in the kinetic improvement [9]. 

amount of the proposed dopant. In addition to that, the   In our experiment, because of the higher temperature of LiBH4 comparison 

with another type of additives (e.g. Sc- or Ce-   crystallization, Ti(BH4)3 was not found as a product of reaction based [30] additives) 

will be important for general under-   (4) but the formation of LiF was confirmed.  standing of their behavior.   

 

Conclusions 

 

It can be noted that the combination of the volumetric, SR-PXD and spectroscopic techniques gives a comprehensive description of 

reactive hydride composites. In present work, we studied the effects of titanium-based additives on hydrogen absorptionedesorption 

properties of 2LiHeMgB2 composite. We found that: 

All the systems with additives showed an improvement of reaction rate, especially for hydrogen desorption. In case of TiO2, the 

composite demonstrated the best kinetics for both hydrogen absorption and desorption (w7.6 wt% H2 in w1.8 h and 2.7 h, 

respectively). Moreover, hydrogen storage capacity of LiHeMgB2eTiO2 system, during Þve sorption cycles, was only slightly 

reduced by w0.6 wt% H2 with respect to that of the unmodified LiHeMgB2. 

For all composites, hydrogen desorption was observed through intermediate step of reaction (1) with the formation of pure 

magnesium. For LiHeMgB2eTiO2 composite, magnesium phase was present during a short time and almost complete hydrogen 

sorption was conÞrmed after 2 h at 380 C. 

IR analysis has shown the presence of peaks due to [BH4] , proving the LiBH4 formation after hydrogen absorption of the all 

composites. The spectrum of the ball-milled LiHeMgB2eTiF4 did not exhibit any peaks due to TiF4, neither after ball-milling nor 

after 1-st hydrogen absorption. The baselines of the spectra of hydrogenated LiHeMgB2eX (X ¼ TiF4, TiO2, TiN and TiC) systems 

indicate the presence of MgH2. 

Only TiF4 additive was chemically active in the composite and consequently new phases (LiF and TiB2) were detec-ted by SR-PXD 

measurements. For other LiHeMgB2eX systems (X ¼ TiO2, TiN and TiC) titanium-based additives were chemically inert during the 

entire experiment. It means that TiO2, TiN and TiC did not react during hydrogen sorption and apparently they could be respon-sible 

for kinetic effect as catalysts. 
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Fig. 1 e Hydrogen sorption for LiHeMgB2 in molar ratio 2:1. Conditions for absorption and desorption were 350 C at 50 bar H2 and 

380 C at 5 bar H2, respectively. 

 
Fig. 2 e Hydrogen sorption for LiHeMgB2eTiF4 in molar ratio 2:1:0.1 during 5 cycles. Absorption (a) at 350 C and 50 bar H2; 

desorption (b) at 380 C and 5 bar H2. 

 
Fig. 3 e Hydrogen sorption for LiHeMgB2eTiO2(rutile) in molar ratio 2:1:0.1 during 5 cycles. Absorption (a) at 330 C and 50 bar H2; 

desorption (b) at 380 C and 5 bar H2 



 
Fig. 4 e Hydrogen sorption for LiHeMgB2eTiN in molar ratio 2:1:0.1 during 5 cycles. Absorption (a) at 330 C and 50 bar H2; 

desorption (b) at 380 C and 5 bar H2. 

 
Fig. 5 e Hydrogen sorption for LiHeMgB2eTiC in molar ratio 2:1:0.1 during 5 cycles. Absorption (a) at 330 C and 50 bar H2; 

desorption (b) at 380 C and 5 bar H2. 

 
Fig. 6 e In-situ SR-PXD under 5 bar H2 for LiHeMgB2eTiX (X [ TiF4 (a); TiO2 (b); TiN (c); TiC (d )) in molar ratio 2:1:0.1 

composites after complete 1-st hydrogen absorption 



 
 

Fig. 7 e ATR-IR spectra of LiHeMgB2eX (X [ TiF4, TiO2, TiN, TiC) systems after ball-milling. The reference spectrum of LiH is 

also shown. Spectra are translated along the Y axis for better representation. 

 
 

Fig. 8 e ATR-IR spectra of LiHeMgB2eX (X [ TiF4, TiO2, TiN, TiC) systems after 1st hydrogen absorption. The reference spectrum 

of LiBH4 is also shown. Spectra are translated along the Y axis for better representation. 

 
 

Fig. 9 e ATR-IR spectra in low region of LiHeMgB2eX (X [ TiF4, TiO2, TiN, TiC) systems after 1st hydrogen absorption: 

Spectra 1e3 correspond to the composites with TiO2, TiC, and TiF4, respectively, spectrum 4 corresponds to the composite with 

TiN additive 


