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1. Introduction

Random probability measures play a fundamental role in Bayesian nonparamet-
rics as their distributions act as nonparametric priors. In this paper we focus on
the stick-breaking representation of discrete random probability measures. On
the one hand, stick-breaking representations have proved to be a fruitful tool for
defining and investigating statistical models involving complex dependent non-
parametric priors. Important contributions in this area are the seminal papers
by MacEachern [25] and MacEachern [26] and, among others, De Iorio et al. [3],
Duan et al. [4], Dunson and Park [5], Dunson et al. [6], Griffin and Steel [13],
Petrone et al. [31] and Teh et al. [42]. On the other hand, stick-breaking rep-
resentations have displayed great potential in addressing computational issues
under the Bayesian nonparametric framework. For instance, recent simulation
algorithms developed in the context of hierarchical mixture modeling, such as
the blocked Gibbs-sampler by Ishwaran and James [15], the slice sampling by
Walker [43] and the retrospective sampling by Papaspiliopoulos and Roberts
[29], rely on the stick-breaking representation of the underlying nonparametric
prior. Stick-breaking representations have also provided a natural tool for ob-
taining an approximate evaluation of the distribution of mean functionals of the
corresponding prior. See, e.g., Muliere and Tardella [28] and reference therein
for details.

The first comprehensive treatment of stick-breaking priors dates back to the
paper by Ishwaran and James [15]. There, they introduced a class of stick-
breaking priors including as special cases the Dirichlet process by Ferguson [10]
and the two parameter Poisson-Dirichlet process by Perman et al. [30]. Specif-
ically, let P0 be a nonatomic probability measure on a complete and separable
metric space X equipped with the Borel σ-field X . Also, let (Vi)i≥1 be a se-
quence of independent random variables such that

∑

i≥1 E [log(1− Vi)] = −∞.
Based on such Vi’s, define a sequence of random probabilities (Pi)i≥1 as P1 = V1

and

Pi = Vi

i−1
∏

j=1

(1− Vj) (1)

for each i > 1, and let (Zi)i≥1 be a sequence of random variables, independent
of (Pi)i≥1, and independent and identically distributed according to P0. Then,

P̃ =
∑

i≥1

PiδZi ,

is a stick-breaking prior in the class of Ishwaran and James [15]. For any
σ ∈ [0, 1) and θ > −σ, the stick-breaking representation of the two parame-
ter Poisson-Dirichlet process is recovered by assuming the Vi’s to be distributed
according to the Beta distribution with parameter (1−σ, θ+ iσ) for each i ≥ 1.
See Pitman and Yor [33] for a detailed account on other constructive definitions
of the two parameter Poisson-Dirichlet process. The stick-breaking representa-
tion of the Dirichlet process, which was first derived by Sethuraman [38], is
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recovered as special case by setting σ = 0. See also Sethuraman and Tiwari [39]
for details.

Apart from the two parameter Poisson-Dirichlet process, most of the discrete
random probability measures do not admit a stick-breaking representation in
terms of a collection of independent Vi’s. As an example, Favaro et al. [8] derived
the stick-breaking representation of the normalized inverse Gaussian process in-
troduced in Lijoi et al. [22]. Specifically, let b > 0 and let (Vi)i≥1 be a sequence
of dependent random variables such that, for each i ≥ 1, the conditional distri-
bution of Vi given (V1, . . . , Vi−1) coincides with the distribution of the random
variable

Xi

Xi + Yi
, (2)

where Xi is distributed according to the generalized inverse Gaussian distribu-
tion with parameter (b/

∏i−1
j=1(1−Vj), 1,−i/2), with

∏0
j=1(1−Vj) ≡ 1, and Yi is

distributed according to the positive 1
2 -stable distribution. Also, Xi is indepen-

dent of Yi. Based on such Vi’s define a sequence (Pi)i≥1 as in (1) and let (Zi)i≥1

be a sequence of random variables, independent of (Pi)i≥1, and independent
and identically distributed according to a nonatomic probability measure P0 on
(X,X ). Then

G̃ 1
2 ,b

=
∑

i≥1

PiδZi ,

is the normalized inverse Gaussian process. The reader is referred to Favaro et
al. [8] and Favaro and Walker [9] for additional details on the stick-breaking
representation of the normalized inverse Gaussian process. To the best of our
knowledge the normalized inverse Gaussian process provides the first example of
a prior admitting a stick-breaking representation in terms of dependent Vi’s, and
such that for any i ≥ 1 the conditional distribution of Vi given (V1, . . . , Vi−1) is
characterized by means of a straightforward transformation of random variables
as in (2).

In this paper we investigate the stick-breaking representation for the class
of σ-stable models, or Gibbs-type random probability measures, introduced by
Pitman [34]. The former name, which is adopted throughout the paper, origi-
nates from their definition, whereas the latter originates from a characterization
of the induced predictive distribution. See Gnedin and Pitman [11] for details.
The class of σ-stable Poisson-Kingman models forms a large class of discrete
random probability measures which are indexed by a parameter σ ∈ (0, 1) and
a nonnegative measurable function h. The two parameter Poisson-Dirichlet pro-
cess and the normalized inverse Gaussian process are σ-stable Poisson-Kingman
models under suitable specifications of σ and h. Another noteworthy example
is the normalized generalized Gamma process. This is a popular nonparametric
prior which coincides with the normalized inverse Gaussian process if σ = 1/2.
See, e.g., James [16], Pitman [34], Lijoi et al. [22], Lijoi et al. [23] and James [19].
The class of σ-stable Poisson-Kingman models is nowadays the subject of a rich
and active literature. Indeed σ-stable Poisson-Kingman models share properties
that are appealing from both a theoretical and an applied point of view: i) they
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stand out in terms of mathematical tractability; ii) they are characterized by a
flexible parameterization via the function h; iii) they admit an intuitive char-
acterization in terms of their predictive distribution. See De Blasi et al. [2] for
an up-to-date review. In particular, in the context of Bayesian nonparametric
mixture modeling, σ-stable Poisson-Kingman models have proved to be a valid
alternative to the Dirichlet process. See, e.g., Lijoi et al. [22] and Lijoi et al. [23].

A stick-breaking representation for σ-stable Poisson-Kingman models has
been recently proposed by Favaro and Walker [9] in order to develop a slice sam-
pling algorithm for hierarchical mixture models. However, such a representation
involves a sequence of dependent random variables Vi’s whose conditional dis-
tributions have not been explicitly characterized in terms of a straightforward
transformation of random variables, as in the case of the normalized inverse
Gaussian process. In this paper we present a characterization of these conditional
distributions under some assumptions on the parameter σ. Specifically, let Tσ,h

be an almost surely finite and positive random variable with density function
of the form hfσ, with fσ being the positive σ-stable density function. We show
that under the assumption σ = u/v, for any coprime integers 1 ≤ u < v such
that u/v ≤ 1/2, the conditional distribution of Vi given Tσ,h and (V1, . . . , Vi−1)
coincides with the distribution of a random variable of the form (2) where Xi is
a suitable transformation of a product of Beta and Gamma random variables,
whereas Yi is an inverse Gamma random variable. Also, Xi is independent of
Yi for each i ≥ 1. Our results heavily rely on a well-known representation of
fσ in terms of the G-functions introduced by Meijer [27]. Clearly, by a suitable
specification of the function h, an explicit stick-breaking representation for the
normalized generalized Gamma process follows as a by-product of our main re-
sult. Such a representation thus generalizes the stick-breaking representation of
the normalized inverse Gaussian process in Favaro et al. [8], which is recovered
by setting σ = 1/2.

The paper is structured as follows. In Section 2 we review of the class of σ-
stable Poisson-Kingman models and we recall the stick-breaking representation
introduced by Favaro and Walker [9]. Section 3 contains the main result of
the paper, namely a characterization of the distribution of the Vi’s for a u

v -
stable Poisson-Kingman model, for any coprime integers 1 ≤ u < v such that
u/v ≤ 1/2. In Section 4 we introduce an exact sampling methods for these Vi’s,
whereas in Section 5 we present some concluding remarks with a view towards
potential applications of our results. The Appendix contains a brief review of
G-functions.

2. σ-stable Poisson-Kingman models

We start by recalling the concept of completely random measure (CRM) in-
troduced by Kingman [20]. A CRM µ̃ is a random element with values on the
space of boundedly finite measures on X and such that for any A1, . . . , An in
X , with Ai ∩ Aj = ∅ for i 6= j, the random variables µ̃(A1), . . . , µ̃(An) are
mutually independent. The distribution of a CRM µ̃ is characterized by means
of the Lévy-Khintchine representation of its corresponding Laplace functional
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transform, i.e.,

E

[

e−
∫

X
f(x)µ̃(dx)

]

= exp

{

−

∫

R+×X

(

1− e−sf(y)
)

ν(ds, dy)

}

,

for any f : X → R such that
∫

X
|f(x)|µ̃(dx) < +∞ almost surely. The measure

ν is referred to as the Lévy intensity measure and it uniquely characterizes µ̃.
Kingman [20] showed that a CRM µ̃ is almost surely discrete and, accordingly,
it can be represented in terms of nonnegative random jumps (J̃i)i≥1 at X-valued
random locations (Yi)i≥1, i.e.,

µ̃
d
=
∑

i≥1

J̃iδYi .

For our purposes it is sufficient to consider Lévy intensity measure that can be
factorized as ν(ds, dy) = ρ(ds)P0(dy), where ρ is a Lévy measure driving the
jump part of µ̃ and P0 is a nonatomic probability measure driving the location
part of µ̃. Such a factorization implies the independence between (J̃i)i≥1 and
(Yi)i≥1 so that, without loss of generality, the locations (Yi)i≥1 are assumed to
be a sequence of independent X-valued random variables identically distributed
according to P0.

The class of σ-stable Poisson-Kingman models was first introduced in Pitman
[34] and further investigated in Gnedin and Pitman [11]. In particular, Gnedin
and Pitman [11] introduced the notion of Gibbs-type predictive distribution
which characterize the class of σ-stable Poisson-Kingman models. For any σ ∈
(0, 1) let µ̃σ be a σ-stable CRM, namely a CRM characterized by the Lévy
intensity measure

ν(ds, dy) = ρσ(ds)P0(dy) =
σ

Γ(1− σ)
s−σ−1dsP0(dy).

Let Tσ =
∑

i≥1 J̃i be the total mass of µ̃σ. Since
∫ ǫ

0
ρσ(s)ds = +∞ for any ǫ > 0

one can verify that the random variable Tσ is positive and finite almost surely.
In particular Tσ is a positive σ-stable random variable with density function
denoted by fσ. Intuitively, under this setup, one can define an almost surely
discrete random probability measure P̃σ by normalizing µ̃σ with respect to Tσ,
namely

P̃σ =
µ̃σ

Tσ

d
=
∑

i≥1

P̃iδYi ,

with P̃i = J̃i/Tσ and where (Yi)i≥1 is a sequence of random variables, indepen-

dent of (P̃i)i≥1, and independent and identically distributed as P0. P̃σ is termed
normalized σ-stable process with base distribution P0 and it was introduced by
Kingman [21]. See Regazzini et al. [37] and James et al. [18] for a generalization
of Pσ obtained by replacing µσ with any CRM µ. This is the class of normalized
random measures.

A σ-stable Poisson-Kingman model is defined as a generalization of P̃σ ob-
tained by suitably deforming (tilting) the distribution of the total mass Tσ. Let
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(P(i))i≥1 be the decreasing rearrangement of (P̃i)i≥1 and let Tσ,h be a nonneg-
ative random variable with density function fTσ,h

(t) = h(t)fσ(t) for a nonnega-
tive measurable function h. Denoting by PK(ρσ | t) the conditional distribution

of (P(i))i≥1 given Tσ,h = t, let PK(ρσ, hfσ) =
∫ +∞

0
PK(ρσ | t)fTσ,h

(t)dt be a
mixture distribution which is termed in Pitman [34] as the Poisson-Kingman
distribution with Lévy measure ρσ and mixing density function hfσ. For short
we refer to the distribution PK(ρσ, hfσ) as the σ-stable Poisson-Kingman distri-
bution with parameter h. A σ-stable Poisson-Kingman model with parameter
h and base distribution P0 is the almost surely discrete random probability
measure

P̃σ,h =
∑

i≥1

P(i)δYi , (3)

where (P(i))i≥1 is a sequence of random probabilities distributed according to
the σ-stable Poisson-Kingman distribution with parameter h, and (Yi)i≥1 is a se-
quence of random variables, independent of (P(i))i≥1, and independent and iden-
tically distributed according to the nonatomic probability measure P0. Accord-
ing to the definition of P̃σ,h, we can write P̃σ,h(·) = µ̃σ,h(·)/Tσ,h where µ̃σ,h is an
a.s. discrete random measure with distribution Pσ,h absolutely continuous with
respect to the distribution Pσ of µ̃σ, and such that dPσ,h(µ̃)/dPσ = h(µ̃(X)), and
Tσ,h is the total mass of µ̃σ,h with density function fTσ,h

. Note that the aforemen-
tioned normalized σ-stable process is the σ-stable Poisson-Kingman model cor-
responding to the choice of h = 1. We refer to the monograph by Pitman [35] for
a comprehensive and stimulating account on σ-stable Poisson-Kingman models.

Example 1. For any σ ∈ (0, 1) and θ > −σ the two parameter Poisson-Dirichlet
process P̃σ,θ is a σ-stable Poisson-Kingman model with parameter h of the form

h(t) =
σΓ(θ)

Γ(θ/σ)
t−θ. (4)

The normalized σ-stable process coincides with P̃σ,0. See Perman et al. [30], Pit-
man and Yor [33], James [16], Pitman [34] and James [19] for detailed accounts
on P̃σ,θ.

Example 2. For any σ ∈ (0, 1) and b > 0 the normalized generalized Gamma
process G̃σ,b is a σ-stable Poisson-Kingman model with parameter h of the form

h(t) = eb−b1/σt. (5)

The normalized σ-stable process coincides with G̃σ,0, whereas G̃ 1
2 ,b

is the nor-

malized inverse Gaussian process. See James [16], Pitman [34], Lijoi et al. [22],
Lijoi [23], Lijoi et al. [24] and James [19] for detailed accounts on G̃σ,b and
applications.

The stick-breaking representation of P̃σ,h is obtained by the size-biased rear-
rangement of the decreasing ordered random probabilities (P(i))i≥1 in (3). We
define a new sequence (Pi)i≥1 of random probabilities such that Pi = P(πi),
where, for any positive integer k ≥ 1 and for all finite sets j1, . . . , jk of distinct
positive integers, the conditional probability of the event {πi = ji for all 1 ≤
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i ≤ k} given (P(i))i≥1, is

P(j1)

P(j2)

1− P(j1)
· · ·

P(jk)

1− P(j1) · · · − P(jk)
.

Intuitively, we pick the first atom Z1 = Yj1 with probability P(j1), remove it from
the atoms under consideration, then we pick the second atom Z2 = Yj2 with
probability proportional to P(j2), remove it, and so on. The resulting rearrange-
ment of atoms does not affect the distribution of the corresponding σ-stable
Poisson-Kingman model, i.e.,

P̃σ,h
d
=
∑

i≥1

PiδZi .

The sequence (Pi)i≥1 is referred to as the size-biased random permutation of
(P(i))i≥1. See, e.g., Pitman [32] for the interplay between size-biased random
permutations and almost surely discrete random probability. The next result
summarizes Lemma 1 and Lemma 2 in Pitman [34] and it provides the stick-
breaking representation of a σ-stable Poisson-Kingman model. See also Perman
et al. [30] for details.

Theorem 1. Let P̃σ,h be a σ-stable Poisson-Kingman model and let (P(i))i≥1

be the corresponding characterizing sequence of decreasing ordered random prob-
abilities. Then,

P̃σ,h
d
=
∑

i≥1

PiδZi ,

where (Pi)i≥1 is the size-biased random permutation of (P(i))i≥1 and (Zi)i≥1 is
a sequence of independent random variables identically distributed according to
the base distribution P0. Moreover,

Pi
d
= Vi

i−1
∏

j=1

(1 − Vj)

where (Vi)i≥1 is a sequence of random variables such that the conditional dis-
tribution of Vi given Tσ,h and (V1, . . . , Vi−1) has a density function on (0, 1) of
the form

gVi|V1,...,Vi−1,Tσ,h
(vi | v1, . . . , vi−1, t) =

σ(twivi)
−σfσ(twi(1− vi))

Γ(1 − σ)fσ(twi)
(6)

with respect to the Lebesgue measure, for each i ≥ 1 and where wi =
∏i−1

j=1(1−vj)
with the convention that w1 = 1. The sequence (Pi)i≥1 is independent of the
sequence (Zi)i≥1.

Theorem 1 provides the distribution of the stick-breaking random variables
Vi’s given the total mass Tσ,h. This is coherent with the hierarchical struc-
ture of the Poisson-Kingman distribution. After specifying the parameter h,
the conditional density function of Vi given (V1, . . . , Vi−1) is derived from (6)
by integrating out the random variable Tσ,h with density function hfσ. The
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stick-breaking representations discussed in the Introduction are recovered by a
direct application of Theorem 1. In particular, the stick-breaking representation
of P̃σ,θ, for any σ ∈ (0, 1) and θ > −σ is obtained by combining Theorem 1

with (4). Similarly, the stick-breaking representation of G̃σ,b, for any σ ∈ (0, 1)
and b > 0 is obtained by obtained by combining Theorem 1 with (5). As a spe-
cial case one obtains the stick-breaking representation of the normalized inverse
Gaussian process G̃ 1

2 ,b
.

3. A representation of u

v
-stable Poisson-Kingman models

While providing the stick-breaking representation for the entire class of σ-stable
Poisson-Kingman models, Theorem 1 leaves open the problem of finding a
straightforward characterization for the conditional density function introduced
in (6). So far this problem has been solved under suitable choices of the param-
eters σ and h, namely σ ∈ (0, 1) and h of the form (4), and σ = 1/2 and h of
the form (5). In this section, we present a solution to this problem for the class
of u

v -stable Poisson-Kingman models, for any coprime integers 1 ≤ u < v such
that u/v ≤ 1/2.

Our results exploit a well-known representation of the σ-stable density func-
tion fσ in terms of the class of G-functions introduced by Meijer [27]. The reader
is referred to the Appendix for a concise account on G-functions. Specifically,
according to Zolotarev [44], if σ = u/v for any coprime integers 1 ≤ u < v then
one has

fu
v
(x) =

u−1
∏

i=1

Γ( i
u )

Γ( i
v )

v−1
∏

j=u

1

Γ( jv )
v

v
uG0,v−1

v−1,u−1





vv

uu
xu

∣

∣

∣

∣

(

1− 1
u − i

v

)v−1

i=1
(

1− 1
u − j

u

)u−1

j=1



 , (7)

where Gm,n
p,q denotes a G-function of order (m,n, p, q). The well-known repre-

sentation of the density function of the 1
2 -stable random variable is recovered as

special case of (7). Indeed if u = 1 and v = 2, by combining (A.4) with (A.2)
one obtains

f 1
2
(x) =

1

2Γ(12 )
x− 3

2 e−
1
4x . (8)

Further special cases of (7) are obtained by suitable specification of u and v and
by exploiting properties of G-functions. See the monograph by Chaumont and
Yor [1] and references therein for a comprehensive account of u

v -stable density
functions.

Hereafter we adopt the notation X |Y
d
= Z to indicate that the conditional

distribution of X given Y coincides with the distribution of Z. We start by
introducing the notion of exponentially tilted random variables. Specifically, let
X be a nonnegative random variable distributed according to a distribution
FX and, for any b > 0 let Y be a random variable distributed according to a
distribution FY of the form

FY (y) =
e−byFX(y)

∫ +∞

0 e−bxFX(dx)
.
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We say that FY is the exponential tilting with weight b of FX , and we write
Y ∼ ET (b,X). Accordingly, the random variable Y is termed exponentially
tilted random variable. Moreover, for any coprime integers 1 ≤ u < v such that
u/v < 1/2, define

L u
v
=

u−2
∏

i=0

B 2i+2
v , i+1

u − 2i+2
v

u−2
∏

i=0

B 2i+1
v , i+1

u − 2i+2
v

v−2u
∏

i=1

G 2(u−1)+i
v ,1

(9)

where Ba,b and Ga,b denote a Beta random variable with parameter (a, b) and
a Gamma random variable with parameter (a, b), respectively. We refer to the
monograph by Springer [41] and references therein for a comprehensive and
stimulating account on distributional properties of products of independent Beta
and Gamma random variables.

For any coprime integers 1 ≤ u < v such that u/v < 1/2, the density function
of the stick-breaking random variables of a u

v -stable Poisson-Kingman model
is given by (6) with σ = u/v. We present a novel characterization of such
a density function in terms of a suitable transformation of two independent
random variables. Let (Vu

v ,i)i≥1 be a sequence of dependent random variables
such that

(Vu
v ,i |Vu

v ,1, . . . , Vu
v ,i−1, Tu

v ,h)
d
=

Xi

Xi + Yi
(10)

where, for each i ≥ 1, the random variables Xi and Yi are assumed to be
independent and

1

Xi
∼ ET







u2

v
v
u Tu

v
,h

∏i−1
j=1(1− Vu

v
,j)

,
1

L
1/u
u
v






(11)

and

Yi ∼ IG






1−

u

v
,

u2

v
v
u Tu

v
,h

∏i−1
j=1(1− Vu

v ,j)






, (12)

with the convention that an empty product is defined to be one, namely
∏0

j=1(1−
Vu

v ,j) = 1. The problem of exact sampling from the exponentially tilted random
variable (11), and hence from the random variable (10), is discussed in the next
section. The next theorem introduces an explicit stick-breaking representation
for u

v -stable Poisson-Kingman models, for any coprime integers 1 ≤ u < v such
that u/v < 1/2.

Theorem 2. For any coprime integers 1 ≤ u < v such that u/v < 1/2, let
(Vu

v ,i)i≥1 be the sequence of random variables defined according to (10). Then,

P̃u
v ,h

d
=
∑

i≥1

Vu
v ,i

i−1
∏

j=1

(1− Vu
v ,j)δZi , (13)

where (Zi)i≥1 is a sequence of independent random variables identically dis-
tributed according to the base distribution P0 and independent of the sequence
(Vu

v ,i)i≥1.
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Proof. Without loss of generality we focus on the distribution of the random
variable Vu

v
,1 conditionally on Tu

v
,h = t. In particular, by combining (6) and (7)

one obtains

gVu
v

,1|Tu
v
,h(v1 | t) =

u
v (tv1)

− u
v G0,v−1

v−1,u−1

(

vv

uu t
u(1− v1)

u

∣

∣

∣

∣

(

1− 1
u − i

v

)v−1

i=1
(

1− 1
u − i

u

)u−1

i=1

)

Γ(1− u
v )G

0,v−1
v−1,u−1

(

vv

uu tu
∣

∣

∣

∣

(

1− 1
u − i

v

)v−1

i=1
(

1− 1
u − i

u

)u−1

i=1

)
.

(14)

The first part of the proof consists in determining the density function of the
random variable X1 in (11). Specifically, by means of Theorem 9 in Springer
and Thompson [40] the density function of X̃1 = 1/X1 is represented as follows

g
X̃1

(x1)

=

e

−
u2

v
v
u t

x1

x
u+1
1

G
v−2,0
2(u−1),v−2









1
xu
1

∣

∣

∣

∣

(

i+1
u

− 1
)u−2

i=0
,
(

−
1
v

+ 1 −
u−i−1

u
− 1

)u−2

i=0
(

2i+1
v

− 1
)u−2

i=0
,
(

2i+2
v
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(
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(
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(
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(
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where the last identity is obtained by applying (A.5) and (A.4) in order to solve
the integral with respect to x1. Then, the density function of X1 follows by mak-
ing the transformation X1 = 1/X̃1. The proof is completed by proving that (14)
coincides with the density function of the random variable W1 = X1/(X1 + Y1)
where Y1 is the random variable in (12). Recall that Y1 is independent of X1.
Accordingly, by making the transformation, the density function ofW1 coincides
with

gW1(w1)

=

(2π)
u−1
2

uu−
1
2

(

u2

v
v
u t

)u

w−u−1
1 (1 − w1)

−1+u
v −1

(
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u t
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v
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(
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)
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∣

∣

∣

∣
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,
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)u−1

i=1
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∫ +∞
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v −1e
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+
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×Gv−2,0
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∣

∣

∣
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=
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(
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dy

where the last identity is obtained by applying (A.4) and by the change of
variable y = z−1. Then, (A.5) allows to solve the integral with respect to y. In
particular one obtains

gW1(w1)

=
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 .

Finally, an application of (A.4) to the G-function in the denominator of the last



1074 S. Favaro et al.

expression leads to

gW1(w1)

=

(

u2

v
v
u t

)u
v
w

−
u
v

1 u1−u
v
−

u
v

Γ
(

1− u
v

)

G
0,v−2+u

v−2+u,2(u−1)





uu
(

u2

v
v
u t

)u

∣

∣

∣

∣

(

i−1
u

−
1
v

)u

i=1
,
(

−
i
v
−

1−u
u

−
1
v

)v−2

i=1
(

−
i
u
−

1
v
−

1−u
u

)u−1

i=1
,
(

i−u
u

−
1−u
u

)u−1

i=1





×G
0,v−2+u

v−2+u,2(u−1)





uu

(

u2

v
v
u t

)u (1− w1)
u

∣

∣

∣

∣

(

i−u−1+u
v

u
−

1−u
u

)u

i=1
,
(

−
i
v
−

1−u
u

)v−2

i=1
(

−
i
u
−

1−u
u

)u−1

i=1
,
(

1
v
+ i−u

u
−

1−u
u

)u−1

i=1





=
u
v
t−

u
v w

−
u
v

1

Γ
(

1− u
v

)

G
0,v−1
v−1,u−1

(

vv

uu tu

∣

∣

∣

∣

(

1− 1
u
−

i
v

)v−1

i=1
(

1− 1
u
−

i
u

)u−1

i=0

)

×G
0,v−1
v−1,u−1

(

vv

uu
t
u(1− w1)

u

∣

∣

∣

∣

(

1− 1
u
−

i
v

)v−1

i=1
(

1− 1
u
−

i
u

)u−1

i=1

)

where the last identity is obtained by applying (A.3) to the G-functions. The
resulting gW1 coincides with the conditional density function of the random
variable Vu

v ,1 given Tu
v ,h = t in (14). Note that, according to (6), for each i > 1

the density function of

Vu
v ,i |Vu

v ,1 = v1, . . . , Vu
v ,i−1 = vi−1, Tu

v ,h = t

coincides with the density function (14) in which t is replaced by t
∏i−1

j=1(1−vj).
Therefore, such a density function coincides with the density function of Wi =
Xi/(Xi + Yi) for each i > 1, where Xi and Yi are the random variables in (11)
and (12), respectively.

We conclude this section by providing an explicit stick-breaking represen-
tation for 1

2 -stable Poisson-Kingman models. Unfortunately, technicalities ex-
ploited in the proof on Theorem 2 do not work for the case σ = 1/2. Indeed,
note that the random variable (9) is not defined for u = 1 and v = 2. Hence, dif-
ferent arguments need to be considered. Let (V 1

2 ,i
)i≥1 be a sequence of random

variables defined as

(V 1
2 ,i

|V 1
2 ,1

, . . . , V 1
2 ,i−1, T 1

2 ,h
)

d
=

Xi

Xi + Yi
(15)

where, for each i ≥ 1, the random variables Xi and Yi are assumed to be
independent and such that

X2
i ∼ G

(

3

4
, 1

)

(16)
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and

Y 2
i ∼ IG







1

4
,

1
43T 2

1
2
,h

∏i−1
j=1(1− V 1

2 ,j
)2






, (17)

with the convention that the empty product is defined to be unity and with G
and IG denoting the Gamma distribution and the inverse Gamma distribution,
respectively. The next theorem introduces an explicit stick-breaking represen-
tation for the class of 1

2 -stable Poisson-Kingman models. It provides a gener-
alization of Proposition 1 in Favaro et al. [8] to the entire class of 1

2 -stable
Poisson-Kingman models.

Theorem 3. Let (V 1
2 ,i

)i≥1 be the sequence of random variables defined according

to (15). Then,

P̃ 1
2 ,h

d
=
∑

i≥1

V 1
2 ,i

i−1
∏

j=1

(1− V 1
2 ,j

)δZi

where (Zi)i≥1 is a sequence of independent random variables identically dis-
tributed according to the base distribution P0 and independent of the sequence
(V 1

2 ,i
)i≥1.

Proof. Without loss of generality we focus on the distribution of the random
variable V 1

2 ,1
conditionally on T 1

2 ,h
= t. In particular, by combining (6) and (8)

with u = 1 and v = 2, one has

gV 1
2
,1
|T 1

2
,h
(v1 | t) =

1
2 (tv1)

− 1
2G0,1

1,0

(

22t(1− v1)

∣

∣

∣

∣

− 1
2

−

)
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1
2

)

G0,1
1,0

(

22t

∣

∣

∣

∣

− 1
2

−

) (18)

=
1
2 t

− 1
2

Γ
(

1
2

)v
− 1

2
1 (1 − v1)

− 1
2−1e

−
v1

22t(1−v1)

where the last identity is obtained by combining (A.4) with (A.2). Note that
(18) can be written in terms of modified Bessel function K 1

2
, i.e.,

gV 1
2
,1
|T 1

2
,h
(v1 | t) =

2−
3
2 t−1

Γ
(

1
2

)

Γ
(

1
2

) (1− v1)
−2K 1

2

(

v1
22t(1− v1)

)

. (19)

The proof is completed by proving that (19) coincides with the density function
of the random variable W1 = X1/(X1 + Y1) where X2

1 and Y 2
1 are the random

variables in (16) and (17), respectively. Recall that Y1 is independent X1. Ac-
cordingly, by making the transformation, the density function of W1 coincides
with

gW1(w1) =
w

3
2−1
1 (1 − w1)

− 1
2−12

(

1
43t2

)
1
4

1
2Γ
(

3
4

)

Γ
(

1
4

)
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×

∫ +∞
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1
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where the last identity is obtained by Equation 3.478.1 in Gradshteyn and
Ryzhik [12]. Hence,

gW1(w1) =
t−1

4

2
1
2
Γ
(

1
2

)

Γ
(

1
2

) (1 − w1)
−2K 1

2

(

w1

4t(1− w1)

)

. (20)

The resulting gW1 coincides with the conditional density function of the random
variable V 1

2 ,1
given T 1

2 ,h
= t in (19). Note that, according to (6), for each i > 1

the density function of

V 1
2 ,i

|V 1
2 ,1

= v1, . . . , V 1
2 ,i−1 = vi−1, T 1

2 ,h
= t

coincides with the density function (20) in which t is replaced by t
∏i−1

j=1(1−vj).
Therefore, such a density function coincides with the density function of Wi =
Xi/(Xi + Yi) for each i > 1, where X2

i and Y 2
i are the random variables in (16)

and (17), respectively.

Extending the stick-breaking representation in Theorem 2 to the class of u
v -

stable Poisson-Kingman models, for any coprime integers 1 ≤ u < v such that
u/v > 1/2, still remains an open problem. In this respect, the proof of Theorem
2 suggests that the stick-breaking random variables (Vu

v
,i)i≥1, for any coprime

integers 1 ≤ u < v such that u/v > 1/2, can not be directly represented in terms
of a transformation of the form (10) with Xi being the product of independent
Beta and Gamma random variables and Yi, independent of Xi, being an inverse
Gamma random variable. Different transformations or, alternatively, different
distributions need to be considered and investigated. Work in these directions
is ongoing.

4. Exact sampling of (Vu

v
,i |Vu

v
,1, . . . , Vu

v
,i−1, Tu

v
,h)i≥1

Theorems 2 and Theorem 3 provide a simple strategy for sampling the ran-
dom probabilities Pu

v ,i = Vu
v ,i

∏i−1
j=1(1− Vu

v ,j) in (13), for any coprime integers
1 ≤ u < v such that u/v ≤ 1/2. While sampling the V 1

2 ,i
’s is straightforward,

particular attention must be given to the Vu
v ,i’s for any u/v < 1/2. Without loss

of generality here we focus on the distribution of the random variable Vu
v
,1 con-

ditionally on the total mass Tu
v ,h = t. More specifically we consider the problem
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of generating, exactly, random variates for the distribution of 1/X1 in (11). If
we set λ = u2/

(

v
v
u t
)

, then we aim at sampling from a random variable with
density function

f(x) ∝ e−λxm(x)

where m(x) is the density function of L
−1/u
u/v and Lu/v is the random variable

in (9) whose density function is denoted by mLu/v
(x). By a simple rejection

sampling with proposal m(x) one would get an acceptance rate equal C =
∫∞

0 e−λxm(x)dx that, depending on λ, can be extremely small. In our context
this is a major issue due to the randomness of Tu

v ,h and, in turn, of λ. Recall
that Tu

v
,h is a random variable with density function h(t)fu

v
(t) with fu

v
being

the u
v -stable density function. To overtake this issue we devise an improved

rejection sampling which is based on the choice of a suitable proposal that takes
into account λ.

Hereafter we present our improved rejection sampling for Vu
v ,1, for any 1 ≤

u < v such that u/v < 1/2, conditionally on the total mass Tu
v ,h = t. First we

observe that e−λx ≤ e−λx0(1−log(x0))x−λx0 for every x0 ≥ 0. Then we consider
the family of proposals

gx0(x) ∝ e−λx0(1−log(x0))x−λx0m(x).

The acceptance rate corresponding to the proposal gx0 coincides with C/Cx0 ,
where

Cx0 =

∫ ∞

0

gx0(x)dx

= e−λx0(1−log(x0))

∫ ∞

0

x−λx0m(x)dx

= e−λx0(1−log(x0))

∫ ∞

0

ℓλx0/umLu/v
(ℓ)dℓ,

where the last identity is obtained by means of the change of variable ℓ = x−u.
The last integral coincides with the moment of order λx0/u of L u

v
in (9) and,

therefore,

Cx0 = e−λx0(1−log(x0))
v−2u
∏

i=1

Γ
(

2u−2+i
v + λx0

u

)

Γ
(

2u−2+i
v

)

×
u−2
∏

i=0

Γ
(

i+1
u

)

Γ
(

2i+2
v + λx0

u

)

Γ
(

i+1
u − 1

v

)

Γ
(

2i+1
v + λx0

u

)

Γ
(

i+1
u + λx0

u

)

Γ
(

2i+2
v

)

Γ
(

i+1
u − 1

v + λx0

u

)

Γ
(

2i+1
v

) .

In order to maximize the acceptance rate C/Cx0 we choose x0 so to minimize
Cx0 . To this end we observe that, for our purpose, it is enough to evaluate Cx0

on a sufficiently large and fine grid of values x0 and pick the value, denoted by
x∗, that gives rise to the smallest Cx0 . This, in turn, leads us to consider gx∗ as
proposal.



1078 S. Favaro et al.

Table 1

Empirical acceptance rate (e.a.r.) and log-improvement (l.i.) log(Cx∗/C)

u/v = 1/3 u/v = 1/15 u/v = 7/15

λ = 10−6 e.a.r. 0.98 0.31 1.00

l.i. 2.29×10−5 4.64 2.14×10−6

λ = 10−3 e.a.r. 0.87 0.30 0.99

l.i. 2.08×10−2 8.07 2.14×10−3

λ = 1
e.a.r. 0.71 0.29 0.94

l.i. 2.10 13.66 1.50

λ = 103
e.a.r. 0.70 0.28 0.93

l.i. 63.9 22.7 6.15×103

λ = 106
e.a.r. 0.70 0.27 0.92

l.i. 2.00×104 37.6 2.89×105

The original problem of sampling from an exponentially tilted distribution
f has boiled down to the problem of sampling from the polynomially tilted
distribution gx∗ . Moreover, gx∗ coincides with the density function of a random

variable L
−1/u
x∗ , where

Lx∗ =

u−2
∏

i=0

B 2i+2
v +λx∗

u , i+1
u − 2i+2

v

u−2
∏

i=0

B 2i+1
v +λx∗

u , i+1
u − 2i+2

v

v−2u
∏

i=1

G 2(u−1)+i
v +λx∗

u ,1
.

By summarizing, in order to exactly generate a random variate for the distri-
bution of the random variable 1/X1 in (11), we propose the following improved
rejection sampling:

1. find x∗ that minimizes Cx0 ;
2. for each i = 0, . . . , u−2, sample independently βi from B 2i+2

v +λx∗

u , i+1
u − 2i+2

v

and β′
i from B 2i+1

v +λx∗

u , i+1
u − 2i+2

v
;

3. for each i = 1, . . . , v − 2u, sample independently γi from G 2(u−1)+i
v +λx∗

u ,1
;

4. compute w = (
∏u−2

i=0 βiβ
′
i

∏v−2u
i=1 γi)

−1/u;
5. accept w as a realization of the random variable 1/X1 with probability

e−λ(w−x∗)(w/x∗)λx
∗

.

Once X1 is generated, then we can easily generate a random variate for the
distribution of the random variable Y1 in (12). Finally, we combine X1 and
Y1 according to (10) and we obtain a random variate for the distribution of
Vu

v
,1 |Tu

v
,h = t.

Simulation results show that the proposed method is very effective and, im-
portantly, outperforms the simple rejection sampling with proposal m when the
parameter λ is large. We have analyzed and compared the performance of the
two algorithms for several combinations of values of u/v and λ. In Table 1 we
report, for u/v = 1/3, 1/15, 7/15 and λ = 10i with i ∈ {−6,−3, 0, 3, 6}, the em-
pirical acceptance rate of the improved rejection sampling and, as a comparison
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between improved and simple rejection sampling, log(Cx∗/C). The empirical
acceptance rate is estimated by means of 10000 independent samples from (11).
In all the cases we analyzed, the improved rejection sampling turns out to be
more efficient. Moreover, whereas the two algorithms have similar performances
for small λ, the improved rejection sampling has an acceptance rate significantly
larger than the simple rejection sampling when λ is large. For example, when
u/v = 1/3 and λ = 106, the simple algorithm proves essentially useless while
the estimated acceptance rate for the improved algorithm is 0.70. Similar obser-
vations hold for the other two values of u/v we considered. It is interesting to
notice that the larger u/v is, e.g. u/v = 7/15, the more evident the difference
between the performance of the two algorithms can be. On the other hand, when
u/v is small, e.g. u/v = 1/15, the role of λ in determining the efficiency of the
algorithms is less crucial.

The procedure for sampling Vu
v ,1 |Tu

v ,h = t can be applied iteratively in or-
der to generate random variates for the distribution of the random variable
Vu

v
,i |Vu

v
,1 = v1, . . . , Vu

v
,i−1 = vi−1, Tu

v
,h = t. We only need to updated the

parameters of the distributions of Xi and Yi according to (11) and (12), respec-
tively. Moreover, once h is specified, this sampling procedure leads to random
variates for the distribution of Pu

v ,i = Vu
v ,i

∏i−1
j=1(1− Vu

v ,j). To this end, an ad-
ditional sampling step is required in order to generate random variates for the
distribution of Tu

v
,h.

5. Discussion

In Section 3 we introduced a completely explicit stick-breaking representation
for the class of u

v -stable Poisson-Kingman models, for any coprime integers
1 ≤ u < v such that u/v ≤ 1/2. In particular Theorem 2 and Theorem 3 pro-
vide an alternative definition, in terms of the intuitive stick-breaking metaphor,
for u

v -stable Poisson-Kingman models. This result is interesting in that: i) it
introduces a novel class of stick-breaking random probability measures which
does not belong to the class of stick-breaking priors originally proposed by Ish-
waran and James [15]; it provides new insights on the large class of u

v -stable
Poisson-Kingman models: most of their properties are known by now but an ex-
plicit stick-breaking representation is missing; iii) it shows that stick-breaking
representations with dependent weights can be determined; iv) it provides an
alternative stick-breaking characterization, in terms of the latent random vari-
able Tu

v ,h, for the two parameter Poisson-Dirichlet process and the normalized
inverse Gaussian process.

A stick-breaking representation of the normalized generalized Gamma pro-
cess G̃u

v ,b, for any coprime integers 1 ≤ u < v such that u/v ≤ 1/2, arises as
special case of Theorem 2 and Theorem 3 by setting h of the form (5). Such
a result thus extends remarkably the stick-breaking representation for the nor-
malized inverse Gaussian process in Favaro et al. [8]. Let us denote by g the
parameter characterizing G̃u

v
,b, namely g(t) = exp{b − bv/ut}. Then, the ran-

dom variable Tu
v ,g is distributed according to an exponentially tilted positive
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u
v -stable distribution, i.e.,

P[Tu
v ,g ∈ dt] = eb−bv/utfu

v
(t)dt. (21)

The distribution (21) can be easily sampled by resorting to the fast rejection
algorithm proposed by Hofert [14]. Therefore, by means of the sampling methods
described in Section (4), Theorem 2 and Theorem 3 provide a natural tool for
sampling the stick-breaking random variables Vu

v
,i’s defining P̃u

v
,g. This, in turn,

can be exploited to obtain an approximate evaluation of the distribution of the
random variable

Fu
v ,g =

∫

X

f(x)P̃u
v ,g(dx) =

∑

i≥1

Vu
v ,i

i−1
∏

j=1

(1− Vu
v ,j)f(Zi), (22)

for any measurable linear function f : X → R. The approximation being de-
termined by the choice of a suitable truncation level for the series (22). The
random variable (22) is typically referred to as the mean functional of P̃u

v ,g. In
such a context Muliere and Tardella [28] first investigated the use of the stick-
breaking representation of the Dirichlet process process in order to obtain an
approximate evaluation of the distribution of its mean functionals. See James
et al. [17] for a generalization to the mean functionals of the two parameter
Poisson-Dirichlet process.

The stick-breaking representation of G̃u
v ,b also appears in the posterior char-

acterization of G̃u
v ,b given the observed data. Indeed, let (X1, . . . , Xn) be an

observed sample featuring j distinct values X∗
1 , . . . , X

∗
j with corresponding fre-

quencies n1, . . . , nj . Also, let Yn be a random variable whose density function,

conditionally on (X1, . . . , Xn) is fYn(y) ∝ yn−1(1+y)ju/v−ne−(1+y)u/v

. Then, by
exploiting Theorem 1 in James et al. [18], it can be shown that conditionally on
(X1, . . . , Xn) and on Yn, the normalized generalized Gamma process coincides
in distribution with

Tu
v ,g∗

Tu
v ,g∗ +

∑j
i=1 Ji

G̃u
v ,Yn+1 +

j
∑

i=1

Ji

Tu
v ,g∗ +

∑j
i=1 Ji

δX∗

i
(23)

where G̃u
v ,Yn+1(·) = µ̃σ,g∗(·)/Tu

v ,g∗ with g∗(t) = exp{(Yn+1)−(Yn+1)v/u}, and
where the random variables J1, . . . , Jj , Tu

v ,g∗ are independent and such that Ji is
distributed according to a Gamma distribution with parameter (Yn+1, ni−u/v),
for any i = 1, . . . , j. We refer to James et al. [18] for additional details on the
posterior distribution of the normalized generalized Gamma process. Therefore,
according to the characterization (23), our stick-breaking representation can
be still exploited in the posterior inference under the normalized generalized
Gamma process prior.

We conclude by pointing out a few problems that naturally arise from The-
orem 2 and Theorem 3. First of all, as we stated in Section 3, an open problem
consists in extending Theorem 2 to u

v -stable Poisson-Kingman models, for any
coprime integers 1 ≤ u < v such that u/v > 1/2. More generally, we aim at
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extending Theorem 2 to σ-stable Poisson-Kingman models, for any σ ∈ (0, 1).
In this respect, an explicit stick-breaking representation for the normalized gen-
eralized Gamma process G̃σ,b, for any σ ∈ (0, 1), has been recently proposed
by James [19]. Another open problem consists in investigating the applicabil-
ity of our results. On the one hand, we believe that, from a modeling point of
view, our explicit stick-breaking representations paves the way for the defini-
tion of complex models based on u

v -stable Poisson-Kingman models by simply
replacing the stick-breaking constructed Dirichlet process, most notably within
the context of dependent models for nonparametric regression. On the other
hand, from a computational point of view, our explicit stick-breaking represen-
tations can be used to extend various recently proposed simulation algorithms,
based on stick-breaking constructions, in order to cover also the case of u

v -stable
Poisson-Kingman models.
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Appendix

G-functions, also known as Meijer G-function, are flexible special functions in-
troduced by Meijer [27] that incorporate as special cases most of the math-
ematical functions such as the elementary functions, trigonometric functions,
Bessel functions and generalized hypergeometric functions. A G-function of or-
der (m,n, p, q), where 0 ≤ m ≤ q, 0 ≤ n ≤ p and p ≤ q − 1 is defined by the
contour integral

Gm,n
p,q

(

x

∣

∣

∣

∣

a1, a2, . . . , ap

b1, b2, . . . , bq

)

(A.1)

=
1

2πi

∫ c+i∞

c−i∞

x−s

∏m
j=1 Γ(s+ bj)

∏n
j=1 Γ(1− aj − s)

∏p
j=n+1 Γ(s+ aj)

∏q
j=m+1 Γ(1 − bj − s)

ds

where c denotes a real constant defining the so-called Bromwich path separating
the poles of Γ(s+ bj) from those of Γ(1− ak − s) and where the empty product
is defined to be unity. The reader is referred to the monograph by Erdély [7] for
a more thorough definition of the class of G-functions, including conditions for
the convergence of the integral (A.1). In what follows we set ap = (a1, . . . , ap)
and bq = (b1, . . . , bq).
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A comprehensive collection of properties of G-functions is provided in Prud-
nikov et al. [36]. In order to make our paper self-contained, we recall those
properties of G-functions that are used in our proofs. Equation 8.4.3.1 in Prud-
nikov et al. [36] shows that an exponential function can be written in terms of
G-function as

exp{−x} = G1,0
0,1

(

x

∣

∣

∣

∣

−

0

)

. (A.2)

Equation 8.2.2.8 in Prudnikov et al. [36] is an example of the formulae for
lowering the order, i.e.,

Gm,n
p,q

(

x

∣

∣

∣

∣

ap

bq−1, a1

)

= Gm,n−1
p−1,q−1

(

x

∣

∣

∣

∣

a2, . . . , ap

bq−1

)

, (A.3)

or

Gm+1,n
p+1,q+1

(

x

∣

∣

∣

∣

ap, 1− r

0,bq−1

)

= (−1)rGm,n+1
p+1,q+1

(

x

∣

∣

∣

∣

1− r, ap

bq, 1

)

,

for any r ≥ 0. Equation 8.2.2.8 in Prudnikov et al. [36] is an example of the
translation formulae, i.e.,

xαGm,n
p,q

(

x

∣

∣

∣

∣

ap

bq

)

= Gm,n
p,q

(

x

∣

∣

∣

∣

ap + α

bq + α

)

, (A.4)

or

Gm,n
p,q

(

1

x

∣

∣

∣

∣

ap

bq

)

= Gn,m
q,p

(

x

∣

∣

∣

∣

1− bq

1− ap

)

.

Formulae for lowering the order of G-functions and translation formulae rep-
resent two of the most important classes of properties for manipulating G-
functions. Other classes of properties are the so-called properties of symmetry,
degeneracy and contiguity. See, e.g., Meijer [27], Erdély [7] and Prudnikov et al.
[36] for details.

Equation 2.24.1.1 in Prudnikov et al. [36] provides an integral of general form
involving a power function and the product of two G-functions. Such an integral
includes as special cases many integrals involving combinations of elementary
and special functions. An important special case is given by Equation 2.24.1.3
in Prudnikov et al. [36], i.e.,

∫ +∞

0

xα−1e−σxGm,n
p,q

(

wxl/k

∣

∣

∣

∣

ap

bq

)

dx (A.5)

=
kµlα−1/2σ−α

(2π)(l−1)/2+c∗(k−1)
Gkm,kn+l

kp+l,kq

(

wkll

σlkk(q−p)

∣

∣

∣

∣

∆(l, 1− α),∆(k, (ap))

∆(k,bq)

)

where

c∗ = m+ n−
p+ q

2
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µ =

q
∑

j=1

bj −

p
∑

j=1

aj +
p− q

2
+ 1

∆(k, a) =

(

a

k
,
a+ 1

k
, . . . ,

a+ k − 1

k

)

∆(k, ap) =

(

ap
k
,
ap + 1

k
, . . . ,

ap + k − 1

k

)

.

Equation (A.5) holds under suitable conditions on the parameters ap bq. We
refer to Section 2.24.1 in Prudnikov et al. [36] for a comprehensive account on
these conditions.
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