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Equilibria analysis in social dilemma games 
with Skinnerian agents

Ugo Merlone • Daren R. Sandbank •
Ferenc Szidarovszky

Abstract Different disciplines have analyzed binary choices to model collective 
behavior in human systems. Several situations in which social dilemma arise can be 
modeled as A^-person prisoner’s dilemma games including homeland security, 
public goods, international political economy among others. The purpose of this 
study is to develop an analytical solution to the A^-person prisoner’s dilemma game 
when boundedly rational agents interact in a population. Previous studies in the 
literature consider the case in which cooperators and defectors have the same 
learning factors. We obtain an analytical equation to find equilibria in the A^-person 
prisoner’s dilemma game in the general case when agents have different learning 
factors. We also introduce a more realistic approach where probability values are 
bounded between zero and one and therefore eliminates the possibility of infeasible 
probability values. Since no analytic solution can be derived in this case, agent 
based simulation is used to analyze the asymptotic behavior of the resulted 
dynamical system.



Keywords Social dilemmas ■ Binary games ■ Bounded rationality ■ Agent based 
simulation

1 Introduction

Social dilemmas are situations in which each individual has a clear and 
unambiguous incentive to make a choice that provides a poorer outcome for all 
when it is made by all individuals than the outcome they would have received when 
none of them had made the choice (Dawes and Messick 2000, p. 111).

Social dilemmas arise from collective actions in any part of or the entire society 
and have been discussed in several disciplines: economics (Ledyard 1995; Ostrom 
1998), psychology (Dawes 1980), sociology (Kollock 1998). Furthermore, partic
ular applications can be developed in homeland security (Brams and Kilgour 1988), 
public goods (Tabarrok 1998), international political economy (Conybeare 1984) 
among others.

According to Kollock (1998, p. 183), “social dilemmas are situations in which 
individual rationality leads to collective irrationality” . Among other social 
dilemmas, A^-person prisoner’s dilemma game has come to be viewed as one of 
the most common representations of collective action problems (Ostrom 2000).

According to Santos et al. (2008, p. 213), the ‘W-person prisoners dilemma 
constitutes the most used metaphor to study public goods games” , yet according to 
the literature the two games are not immediately equivalent. For example, 
Conybeare (1984) analyzes the differences between the prisoners’ dilemma and 
public good games and a classification depending on the existence of provision 
point in the game is provided in Ledyard (1995). Nevertheless Hauert and Szabo 
(2003) generalize prisoner’s dilemma to an arbitrary number of players and by a 
simple transformation link the resulting game to a public good game.

The prisoner’s dilemma and more generally the A^-person prisoner’s dilemma can 
be considered a binary game with externalities (Schelling 1973). In the recent 
literature, this kind of interactions has been analyzed by several contributions. 
Bischi and Merlone (2009) provides a discrete-time dynamical system to model a 
class of binary choice games with externalities as those described by Schelling 
(1973). The dynamical properties of this game is studied in Bischi et al. (2009a, b); 
Cardini et al. (2011); Dal Forno et al. (2012) extendes the analysis to ternary choice 
games. Another intriguing social dilemma, the Braess paradox, is studied in Dal 
Forno and Merlone (2013). Finally, when considering binary games with 
interactions limited to neighborhoods, Merlone et al. (2007) proves that the number 
of different types of games is finite and then tight upper bounds for the number of 
game types were derived in the general case and the different game types were 
identified.

In the study of social dilemma learning has an important role as it may be a 
possible explanation for the emergence of norms (Ostrom 2000), the dynamics of 
cooperation, but also as a way to make agents to base their predictions on 
experiential induction rather than logical deduction (Macy and Flache 2002).



Other authors concentrated on the A^-person prisoner’s dilemma considering both 
behavior patterns to model boundedly rational agents and learning. In Szilagyi 
(2003) some interesting results show strong dependence on the choice of model 
parameter values. Nevertheless, in this contribution there are some strong 
assumptions about learning. In fact, Szilagyi (2003) considers only the case in 
which cooperators and defectors have the same learning factors and provides an 
algebraic equation to characterize equilibria.

Assuming that cooperators and defectors have the same learning factors is a 
serious limitation for several real life applications. For example, consider 
developing a homeland security model where a number of countries unite to fight 
terrorism activities from a specific group or threat. Each country agrees to contribute 
to the effort at a different level based on its size, resources, susceptibility to the 
threat and other factors. In this model, the payoff for each country is a level of 
security less its contribution to the effort. This is an A^-person prisoners dilemma 
game where the learning curves for a cooperating and defecting country would 
likely be different because a defector would have to consider the negative political 
and foreign relation consequences in additional to the payoff when considering its 
next position.

The purpose of this study is to relax this assumption and to develop an analytical 
solution to the A^-person prisoner’s dilemma game when agents have different 
learning factors.

Our equation is a straightforward generalization of the equilibrium equation with 
equal learning factors. As it will be explained later, both equations hold only under 
certain conditions. We will also develop a modified dynamic model where these 
restrictions are eliminated. However, in this more realistic case no analytical 
solution is found. Therefore agent based simulation is used to examine the dynamic 
properties of the system.

In an agent based simulation model of binary games individual agents may 
cooperate with each other for the collective best interests or defect to pursue their 
own self interest. Each agent receives a reward or punishment based on its 
individual decision and the collective decisions of the other agents. The study of 
social dilemma problems is very important since it helps us understand problems 
that society is facing today. The prisoner’s dilemma is an important example of a 
social dilemma which is frequently examined in the literature.

Agent based social simulation started in the 1990s, (Gilbert and Terna 2000) and 
this research area is growing significantly. The main advantage of agent based 
simulation is that it is a bottoms-up approach where the agents’ attributes may 
include personalities, characteristics and learning capabilities. Agent based simu
lation can be used to study artificial societies for emergence of groups with common 
attributes or social segregation (Epstein and Axtell 1996).

This methodology is used in this paper for two purposes. First the analytical 
solution is verified when its conditions are satisfied, and second, in the more realistic 
model when no analytical solution is available, it is the most appropriate tool to 
analyze the dynamic properties of the model, because, as mentioned in Young
(1998), simulation can be used to establish constructive sufficiency.



The structure of the paper is the following. In Sect. 2 we summarize the 
prisoner’s dilemma and its A^-person version which is the object of our analysis. In 
Sect. 3 we derive the analytic solution for Skinnerian agents. The cases of other 
types of boundedly rational agents will be discussed briefly. In Sect. 4 we describe 
the simulation analysis and compare the simulation and theoretical results. Finally, 
the last section is devoted to conclusions and further research directions.

2 The A^-person prisoner dilemma

The prisoner’s dilemma is typically defined as a two player discrete game (Axelrod 
1984). The basic form of the game is given by the payoff matrix shown in Table 1 
where both players have two decision alternatives: to cooperate or to defect. The 
rows show the strategies of player 1, and the columns indicate the strategies of 
player 2. For each corresponding strategy pair the first number in each position 
gives the payoff of player 1, and the second value is the payoff of player 2. The 
possible payoffs are R (reward for both agents cooperating), P  (punishment for both 
agents defecting), T  (temptation to defect when the other agent cooperates), and 
S (sucker payoff for cooperating when the other agent defects). The classic situation 
involves two suspects being arrested and separated by the police. There is 
insufficient evidence for the police to convict either one of the accused crime, so the 
police offers each one a deal to testify against the other. If both suspects cooperate 
with each other by remaining silent, each one is sentenced to minimal jail time on a 
lesser charge. If one suspect testifies against the other (defects) and the other stays 
silent (cooperates), then the defector is released and the cooperator is sentenced to 
fall jail time on the accused charge. If both suspects defect and testify, then both are 
sentenced to reduced jail time on the accused charge. For the prisoner’s dilemma the 
payoffs for the players satisfy the relation T > R > P > S (Osborne 2004).

In this game defecting strictly dominates cooperating and thus the only 
equilibrium is for both players to defect. The dilemma is that both players would 
be better off if they both cooperated, but this is not a stable equilibrium since both 
players have a temptation to defect.

Study of collective behavior requires a multi-person extension of the model of 
this game.

In an A^-person prisoner’s dilemma game each agent can choose to cooperate or 
defect and then receives a reward or punishment that depends on the accumulated 
choices of the other agents. The amount of reward or punishment an agent receives 
is called a payoff function. A typical linear payoff function is shown in Fig. 1. In

Table 1 Payoff matrix for 
two player games 1 2

Cooperate Defect

Cooperate R, R S, T
Defect T, S P, P



Fig. 1 Linear payoff functions 
for cooperators (C) and 
defectors (D)

Pencentage of Cooperators

this payoff function x is the percentage of cooperators, C(x) is the payoff value for 
those agents that are cooperating and D(x) is the payoff value for those agents that 
are defecting. The game is said to be an A^-person prisoner’s dilemma when the 
parameters of the payoff functions satisfy the relation T > R > P > S (Schelling 
1973) similarly to the two-person case.

A cartel would be an example of an A^-person prisoner’s dilemma game. In a 
cartel the players cooperate to set an optimum production and price as if it were a 
monopoly. Each player or agent agrees to charge the monopoly price and limit 
production to set forth quantities. The temptation for each agent is to defect by 
lowering the price and producing more. The defecting agent has a higher profit or 
payoff since its market share increases significantly while the remaining cooperating 
agents lose market share while holding the same monopoly price. If all agents 
defect, then all are worse off since they would all be charging the same lower price 
with the same market share as if they all would have cooperated.

Another interesting example of an A^-person prisoner’s dilemma game is given by 
the well known tragedy o f the commons, (Hardin 1968). Consider a common ground 
used for the grazing of animals. When individuals add animals to their flocks they 
increase their personal wealth. Yet, every animal added to the total degrades the 
commons a small amount. The degradation for each additional animal is small 
relative to the gain in wealth for the owner, nevertheless if all owners follow this 
pattern the commons will ultimately be destroyed. When assuming rational actors, 
owners have incentive to increase their flock.

In an A^-person game each agent decides to cooperate or defect depending on 
several factors; some authors have considered aspects such as reciprocal cooper
ation (Bornstein et al. 1994), others have considered fairness Fehr and Schmidt
(1999). When abstracting from the reasons driving agents’ decisions it is possible to 
categorize them as behavioral classes. In Szilagyi (2003) several behavioral classes 
are presented including Pavlovian, Greedy, Conformist and Accountant. This paper 
will concentrate on what in Szilagyi (2003) are referred as Pavlovian agents and 
other types will be only briefly discussed. This kind of agent has a certain



probability of cooperating in each time period, which changes for the next time 
period or iteration by a proportion of the reward or punishment received;

, s _  ( pi{t — I) + a.C(x(t — 1)) if the agent cooperated at time period f — 1 
^  I P ib  ^  1) ^  [lD{x{t — 1)) if the agent defected at time period? — 1

(1)

where C(x(t — 1)) and D(x(t — 1)) are respectively the payoffs for cooperators and 
defectors depending on the percentage x(t — 1) of cooperating agents in the pop
ulation at time period t — 1; a is the proportion or learning factor for cooperators 
and /? is the learning factor for defectors.

With this updating rule the probability p  of taking a certain action— C or 
D—changes by an amount proportional to its reward or penalty from the 
environment. In Szilagyi (2003) this update rule is referred as Pavlovian; yet, since 
the process in which learning occurs is a function of the consequences of behavior, it 
would be better to call to it Skinnerian. In fact, according to Skinner (1953, p. 65), 
“In operant conditioning we ‘strengthen’ an operant in the sense of making a 
response more probable or, in actual fact, more frequent” . Operant conditioning 
framework was provided by the “law of effect” (Thordike 1911). The law of effect 
informs also other models of learning such as the implementation of Bush and 
H osteller’s stochastic learning provided in Macy and Hache (2002). By contrast, in 
the updating rule (1) we do not consider an aspiration level relative to which payoffs 
are positively or negatively evaluated on a standard scale, rather introduce different 
learning factors. In this paper, we refer to this class as Skinnerian even if the name 
under which it has been considered so far in the literature was Pavlovian (Szilagyi 
2003). Finally, it must be noted that since this strategy uses learning factors it is not 
the same as the strategy Pavlov discussed in Nowak and Sigmund (1993).

The learning factors a and /? are typically set to be the same value since in many 
models an agent is just responding to the reward or punishment, but a and /? may be 
different in cases where the decision affects the information an agent receives for 
the next time period or includes other intangible qualities such as happiness of 
making a certain decision or even be the result of cultural factors. For example, a 
situation may occur in the cartel example when a cooperating agent receives more 
information from the other cooperating agents about the economical environment. 
In essence, defecting agents may be isolated and so may respond differently to a 
reward or punishment. It is an easier way to model this situation with different 
learning factors then by incorporating it into the payoff functions dealing with more 
quantifiable parameters such as production levels, market share, and profits. A 
similar case occurs when the agents are basically ’’happy” with being cooperators 
and are less likely to put forth a strong effort to reevaluate their probability after 
cooperating in any time period. They are simply following the flow. It could also be 
that defecting agents are “shunned” and react more strongly one way or another. 
These situations also can be modeled with different learning factors. As an extreme 
case let’s assume that a defecting agent’s decision is to isolate itself from the 
environment and enter the next iteration basically with the same state. For this 
extreme case the defecting agent would still receive a reward or punishment with



zero learning factor where a cooperating (involved) agent may have some positive 
learning factor.

In Szilagyi (2003) it is shown that for Pavlovian agents an equilibrium occurs in 
an A^-person prisoner’s dilemma game when x* C(x*) =  (1 — x*) D(x*) under the 
assumption that the cooperating and defecting agents have the same learning factor. 
This equation depicts the situation when the total payoff of all the cooperating 
agents equals the total payoff of all the defecting agents. This equilibrium equation 
requires the solution of a quadratic equation with linear payoff functions.

In the next section we will develop a more general equilibrium equation that 
solves the A^-person prisoner’s dilemma game with different learning factors. The 
theoretical results will be also illustrated by simulation study.

3 Steady state analysis

An equation for the expected value of p  will first be developed for an arbitrary size 
population of Skinnerian agents. To simplify the notation denotes the
probability that an agent i will be cooperating in the next time period, C(x) is 
the payoff for cooperating agents and D{x) is the payoff for the defecting agents. 
The probability that an agent i will be cooperating in the next period is given as

new _  { Pi +  aC(x) if the agent is currently a cooperator , ,
\  Pi — ¡iD{x) if the agent is currently a defector

where x is the ratio of the agents who are currently cooperating in the population.
Since an agent is a cooperator with probability pi and a defector with probability 

1 — Pi, the expected value of becomes

E(i>r") =  \Pi +  ^C{x)]Pi +  \pi -  PD{x)]{\ - P i )
=  a.piC{x) + p i -  pD{x) +  PpiD{x).

If N  is the total number of agents then the percentage of cooperating agents is 
X = ^Yl^=\Pi- By combining this relation and Eq. (3) we have

1=1

^ ^ \ a p i C { x )   ̂ Pi  ̂ [ÌD{x)  ̂ PpiD{x)

L ^  ^  ^  ^
=  [aC(x) +  fìD{x) +  l]x -  fìD{x).

(4)

At any steady state x*, the state does not change anymore. That is, if x =  x*, then 
x”®" =  X *  as well. Therefore from Eq. (4) we conclude that x* is a steady state if 
and only if

X* =  [aC(x*) +  IÌD{x*) +  l]x* -  IÌD{x*),



which can be written as

x*aC{x*) = { l-x* )l}D {x* ). (5)

Note that if a =  /? then Eq. (5) simphfies to x* C(x*) =  (1 — x*) D(x*), which is the 
equihbrium equation presented in Szilagyi and Szilagyi (2002) for this special case.

The above analysis is valid in the case of general payoff functions since in the 
derivation no special forms are assumed. In the linear case C(x) — S + (R — S)x and 
D(x) — P + (T — P)x so Eq. (5) reduces to

x * a [5 + (/? -5 )x * ]  =  (1 -  x*)li[P + {T -  P)x*].

This is a quadratic equation for x* and therefore

, - a S  -  IP P  +  P T ±  ^«2 ^ 2 -  2a.pST + fi^T^ + AafiPR 
 ̂ ^  2{(iR -  «5 + -  IÌP) ■ ’

I f  a, — P, then this equation simplifies as

, _  - 5  -  2P +  r  ±  V s^  -  2ST + T ^ +  APR 
^  ^  2 { R - S  + T  - P )  ■ (7)

Equation (6) shows that the number of steady states is 0, 1 or 2 in the linear case 
depending on the signs of the discriminant and the roots which depend on the 
learning factors. On the contrary, in (7) the learning factors do not appear and the 
steady state depends only on the payoff values. In the latter case the identical learning 
factors have no influence on the theoretical prediction. If we assume that the learning 
factor is peculiar to the population culture, this would mean that different populations 
playing the same game would have the same steady states; this would be in contrast 
to Parks and Vu (1994) which showed differences in cooperation when comparing 
populations from different cultures. By contrast, when the learning factors are 
different their values determine the steady state of the population and the possible 
level of cooperation. This way, the learning factors characterize both the population 
and the steady states of the game they are playing. In this case the outcome of the 
game depends both on the game payoffs and the population playing it: this seems also 
to be more in accord to theories in which several entities are considered in the 
analysis of groups, see e.g. (Lewin 1947, p. 14).

Impulsive agents compare the common payoffs of cooperators C(x) and that of 
defectors D{x) where x is again the ratio of cooperators in the society. If 
C(x) >  D(x), then cooperators keep their previous strategy but defectors change it 
with a given probability of change 5c- Otherwise the defectors keep their strategies 
and the cooperators become defectors with probability S ,̂. In general 5c ^  ^d - 
Similarly to Eq. (4) it can be easily proved that the dynamic rule is the following:

x +  (5 c (l—x) ifC (x )> D (x )  

x " - = < ! x  ifC (x )= D (x )

x  — 5ox ifC (x )< D (x )



This generates a nonlinear discontinuous dynamics. Its properties are discussed in 
detail in Bischi et al. (2009a), and the relevant simulation study can be performed in 
the same way as shown in this paper. In Szilagyi (2003) impulsive agents are called 
greedy. Conformist and accountant agents have similar dynamic rules. The details 
are left as easy exercises to the reader.

4 Simulation study

We will confirm and extend the analysis of the previous section with different series 
of simulations. Firstly we will show that, the theoretical prediction can be obtained 
by simulation. Secondly, by introducing the bounds on probability values in order to 
keep them bounded we consider a nonlinear updating rule. Since the nonlinearity of 
this updating rule makes the analytical treatment of such dynamics impossible, 
simulation will allow us to extend these theoretical results to the nonlinear case. We 
performed the different simulations by a C + +  program written by the authors, 
which is available from the authors upon request. For each case we report the 
average value obtained with 1,000 runs generated with different seeds for the 
random number generator. In particular, we followed the prescriptions reported in 
Press et al. (2007) and used random generator R an (Press et al. 2007, p. 342). The 
results confirms those obtained with MATLAB and reported in Sandbank (2010).

In this paper interactions with all neighbors as a collective set are explored, i.e., 
the interaction is among the whole population. Time is moved forward in iterations. 
In each iteration the agents decide to cooperate or defect based on the probability 
distribution (1).

An example earlier introduced in Szilagyi (2003) will be reviewed. First, with the 
assumption that a =  /? the theoretical and simulation results are compared to those 
given in Szilagyi (2003). Next, the learning factor /? is varied while keeping a the 
same so that we can examine cases where a, ^  [Ì and see the dependence of the 
steady state on the value of /?.

The parameters given in Szilagyi (2003) are a — fi — 0.1, P — — 0.5, 
R — 1.0, S — — 1.0 and T — 1.5. We use the same parameters in order to 
compare our results to those in the literature.

Inserting a, ji, P, R, S and T  into Eq. (7) gives x* =  0.1798 and 0.6952 which 
matches the results given in Szilagyi (2003). Figure 2 uses Eq. (4) to sequentially 
determine x(f) from initial points of 0.05, 0.65 and 0.75. The quadratic curve is the 
right hand side of Eq. (4) and the straight line from (0,0) to (1,1) is a 45 degree line. 
For example, if we start at x(0) =  0.05 the next state is x (l) =  0.0835. This is 
represented by the vertical dashed line at x(0) =  0.05 running from 0 to 0.0835. 
Moving along the lowest horizontal line to x (l) =  0.0835 we come to the next 
vertical line which shows the second iteration going from x (l) =  0.0835 to 
x(2) =  0.1071. Continuing in this fashion we see that the solution converges to
0.1798. Figure 2 shows this procedure for starting states of 0.05, 0.65 and 0.75. 
From these results it is clear x* =  0.1798 and 0.6952 are the solutions with 
X * =  0.1798 being an attractor and x* =  0.6952 being a repeller.



Fig. 2 The top graph is an 
iteration chart with initial 
starting states of 0.05, 0.65 and 
0.75. This chart shows 
X * =  0.1798 is an attractor and 
X * =  0.6952 is a repeller. The 
chart on the bottom is a 
magnification using the initial 
starting state of 0.05. It better 
shows the iterations converging 
to the attractor x* =  0.1798

x(t-1)

x(t-1)

In the simulation study we selected identical cooperation probabilities for all 
agents in the population. For each later time period we updated the cooperation 
probabilty of each agent by using Eq. (2). Based on these probability values the 
actual strategies (cooperation or defection) are generated. The percentage of the 
cooperative agents is the x(f) value for this time period. This procedure is repeated 
for 500 time periods.

When using Eq. (1) to adjust the probability values, the simulation gave the same 
results as obtained by the analytical study. However there is a slight problem with 
this equation, since pi(t) might become infeasible as a probability value. So the 
equlibrium equation holds if all computed probability values are between zero and 
one. It is more realistic to make the following adjustment. If the computed 
Pi( t )  value becomes larger than one, then it is adjusted to one. Similarly, if its value 
becomes negative, then it is adjusted to zero. This adjustment process makes Eq. (1) 
nonlinear and nondifferentiable. Therefore, an equation similar to (4) cannot be 
obtained in this case. The dynamic properties of this more realistic model can be 
examined by using simulation.

Figure 3 shows some x ( t )  sequences starting from different initial states. They 
coincide with the corresponding results presented in Szilagyi (2003). These results 
seem to contradict the theoretical findings. The presence of multiple solutions is the
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Fig. 3 500 iterations are performed considering the entire set of agents, a =  /? =  0.1 are selected. The 
initial cooperating ratios from top to bottom curves are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65 and 0.00

result of adjusting too large probability values to one by decreasing them and 
similarly, adjusting negative probability values to zero by increasing them. In fact, 
when the initial cooperation ratio is below the repeller, the solution of the game 
converges toward the attractor where it stabilizes exactly. On the contrary, as 
mentioned in Szilagyi (2003), when the initial cooperation ratio is above the repeller 
the population does not result in the aggregate cooperation proportion converging to
1, as might be expected. In fact, when an individual agent starts off as a defector, it 
is possible that the agent will continue to defect as the reward for defecting drives its 
cooperation probability to zero.

We can vary the values of a and fi and repeat the computation and simulation. In 
the following example we change the value of fi to 0.01, so that a fi. The 
parameter values in this case are a =  0.1, fi — 0.01, P  =  —0.5, R — 1.0, S — 
— 1.0 and T — 1.5. Starting form the parameters used in Szilagyi (2003) we 
introduce a variation in the learning factor for defectors; the different learning 
factors for cooperators and defectors show why heterogeneity is important. We 
choose a smaller learning factor for defectors in order to consider a situation in 
which defectors tend to stick to their strategy. In future reasearch we will explore 
other learning parameters configurations.

There would be no change in inserting these parameters into Eq. (7) since this 
equation does not depend on a or fi, but inserting them into the more general Eq. (6) 
leads to the different solutions of 0.0433 and 0.5249. The simulation results for 
a =  0.1, fi — 0.01 are shown in Figs. 4 and 5. Figure 4 uses the same initial 
probabilities as in Fig. 3 to show that the curves become different when a, ^  fi. 
Figure 5 is based on the same data with different initial cooperating probabilities of 
0.90, 0.80, 0.75, 0.56, 0.54, 0.52, 0.50 and 0 to show that the repeller is indeed 
0.5249 as indicated by Eq. (6). It can also be seen from these simulations that the 
attractor is 0.0433, which is the same as determined by Eq. (6). This results show 
that Eq. (6) correctly determines the solution when a, ^  fi.



Iteration

Fig. 4 500 iterations were performed considering the entire set of agents with a =  0.1 and /? =  0.01. 
The initial cooperating ratios from top to bottom curves are 0.90, 0.80, 0.75, 0.73, 0.71, 0.69, 0.65 and 
0.00
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Fig. 5 This is the same simulation as Fig. 3 with a =  0.1 and /? =  0.01 and the initial cooperating ratios 
0.90, 0.80, 0.75, 0.56, 0.54, 0.52, 0.50 and 0.00 from the top to the bottom. It can be seen here that the 
solutions of X * =  0.0433 and 0.5249 agree with the analytical results of Eq. (6)

Table 2 Attractor solutions 
of Eq. (6) for varying learning 
factors

Bolded cells denote solutions 
for a = fS, which do not 
change

a.

0.01 0.04 0.07 0.10

0.01 0.1798 0.2298 0.2383 0.2418
0.04 0.0892 0.1798 0.2064 0.2185
0.07 0.0584 0.1448 0.1798 0.1978

0.10 0.0433 0.1202 0.1582 0.1798

It is interesting to note that the solution does not change if both a and /? vary but 
remains equal. Tables 2 and 3 shows the attractor and repeller solutions for the 
payoff function parameters used in the above examples as a and /? vary. It is clear 
from these tables that the analytical solution does not change when the learning



Table 3 Repeller solutions 
of Eq. (6) for varying learning 
factors

Bolded cells denote solutions 
for a = ¡i, which do not 
change

a P

0.01 0.04 0.07 0.10

0.01 0.6953 0.8702 0.9179 0.9401
0.04 0.5608 0.6953 0.7709 0.8172
0.07 0.5354 0.6280 0.6953 0.7433
0.10 0.5249 0.5940 0.6506 0.6953

factors are equal. This is understandable, since in Eq. (5) the multipliers a and /? 
cancel out when a, — [1.

5 Conclusion

An analytical equation, x*a C(x*) =  (1 — x*) fi D(x*), was found to solve the 
A^-person prisoner’s dilemma game with Skinnerian agents. This solution allows 
for situations where the agents have different learning factors and characterize the 
steady states of the dynamics depending on their learning factors which can be 
considered factors peculiar to the population. Through agent based simulation it 
was shown that this solution is accurate for linear payoff functions. If a =  /?, then 
this analytical solution simplifies to x* C(x*) =  (1 — x*) D(x*) which is known 
from the literature. It was also shown by agent based simulation that the simplified 
equation x* C(x*) =  (1 — x*) D(x*) does not work for a fi, which is also clear 
from the analytical solution. We briefly discussed the case of impulsive agents. 
We also discussed the limitations of the analytic equations and introduced a 
modified model eliminating those restrictions. The dynamics of this more realistic 
model was examined by simulation. In this paper some major simplifying 
assumptions were made. As the approach of integrating experimental data into 
theoretical and simulation models is becoming important in the recent literature, 
see for example (Dal Forno and Merlone 2004, 2012; Ebenhoh 2006; Boero et al. 
2010), it will be interesting to analyze how the assumptions we made are realistic. 
Furthermore, relaxing these assumptions after observing human participants 
interact in situations similar to those here described will increase the predictive 
accuracy of the model. Also, in our future research we plan to address cases of 
nonlinear payoff functions with one or more intersection as those described in 
Schelling (1973). Also it will be interesting to study local effects, by considering 
more general neighborhood structures of the agents: when neighborhoods, in 
which the interaction takes place, are special subsets of the entire society. Then it 
will be possible to analyze local effects instead of global properties. Other agent 
types were not examined in detail in the literature yet. We also plan to investigate 
such cases in order to compare the theoretical findings to the simulation study 
results. When the comparison is possible it will help to obtain vertical multiple 
implementations of the model, i.e., using different modeling paradigms to 
understand a phenomena as suggested in Merlone et al. (2008). On the other hand.



simulation will help to extend the results when heterogeneity of agents makes the 
formal derivation of results unfeasible.
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