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a b s t r a c t

Species sampling problems have a long history in ecological and biological studies and
a number of statistical issues, including the evaluation of species richness, are still to
be addressed. In this paper, motivated by Bayesian nonparametric inference for species
sampling problems, we consider the practically important and technically challenging
issue of developing a comprehensive posterior analysis of the so-called rare variants,
namely those species with frequency less than or equal to a given abundance threshold.
In particular, by adopting a Gibbs-type prior, we provide an explicit expression for the
posterior joint distribution of the frequency counts of the rare variants, and we investigate
some of its statistical properties. The proposed results are illustrated bymeans of two novel
applications to a benchmark genomic dataset.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Suppose that statistical units drawn from a population are representative of different species. Their labels are denoted
by X̂i and their respective proportions in the population by p̃i, for i ≥ 1. Therefore, models for species sampling problems
can be usefully embedded in the framework of discrete random probability measures, P̃ =


i≥1 p̃iδX̂i , where δa denotes

the point mass at a. Discrete random probability measures emerge as remarkable tools for theoretical and applied analysis
in, e.g., population genetics, ecology, genomics, mathematical physics, machine learning. The most celebrated example of
discrete random probability measure is the Dirichlet process introduced by Ferguson [14] and whose random masses p̃i
are obtained either by normalizing the jumps of a Gamma completely random measure or by means of a stick-breaking
procedure. This process has been also popularized under the name of (one parameter) Poisson–Dirichlet process and
characterized in terms of the distribution of its ranked random masses by Kingman [22]. The reader is referred to Lijoi and
Prünster [28] for an up-to-date review of classes of discrete random probabilitymeasures generalizing the Dirichlet process.
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In this paper our attention will be focused on statistical issues related to species sampling problems: these will be
addressed by a Bayesian nonparametric approach. We consider data from a population whose species composition is
directed by a discrete random probability measure P̃ with distribution Π , i.e.

Xi | P̃
iid
∼ P̃ i = 1, . . . , n

P̃ ∼ Π, (1)

for any n ≥ 1. According to de Finetti’s representation theorem, (Xi)i≥1 is exchangeable andΠ takes on the interpretation of
a prior distribution over the composition of the population. Since P̃ is discrete,we expect ties in a sample (X1, . . . , Xn) from P̃ .
Preciselywe expect Kn ≤ n distinct observations, or species, with frequenciesNn = (N1, . . . ,NKn) such that


1≤i≤Kn Ni = n.

Accordingly, the sample induces a random partition of {1, . . . , n}, in the sense that any index i ≠ j belongs to the same par-
tition set if and only if Xi = Xj. We denote by p(n)

j (n1, . . . , nj) the function corresponding to the probability of any particular
partition of {1, . . . , n} having Kn = j blocks with frequencies Nn = (n1, . . . , nj). This function is known as the exchangeable
partition probability function (EPPF), a concept introduced in Pitman [34] as a development of earlier results in Kingman
[23]. See Pitman [36] for a comprehensive account on exchangeable random partitions.

Under the framework (1), with P̃ being in the class of the Gibbs-type random probability measures by Pitman [35],
Lijoi et al. [25] introduced a novel Bayesian nonparametric methodology for making inferences on quantities related to
an additional unobserved sample (Xn+1, . . . , Xn+m) from P̃ , given an observed sample (X1, . . . , Xn). A particularly important
example is represented by the estimation of the number of new species that will be observed in the additional sample.
See Lijoi et al. [29], Favaro et al. [12], Favaro et al. [11] and Bacallado et al. [1] for estimators of other features related to
species richness under Gibbs-type priors. This class of priors stands out for both mathematical tractability and flexibility.
Indeed, apart from the Dirichlet process, the class of the Gibbs-type random probability measures includes as special cases
the two parameter Poisson–Dirichlet process, also known as Pitman–Yor process, and the normalized generalized Gamma
process. We refer to Perman et al. [33], Pitman and Yor [37] and Ishwaran and James [18] for details on the two parameter
Poisson–Dirichlet process, and to James [19], Pitman [35], Lijoi et al. [27] and James [20] for details on the normalized
generalized Gamma process. Gibbs-type priors also stand out for being particularly suited in the context of inferential
problems with a large unknown number of species, which typically occur in several genomic applications. See, e.g., Lijoi
et al. [26], Guindani et al. [16] and De Blasi et al. [5].

Motivated by the goal of performing Bayesian nonparametric inference for species sampling problems, in this paper we
develop a comprehensive posterior analysis of the so-called rare variants, namely the species with frequency less than or
equal to a given abundance threshold τ . Ecological and biological literature have always devoted special attention to rare
variants. In ecology, for instance, conservation of biodiversity represents a fundamental theme and it can be formalized in
terms of the number of species whose frequency is greater than a specified threshold; indeed, any form of management on
a sustained basis requires a certain number of sufficiently abundant species, the so-called breeding stock. See, e.g., Usher
[39] and Magurran [31] for detailed surveys on measurements of biodiversity, conservation of populations, commonness
and rarity of species. On the other hand in genetics one is typically interested in the number of individuals with rare genes,
the reasons being that rare genes of a specific type may be associated with a deleterious disease. See, e.g., Elandt-Johnson
[7] and Laird and Lange [24] for a detailed account on the role of rare variants in genetics.

Under the statistical framework (1), with P̃ being a Dirichlet process, Joyce and Tavaré [21] first investigated the prior
distribution of the rare variants, namely the joint distribution of the frequency counts of the rare variants induced by an
initial sample (X1, . . . , Xn) from P̃ . In particular they mainly focused on the study of the asymptotic behavior, for a large
sample size n, of such a prior distribution. In this paper we derive the prior distribution of the rare variants under the
more general assumption of P̃ being a Gibbs-type random probability measure. Furthermore, following ideas set forth
in Lijoi et al. [25], we derive and investigate the posterior distribution of the rare variants. Such a posterior distribution
corresponds to the conditional joint distribution of the frequency counts of the rare variants induced by an additional sample
(Xn+1, . . . , Xn+m), given (X1, . . . , Xn). Precisely, this is as a suitable convolution of: (i) the joint posterior distribution of the
new rare variants that are generated from the additional sample and do not coincide with rare variants already detected in
the initial sample; (ii) the joint posterior distribution of the old rare variants that arise by updating, via the additional sample,
the rare variants already detected in the initial sample. Our distributional results are derived by generalizing some of the
combinatorial techniques originally developed in Favaro et al. [12], where special cases of the results in this paper have been
presented. After submitting the first version of this paper we learnt that the posterior distribution of the rare variants have
been recently obtained independently, and by means of different techniques, in Cerquetti [2]. For additional distributional
results on rare variants we refer to the M.Sc. Thesis of Cesari [3], from which the main contributions of the present papers
are taken.

Our prior and posterior distributional results admit several applications, not necessarily related to the study of the rare
variants. In this paper we focus on two representative applications, which will be illustrated under the assumption of a two
parameter Poisson–Dirichlet prior. Firstly, we devise a novel methodology to approximately quantify the uncertainty of a
Bayesian nonparametric estimator for the number of rare species. This estimator has been recently introduced in Favaro
et al. [12] and the problem of evaluating its accuracy is of great importance in several applied contexts. To this end, we
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introduce approximate credible intervals that exploit the knowledge of the asymptotic behavior of the posterior distribution
of rare variants. Secondly,we study, both a priori and a posteriori, the correlation between variants of different order. Explicit
expressions for the correlations can be obtained by a direct application of our results on the prior and posterior distributions
of number of rare variants. Our analysis of the prior correlation aims at gaining further insight on the role of the parameters
characterizing the two parameter Poisson–Dirichlet process. Both applications are illustrated by means of the analysis of a
well-known benchmark genomic dataset.

The paper is structured as follows. In Section 2 we recall the definition of Gibbs-type exchangeable random partition
and we present some preliminary results on the prior distribution of rare variants. In Section 3 we derive and investigate
the posterior distribution of rare variants under the general framework of Gibbs-type prior and in the special case of
the two parameter Poisson–Dirichlet prior. Section 4 contains two representative applications of our prior and posterior
distributions for rare variants. Proofs are deferred to the Appendix.

2. Gibbs-type exchangeable random partitions

In this section we review some sampling properties of Gibbs-type random probability measures. See the monograph by
Pitman [36] and references therein for a comprehensive account on these sampling properties. For any x > 0 and anypositive
integer n, throughout the paper we use (x)(n) and (x)[n] to denote the rising factorial and falling factorial, respectively.
Moreover, for any α ∈ (0, 1), let fα be the density function of a positive α-stable random variable and let Sα,c , for any
c > −1, be a random variable with density function

fSα,c (y) =
Γ (cα + 1)
αΓ (c + 1)

yc−1−1/α fα

y−1/α . (2)

The random variable S−1/α
α,c is the so-called polynomially tilted positive α-stable random variable. See, e.g., Pitman [36] for

a detailed account. See also Devroye [6] for exact sampling methods for Sα,c . Finally, we denote by Za a random variable
distributed according to a Poisson distribution with parameter a.

Gnedin and Pitman [15] characterized the EPPF induced by a Gibbs-type prior in terms of a distribution with a suitable
product form, a feature which is crucial for guaranteeing mathematical tractability. Specifically, they showed that a sample
(X1, . . . , Xn) from a Gibbs-type random probability measure induces an exchangeable random partition with an EPPF of the
form

p(n)
j (n1, . . . , nj) = Vn,j

j
i=1

(1 − α)(ni−1), (3)

for any α < 1 and any collection of nonnegative weights (Vn,j)j≤n,n≥1 which satisfy the recursion Vn,j = Vn+1,j+1 + (n −

jα)Vn+1,j, with the initial condition V1,1 = 1. A randompartition distributed according to (3) is termedGibbs-type exchange-
able random partition. From (3), the distribution of the number Kn of blocks in a Gibbs-type exchangeable random partition
corresponds to

P[Kn = j] = Vn,j
C (n, j; α)

αj
,

with C (n, j; α) = (j!)−1j
i=0


j
i


(−1)i(−iα)(n) being the generalized factorial coefficient. See Charalambides [4] for de-

tails. In Example 1 we recall the Ewens sampling model and the Ewens–Pitman sampling model, which are two noteworthy
examples of Gibbs-type exchangeable random partitions introduced in Ewens [8] and Pitman [34]. Precisely, they corre-
spond to the exchangeable random partitions induced by a sample (X1, . . . , Xn) from the Dirichlet process and the two
parameter Poisson–Dirichlet process, respectively.

For any fixed α < 1, the backward recursion of the weights Vn,j’s cannot be solved in a unique way. The solutions form a
convex set where each element is the distribution of an exchangeable random partition. Theorem 12 in Gnedin and Pitman
[15] describes the extreme points of such a convex set. Let

cn(α) =

1 if α ∈ (−∞, 0)
log(n) if α = 0
nα if α ∈ (0, 1),

for any n ≥ 1. Then, for every Gibbs-type exchangeable random partition there exists a positive and almost surely finite
random variableWα such that

Kn

cn(α)

a.s.
−→ Wα,

as n → +∞. A Gibbs-type exchangeable randompartition is a uniquemixture over ~ of extreme exchangeable randompar-
titions forwhichWα = ~ almost surely. Forα ∈ (−∞, 0) the extremes are Ewens–Pitman samplingmodelswith parameter
(α, −α~); for α = 0 the extremes are Ewens sampling models with parameter ~ ≥ 0; for α ∈ (0, 1) the Ewens–Pitman
sampling models are not extremes. We refer to Section 6.1 in Pitman [35] for details onWα .
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Example 1. For any α ∈ [0, 1) and θ > −α the Ewens–Pitman sampling model is a Gibbs-type exchangeable random
partition with nonnegative weights of the form

Vn,j =

j−1
i=0

(θ + iα)

(θ)(n)
. (4)

The Ewens sampling model with parameter θ > 0 corresponds to the special case α = 0. Moreover,

Kn

cn(α)

a.s.
−→


Sα,θ/α if α ∈ (0, 1)
θ if α = 0 (5)

as n → +∞, where Sα,θ/α is a random variable with density function (2). See Pitman [36] for details on the weight (4) and
on the limiting behavior of Kn in (11).

IfMl,n is the number of species with frequency l in a sample (X1, . . . , Xn) from a Gibbs-type random probability measure,
then a change of variables in (3) yields the distribution of Mn = (M1,n, . . . ,Mn,n). Specifically, the Gibbs-type sampling
formula determines the distribution ofMn and it corresponds to

pn(m1, . . . ,mn) = n!Vn,j

n
i=1


(1 − α)(i−1)

i!

mi 1
mi!

(6)

with (m1, . . . ,mn) ∈ {0, 1, . . . , n}n such that
n

i=1 imi = n and
n

i=1 mi = j. The Ewens–Pitman sampling formula, intro-
duced by Pitman [34], is recovered as a special case of (6) by substituting Vn,j with the expression in (4), i.e.

pn(m1, . . . ,mn) = n!

j−1
i=0

(θ + iα)

(θ)(n)

n
i=1


(1 − α)(i−1)

i!

mi 1
mi!

. (7)

Of course the celebrated Ewens sampling formula, introduced in the seminal paper by Ewens [8], is a special case of (7) and
it can be recovered by letting α → 0. We refer to Pitman [36] for a review on the Ewens–Pitman sampling formula and to
Ewens and Tavaré [10] for a review on the Ewens sampling formula.

Let q be a positive integer and let l = (l1, . . . , lq) be distinct positive integers. Moreover, let r = (r1, . . . , rq) be a vector
of positive integers. In the next theorem we derive the mixed falling factorial moment of order r of the random variable

Ml,n = (Ml1,n,Ml2,n, . . . ,Mlq,n).

Our result generalizes Theorem 1 in Favaro et al. [12], where the falling factorial moment of the random variable Ml,n was
derived. See also Ewens and Tavaré [10] for some moment formulae of Ml,n under the framework of the Ewens sampling
formula. Henceforth we agree that, for any positive integer n,


−n
i=0 ≡ 0.

Theorem 1. Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type prior. Then, for any 1 ≤ q ≤ n, ri ≥ 1 and
1 ≤ li ≠ lj ≤ n with i ≠ j

E


q

i=1

(Mli,n)[ri]


= Hα(q, n, l, r)

n−
q

i=1 liri
j=0

Vn,j+
q

i=1 ri

C


n −

q
i=1

liri, j; α


αj

, (8)

where

Hα(q, n, l, r) =
n!

n −

q
i=1

liri


!

1{0,1,...,n}


n −

q
i=1

liri


×

q
i=1


(1 − α)(li−1)

li!

ri
.

We recall that the falling factorial moment (8) characterizes the distribution of the random variableMl,n. Specifically, by
means of standard arguments involving probability generating functions, (8) leads to an explicit expression for the distri-
bution of the random variable Ml,n. If q = τ < n and li = i for i = 1, . . . , τ , then (8) provides the distribution of the rare
variants, namely the joint distribution of the frequency counts (M1,n, . . . ,Mτ ,n). In the next corollarywe present a collection
of results which can be derived by Theorem 1 under the assumption of a two parameter Poisson–Dirichlet prior. In Section 4
these results will be applied to a benchmark genomic dataset.
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Corollary 1. Let (Xi)i≥1 be an exchangeable sequence directed by a two parameter Poisson–Dirichlet prior. Then, for any α ∈

[0, 1) and θ > −α one has

(i) for any 1 ≤ τ ≤ n and ri ≥ 1

E


τ

i=1

(Mi,n)[ri]


= H(τ )

α (n, r) α
τ

i=1 ri


θ

α


(
τ

i=1 ri)


θ + α

τ
i=1

ri


(n−

τ
i=1 iri)

(θ)(n)
; (9)

(ii) for any 1 ≤ l1 ≠ l2 ≤ n

E

Ml1,nMl2,n


= Hα(2, n, (l1, l2), (1, 1)) α2


θ

α


θ

α
+ 1


(θ + 2α)(n−l1−l2)

(θ)n
; (10)

(iii) for any τ < n and ≤ li ≠ lj < n with i ≠ j, as n → +∞

1
cn(α)

τ
i=1

Mli,n
w

−→




τ

i=1

α(1 − α)(li−1)

li!


Sα,θ/α if α ∈ (0, 1)

τ
i=1

Zθ/li if α = 0.

(11)

Besides providing the distribution of the rare variants under a Gibbs-type prior, Theorem 1 is also a fundamental tool
for deriving the distribution of the so-called sampling indexes of diversity. Sampling indexes of diversity are quantitative
measures expressed as linear combinations of theMi,n’s. They reflect the species richness of a population, and simultaneously
take into account how evenly the individuals are distributed among those species. The value of a diversity index increases
both when the number of types increases and when evenness increases. See Magurran [30], Magurran [31] and Magurran
[32] for detailed accounts of indexes of diversity and their sampling versions. A prototype of the sampling index of diversity
has the form

D =

n
i=1

c(i)Mi,n, (12)

where the c(i)’s are deterministic weights. Noteworthy examples of sampling indexes of diversity are the sampling version
of the Simpson index, which corresponds to the choice c(i) = i2/n2, and the sampling version of the Shannon entropy,
which corresponds to the choice c(i) = −(i/n) log(i/n). In population genetics these two sampling indexes are known as the
Watterson and Ewens tests of neutrality, and they are used as a good statistic for testing departures from selective neutrality
in the direction of heterozygote advantage or disadvantage. See the monograph by Ewens [9] and references therein.

Intuitively, the problem of determining the distribution of the random variable D reduces to Theorem 1. Indeed the
falling factorial moment of order r of D can be written in terms of the factorial moment 1. Specifically, by means of standard
combinatorial manipulations of the falling factorials one has

E[(D)[r]] =


(r1,...,rn)∈Dn,r


r

r1, . . . , rn


×

r1
v1=0

(−1)v1−r1C (r1, v1; c(1))
r2

v2=0

(−1)v2−r2C (r2, v2; c(2))

× · · · ×

rn
vn=0

(−1)vn−rnC (rn, vn; c(n))E


n

i=1

(Mi,n)[vi]


, (13)

where Dn,r = {(r1, . . . , rn) : ri ≥ 0 and
n

i=1 ri = r} and E[
n

i=1(Mi,n)[vi]] is given by 1 with q = n and li = i, for any
i = 1, . . . , n. Eq. (13) thus leads, for the above choices of c(i)’s, to the distributions of the sampling versions of the Simpson
index and of the Shannon entropy under a Gibbs-type prior.

3. Posterior analysis of rare variants

As alreadymentioned in Section 2, there exists a consolidated literaturewith plenty of results onunconditional properties
of species sampling models and exchangeable random partitions. On the other hand, the investigation of the conditional
properties of these models, given a sample generated by them, is more recent and many issues, which are essential in
Bayesian nonparametric inference for species sampling problems, are still to be addressed. In this section we assume
that the observations are modeled under the statistical framework (1) with P̃ being in the class of Gibbs-type random
probability measures. Then, given an initial observed sample (X1, . . . , Xn), we provide a comprehensive study on the
posterior distribution of the rare variants.
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Hereafter we resort to the notation set forth in Section 2 and we introduce some further quantities in order to describe
the distribution of the random partition structure induced by an additional sample (Xn+1, . . . , Xn+m), given that the
initial sample (X1, . . . , Xn) has been observed. Firstly, if we denote by X∗

1 , . . . , X∗

Kn the labels identifying the Kn species in
(X1, . . . , Xn), then

L(n)
m =

m
i=1

Kn
j=1

1{Xn+i≠X∗
j } (14)

is the number of observations in (Xn+1, . . . , Xn+m) which generate a certain number, say K (n)
m , of species not coinciding

with species already observed in the initial sample. These species will be referred to as new species. In particular, if
X∗

Kn+1, . . . , X
∗

Kn+K (n)
m

are the labels identifying the K (n)
m new species, then

SKn+i =

m
j=1

1{Xn+j=X∗
Kn+i}

, (15)

are their corresponding frequencies, for any i = 1, . . . , K (n)
m . Analogously, let

Si =

m
j=1

1{Xn+j=X∗
i } (16)

be the number of observations in (Xn+1, . . . , Xn+m) which coincides with the ith species observed in (X1, . . . , Xn), for any
i = 1, . . . , Kn. These species will be referred to as old species. See Lijoi et al. [29] and Favaro et al. [12] for a description of the
random variables (14)–(16) by means of conditional partition probability functions when data are generated by Gibbs-type
priors.

The random variables (15) and (16) play a crucial role in deriving the posterior distribution of rare variants. By means of
(15) and (16) we define N (n)

l,m and O(n)
l,m as

P


N (n)

l,m = x


= P

K (n)
m
i=1

1{SKn+i=l} = x | Kn = j,Nn = (n1, . . . , nj)

 (17)

and

P


O(n)
l,m = x


= P


Kn
i=1

1{Ni+Si=l} = x | Kn = j,Nn = (n1, . . . , nj)


. (18)

Given the random partition (Kn,Nn) induced by (X1, . . . , Xn): (i) N
(n)
l,m is the conditional number of species with frequency l

among the new species in (Xn+1, . . . , Xn+m); (ii) O(n)
l,m is the conditional number of species with frequency l among the old

species in the whole sample (X1, . . . , Xn+m). Hence,

M(n)
l,m = N (n)

l,m + O(n)
l,m (19)

is the conditional number of species with frequency l in (X1, . . . , Xn+m). Note that (19) is a posterior counterpart of the
random variableMl,n introduced in Section 2.

Let q be a positive integer and let l = (l1, . . . , lq) be distinct positive integers. Moreover, let r = (r1, . . . , rq) be positive
integers and consider the sets C0 = {0} and Cri = {(ci,1, . . . , ci,ri) : Nci,t ≤ li ∀ t and 1 ≤ ci,t < ci,h ≤ j if t < h }. Denoting

by c(ri) = (ci,1, . . . , ci,ri) an element of the set Cri , let Cr = {(c(r1)
1 , . . . , c(rq)

q ) : c(ri)
i ∈ Cri and ci,t ≠ ci′,h ∀ t, h, if i ≠ i′ }.

Finally, we denote by c(r)
= (c(r1)

1 , . . . , c(rq)
q ) an element of the set Cr. In the next theorem we derive the mixed falling

factorial moment of order r of the random variable

O(n)
l,m = (O(n)

l1,m
,O(n)

l2,m
, . . . ,O(n)

lq,m).

The factorial moment of O(n)
l,m has been first derived in Theorem 2 in Favaro et al. [12]. Such a result represented a fundamen-

tal tool for computing the posterior distribution, and the corresponding Bayesian nonparametric estimator, of the number
of old species with frequency l induced by the additional sample. The next theorem provides a generalization of Theorem 2
in Favaro et al. [12].
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Theorem 2. Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type prior. Then, for any 1 ≤ q ≤ n + m, ri ≥ 1 and
1 ≤ li ≠ lj ≤ n + mwith i ≠ j,

E


q

i=1

(O(n)
li,m

)[ri]


=


c(r)∈Cr

Iα

q,m, l, r,n, c(r)

×

m−
q

i=1(liri−|n
c
(ri)
i

|)
k=0

Vn+m,j+k

Vn,j

×

C


m −

q
i=1

(liri − |n
c(ri)i

|), k; α, −n +

q
i=1

|n
c(ri)i

| + α


j −

q
i=1

ri


αk

, (20)

with

Iα

q,m, l, r,n, c(r)

=
m!

m −

q
i=1

(liri − |n
c(ri)i

|)


!

1{0,1,...,m}


m −

q
i=1

(liri − |n
c(ri)i

|)


q

i=1

ri!
ri

t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!
.

If q = τ < n+m and li = i for i = 1, . . . , τ , then Eq. (20) characterizes the posterior distribution of the so-called old rare
variants. Precisely, by old rare variants we mean species with frequencies 1, 2, . . . , τ among the old species in the whole
sample (X1, . . . , Xn+m). In the next corollary we present a collection of results which can be derived by a direct application
of Theorem 2 under the assumption of a two parameter Poisson–Dirichlet prior.

Corollary 2. Let (Xi)i≥1 be an exchangeable sequence directed by a two parameter Poisson–Dirichlet prior. Then, for any α ∈

[0, 1) and θ > −α one has
(i) for any 1 ≤ τ ≤ n + m and ri ≥ 1

E


τ

i=1

(O(n)
i,m)[ri]


=


c(r)∈Cr

Iα

τ ,m, (1, . . . , τ ), r,n, c(r)

×


θ + n −

τ
i=1

|n
c(ri)i

| + α
τ

i=1
ri


m−

τ
i=1(iri−|n

c
(ri)
i

|)


(θ + n)(m)

; (21)

(ii) for any 1 ≤ l1 ≠ l2 ≤ n + m

E


O(n)
l1,m

O(n)
l2,m


=


c(1,1)∈C(1,1)

Iα

2,m, (l1, l2), (1, 1),n, c(1,1)

×

(θ + n + 2α − |nc(1)1
| − |nc(1)2

|)(m−l1+|n
c(1)1

|−l2+|n
c(1)2

|)

(θ + n)(m)

; (22)

(iii) for any 1 ≤ τ < n + m and 1 ≤ li ≠ lj < n + mwith i ≠ j, as m → +∞

1
cm(α)

τ
i=1

O(n)
li,m

w
−→ 0. (23)

With regard to the new species generated by the additional sample, in the next theorem we establish a result analogous
to Theorem 2 for the random variable

N(n)
l,m = (N (n)

l1,m
,N (n)

l2,m
, . . . ,N (n)

lq,m).

The falling factorial moment of the random variable N (n)
l,m has been first derived in Theorem 3 in Favaro et al. [12]. Such a

result led to the posterior distribution, and to the corresponding Bayesian nonparametric estimator, of the number of new
species with frequency l induced by the additional sample. The next theorem provides a generalization of Theorem 3 in
Favaro et al. [12].

Theorem 3. Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type prior. Then, for any 1 ≤ q ≤ m, ri ≥ 1 and
1 ≤ li ≠ lj ≤ mwith i ≠ j,

E


q

i=1

(N (n)
li,m

)[ri]


= Jα (q,m, l, r) ×

m−
q

i=1 liri
k=0

Vn+m,j+k+
q

i=1 ri

Vn,j

C


m −

q
i=1

liri, k; α, −n + jα


αk
, (24)
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with

Jα (q,m, l, r) =
m!

m −

q
i=1

liri


!

1{0,1,...,m}


m −

q
i=1

liri


×

q
i=1


(1 − α)(li−1)

li!

ri
.

If q = τ < m and li = i for i = 1, . . . , τ , then Eq. (20) characterizes the posterior distribution of the so-called
new rare variants. Precisely, by new rare variants we mean species with frequency 1, 2, . . . , τ among the new species
in (Xn+1, . . . , Xn+m). Similarly to Corollary 2, in the next corollary we present a collection of results which can be derived
from Theorem 2 under the assumption of a two parameter Poisson–Dirichlet prior. Before stating the next corollary, let us
introduce a nonnegative random variable S(n,j)

α,θ , for any α ∈ (0, 1) and θ > −α, and for any n ≥ 1 and j ≤ n. Specifically
we define

S(n,j)
α,θ = Bj+θ/α,n/α−jSα,(θ+n)/α (25)

where Bj+θ/α,n/α−j and Zα,(θ+n)/α are two independent random variables distributed according to a Beta distribution and a
distribution with density function (2)

Corollary 3. Let (Xi)i≥1 be an exchangeable sequence directed by a two parameter Poisson–Dirichlet prior. Then, for any α ∈

[0, 1) and θ > −α one has

(i) for any 1 ≤ τ ≤ n and ri ≥ 1,

E


τ

i=1

(N (n)
i,m)[ri]


= Jα (τ ,m, (1, . . . , τ ), r) × α

τ
i=1 ri


θ

α
+ j


(
τ

i=1 ri)


θ + n + α

τ
i=1

ri


(m−

τ
i=1 iri)

(θ + n)(m)

; (26)

(ii) for any 1 ≤ l1 ≠ l2 ≤ m

E


N (n)

l1,m
N (n)

l2,m


= Jα(2,m, (l1, l2), (1, 1)) × α2


θ

α
+ j


θ

α
+ j + 1


(θ + n + 2α)(m−l1−l2)

(θ + n)(m)

; (27)

(iii) for any 1 ≤ τ < n + m and 1 ≤ li ≠ lj < n + mwith i ≠ j, as m → +∞

1
cm(α)

τ
i=1

N (n)
li,m

w
−→




τ

i=1

α(1 − α)(li−1)

li!


S(n,j)
α,θ if α ∈ (0, 1)

τ
i=1

Zθ/li if α = 0.

(28)

A suitable combination of the results stated in Theorems 2 and 3 provides the mixed falling factorial moment of order r
of the random variable

M(n)
l,m := (M(n)

l1,m
,M(n)

l2,m
, . . . ,M(n)

lq,m).

As for O(n)
l,m and N (n)

l,m , the falling factorial moment of M(n)
l,m has been derived in Theorem 4 in Favaro et al. [12] and ap-

plied to determine the posterior distribution, and the corresponding Bayesian nonparametric estimator, of the number of
species with frequency l induced by the additional sample. The next theorem provides a generalization of Theorem 4 in
Favaro et al. [12].

Theorem 4. Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type prior. Then, for any 1 ≤ q ≤ n + m, ri ≥ 1 and
1 ≤ li ≠ lj ≤ n + mwith i ≠ j,

E


q

i=1

(M(n)
li,m

)[ri]


=

r1
x1=0

· · ·

rq
xq=0


c(x)∈Cx

H̃α


q,m, l, r, x,n, c(x)

×

m−
q

i=1(liri−|n
c
(xi)
i

|)
k=0

Vn+m,j+k+
q

i=1(ri−xi)

Vn,j

×

C


m −

q
i=1

(liri − |n
c(xi)i

|), k; α, −n +

q
i=1

|n
c(xi)i

| + α


j −

q
i=1

xi


αk

, (29)
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with

H̃α


q,m, l, r, x,n, c(x)

=
m!

m −

q
i=1

(liri − |n
c(xi)i

|)


!

1{0,1,...,m}


m −

q
i=1

(liri − |n
c(ri)i

|)



×

q
i=1

ri!
(ri − xi)!


(1 − α)(li−1)

li!

ri−xi xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!
.

Theorem 4 represents the posterior counterpart of Theorem 1. If q = τ < n + m and li = i for i = 1, . . . , τ , then (29)
characterizes the posterior distribution of the rare variants. Similarly to Corollaries 2 and 3, in the next corollary we present
a collection of results which can be derived by Theorem 4 under the assumption of a two parameter Poisson–Dirichlet prior.
In Section 4 these results will be applied to a benchmark genomic dataset.

Corollary 4. Let (Xi)i≥1 be an exchangeable sequence directed by a two parameter Poisson–Dirichlet prior. Then, for any α ∈

[0, 1) and θ > −α one has

(i) for any 1 ≤ τ ≤ n + m and ri ≥ 1,

E


τ

i=1

(M(n)
i,m)[ri]


=

r1
x1=0

· · ·

rτ
xτ =0

α
τ

i=1(ri−xi)


c(x)∈Cx

H̃α


τ ,m, (1, . . . , τ ), r, x,n, c(x)

×


θ

α
+ j


(
τ

i=1(ri−xi))


θ + n + α

τ
i=1

ri −
τ

i=1
|n

c(xi)i
|


m−

τ
i=1(iri−|n

c
(xi)
i

|)


(θ + n)(m)

; (30)

(ii) for any 1 ≤ l1 ≠ l2 ≤ n + m

E


M(n)

l1,m
M(n)

l2,m


=


x1∈{0,1}


x2∈{0,1}

α2−x1−x2 ×


c(x1,x2)

∈C(x1,x2)

H̃α


2,m, (l1, l2), (1, 1), (x1, x2),n, c(x1,x2)



×


θ

α
+ j


(2−x1−x2)

(θ + n + 2α − |n
c(x1)

1
| − |n

c(x2)

2
|)(m−l1+|n

c
(x1)

1
|−l2+|n

c
(x2)

2
|)

(θ + n)(m)

; (31)

(iii) for any 1 ≤ τ < n + m and 1 ≤ li ≠ lj < n + mwith i ≠ j, as m → +∞

1
cm(α)

τ
i=1

M(n)
li,m

w
−→




τ

i=1

α(1 − α)(li−1)

li!


S(n,j)
α,θ if α ∈ (0, 1)

τ
i=1

Zθ/li if α = 0.

(32)

We conclude by pointing out the usefulness of Theorem4 for determining the posterior distribution of sampling diversity
indexes. Indeed, along lines similar to those presented in Section 2, Theorem 4 leads to an explicit expression for

P[D(n)
= x] = P


n+m
i=1

c(i)M(n)
i,m = x | Kn = j,Nn = (n1, . . . , nj)


. (33)

The distribution (33) takes on the interpretation of the posterior counterpart of the distribution of the sampling diversity
index D. Hence, according to suitable specification of the c(i)’s one obtains the posterior distributions of the Simpson index
and of the sampling version of the Shannon entropy under a Gibbs-type prior.

4. Illustrations

We present two novel statistical applications which exploit the results stated in Theorem 1, Corollary 1, Theorem 4 and
Corollary 4. Firstly, we devise a newmethodology for deriving approximated credible intervals for Bayesian nonparametric
estimators of the number of rare species. Secondly, we study the correlation, both a priori and a posteriori, between
frequency counts of different orders. Although these quantities can be studied for generic Gibbs-type random probability
measures, for illustrative purposes we specify our analysis to the two parameter Poisson–Dirichlet process, with α ∈ (0, 1).
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The applications will be illustrated by means of the analysis of a real genomic dataset. To be more specific, we refer to
a widely used EST dataset obtained by sequencing a tomato-flower cDNA library (made from 0 to 3 mm buds of tomato
flowers) from the Institute for Genomic Research Tomato Gene Index with library identifier T1526. See Quackenbush [38]
and references therein for details. The observed sample consists of n = 2586 ESTs and features j = 1825 unique genes
whose frequencies can be summarized as follows

mi,2586 = 1434, 253, 71, 33, 11, 6, 2, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1

where i ∈ {1, 2, . . . , 14} ∪ {16, 23, 27}. In order to specify the values of θ andα characterizing the Poisson–Dirichlet process,
we adopt the empirical Bayes procedure undertaken in Lijoi et al. [25] and Favaro et al. [12]. This consists in choosing, for
the parameter vector (α, θ), the values that maximize the EPPF with respect to the observed sample. Under the assumption
of a two parameter Poisson–Dirichlet prior, this EPPF is obtained by plugging (4) in (3). For the dataset we are considering,
this method leads to α̂ = 0.612 and θ̂ = 741.

4.1. Asymptotic credible intervals

Let R(n)
τ ,m =

τ
i=1 M

(n)
i,m be the number of species with frequency less than or equal to τ in the enlarged sample. Recall that

the additional sample is assumed to be not observed.We consider the problem ofmaking Bayesian nonparametric inference
on R(n)

τ ,m. The Bayesian nonparametric estimator of R(n)
τ ,m coincides with

R̂(n)
τ ,m =

τ
i=1

M̂(n)
i,m, (34)

where M̂(n)
i,m = E[M(n)

i,m] is the estimated number of species with frequency i. A closed form expression for M̂(n)
i,m was first

derived in Favaro et al. [12] and can be obtained, as a special case, from (29). Here we present a novel methodology to
approximately quantify the uncertainty of the estimator R̂(n)

τ ,m. To this end, we observe that fluctuation (32) provides a useful
tool for approximating the distribution of the randomvariable R(n)

τ ,m, under the two-parameter Poisson–Dirichlet assumption.
We aim at exploiting such limiting result in order to construct asymptotic credible intervals for the estimators.

First, we observe that the same limiting result as in (32) would clearly hold true for any scaling factor r(m) such that
r(m) ≈ cm(α) = mα . Numerical investigations show that, as soon as θ and n are not overwhelmingly smaller thanm,

mα
τ

i=1

α(1 − α)(i−1)

i!
E[S(n,j)

α,θ ] (35)

can be far from the exact estimator R̂(n)
τ ,m. For this reason we introduce the scaling r∗

τ (m) ≈ mα such that R̂(n)
τ ,m = r∗

τ (m)τ
i=1(α(1 − α)(i−1)/i!)E[S(n,j)

α,θ ], and we define

Ř(n)
τ ,m = r∗

τ (m)

τ
i=1

α(1 − α)(i−1)

i!
E[S(n,j)

α,θ ]. (36)

To keep the exposition as simple as possible we do not provide the expression for r∗
τ (m). See Favaro et al. [13] for a similar

approach in Bayesian nonparametric inference for the number of new species generated by the additional sample.
In order to obtain asymptotic credible intervals for R̂(n)

τ ,m, we evaluate appropriate quantiles of the distribution of the
limiting random variable S(n,j)

α,θ in (25). Let s1 and s2 be quantiles of the distribution of S(n,j)
α,θ such that (s1, s2) is the 95%

credible interval. Then, according to (32) and (36), one has
r∗

τ (m)

τ
i=1

α(1 − α)(i−1)

i!
s1, r∗

τ (m)

τ
i=1

α(1 − α)(i−1)

i!
s2


(37)

is a 95% asymptotic credible interval for R̂(n)
τ ,m. In order to determine the quantiles s1 and s2, we devised an algorithm for

sampling the limiting randomvariable S(n,j)
α,θ . To this end,we combine the algorithmproposed in Favaro et al. [13]with the fast

rejection algorithm for sampling from an exponentially tilted positive α-stable random variable. See Hofert [17] for details.
As for the analysis of the tomato dataset, we compare the estimated numbers of rare species and the associated un-

certainty, under different choices for the threshold parameter τ and different sizes of the additional unobserved sample.
Specifically, in Fig. 1 we have plotted R̂(n)

1,m, R̂(n)
2,m and R̂(n)

5,m, as a function of the sizem of the additional unobserved sample in
[0, 3000]. Each estimate is endowed with asymptotic 95% credible intervals, obtained by applying the described methodol-
ogy. We conclude this section by observing that the same methodology can be adopted when interest is, more in general,
on the uncertainty of the estimated total number of species that appear in the enlarged sample of size n+mwith frequency
l in {l1, . . . , lτ }, with {l1, . . . , lτ } being distinct integers such that li ∈ {1, . . . ,m + m} for every i.
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Fig. 1. Tomato dataset. Exact estimates R̂(n)
1,m (blue solid curves), R̂(n)

2,m (red solid curves) and R̂(n)
5,m (black solid curves), together with asymptotic 95% credible

intervals (dashed curves), as a function of the sizem of the additional sample. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

4.2. Correlation

We now investigate the relation between the number of variants of two specified frequencies li and lj by computing their
prior and posterior correlation. More specifically, as for the unconditional analysis, we are interested in the quantity

Corr(Mli,n,Mlj,n) (38)

for some li ≠ lj in {1, . . . , n}, while, when the posterior analysis is concerned, we consider an observed sample of size n and
focus our attention on the quantity

Corr(M(n)
li,m

,M(n)
lj,m

), (39)

where li ≠ lj are in {1, . . . , n+m}. In this case, (9) and (30), and in particular (10) and (31), along with the relation between
the rth moment and the rth factorial moment, are all needed to obtain explicit expressions for (38) and (39).

The analysiswe carry out is two-fold. On the one sidewe investigate the role of the parameters θ andα in determining the
prior correlation between Mli,n and Mlj,n. On the other side, after tuning these parameters by means of the aforementioned
empirical Bayes procedure, we apply the proposed estimators to the tomato dataset, by investigating Corr(M(n)

l1,m
,M(n)

l2,m
),

conditionally on an observed sample of size n. In Fig. 2 we show the correlation between M1,n and Mi,n, as a function of the
sample size n, for i that ranges in {2, 5, 10, 20}. The parameter θ is fixed as being equal to 1, 10, 100 and 1000 in first, second,
third and fourth row respectively, while α is set equal to 0.2, 0.5 and 0.8 in first, second and third column respectively. First
of all we notice that the correlation between M1,n and Mi,n is not defined when n < i since, in that case, the distribution of
Mi,n would be degenerate at 0.

By investigating the plots,we recognize some commonpatterns such as a negative correlation for every choice of i, whenn
is small. This is in accordancewith the intuition since, for example, it is immediate to check that Corr(M1,n,M2,n) = −1when
n = 2, given that, after two observations, the only two possible realizations of the vector (M1,n,M2,n) are {(2, 0), (0, 1)}.
Another feature that characterizes every plot in Fig. 2 is that, the smaller is i the larger is the range of values taken by
Corr(M1,n,M2,n). This means that the prior distribution favors larger correlations, positive or negative, between number of
variants of contiguous frequencies and penalizes the same quantity for variants with frequencies that differ significantly. As
for the effect of the parameters, it is apparent that α has a role in determining the absolute value of the correlations: for n
sufficiently large, small values of α lead to a small correlation, while a large α determines possibly high correlations. This
effect is particularly evident when the parameter θ is small (compare, e.g., Figs. 2(a) and (c)). At the same time, θ has an
impact on the sign of the correlation, since small values of θ , for n sufficiently large, give rise to positive correlations, while
negative ones are generated by large values of θ . This can be appreciated by comparing, for example, Figs. 2(c) and (l).

In Fig. 3we showhow the posterior correlation of (M(n)
1,m,M(n)

i,m), for i that ranges in {2, 5, 10, 20}, varieswith the additional
sample sizem.Whenm is small,M(n)

1,m andM(n)
2,m turn out to be negatively correlated. Such correlation becomes less significant

when the additional sample size grows, and eventually positive whenm approaches 104. On the other side, according to the
data, M(n)

1,m and M(n)
i,m can be approximately considered uncorrelated if i = 5, 10, 20, regardless to the size of the additional

sample. Finally, the correlation of (M(n)
1,m,M(n)

20,m) is not defined ifm < 4 since, in that case, according to the observed sample,
the distribution ofM(n)

20,m would be degenerate at 0.
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(a) θ = 1, α = 0.2. (b) θ = 1, α = 0.5. (c) θ = 1, α = 0.8.

(d) θ = 10, α = 0.2. (e) θ = 10, α = 0.5. (f) θ = 10, α = 0.8.

(g) θ = 100, α = 0.2. (h) θ = 100, α = 0.5. (i) θ = 100, α = 0.8.

(j) θ = 1000, α = 0.2. (k) θ = 1000, α = 0.5. (l) θ = 1000, α = 0.8.

Fig. 2. Corr(M1,n,Mi,n) as a function of n, under the two parameter Poisson–Dirichlet process, for different values of θ and α. Logarithmic scale for the
x-axis.

Fig. 3. Tomato dataset. Corr(M(n)
1,m,M(n)

2,m) as a function ofm, for i = 2, 5, 10, 20, under the two parameter Poisson–Dirichlet process. The observed sample
size is n = 2586 and the parameters are set so that θ̂ = 741 and α̂ = 0.612. Logarithmic scale for the x-axis.
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Appendix

We start by recalling Lemma 1 in Favaro et al. [12]. This lemma provides an explicit expression for the conditional dis-
tributions of the random variables (15) and (16), given the initial observed sample. In addition to the notation introduced
in Section 3, we define the following shortened set notation

An,m(j, n, s, k) := {Kn = j,N = n, L(n)
m = s, K (n)

m = k}

and

An(j, n) := {Kn = j,Nn = n}.

Further additional notations will be introduced during the proofs when necessary.

Lemma 1 (Favaro et al. [12]). Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type prior. For any integer 1 ≤ x ≤ j,
let q(x)

= (q1, . . . , qx) with 1 ≤ q1 < · · · < qx ≤ j and let Sq(x) = (Sq1 , . . . , Sqx). Then,

P[Sq(x) = sq(x) | An,m(j, n, s, k)] =
(m − s)!

(m − s − |sq(x) |)!

x
i=1

(nqi − α)(sqi )

sqi !
×

(n − |nq(x) | − (j − x)α)(m−s−|sq(x) |)

(n − jα)(m−s)
(A.1)

for any vector sq(x) = (sq1 , . . . , sqx) of nonnegative integers such that |sq(x) | =
x

i=1 sqi ≤ m−s. Moreover, for any integer 1 ≤ y
≤ k, let p(y)

= (p1, . . . , py) with 1 ≤ p1 < · · · < py ≤ k and let S∗

p(y) := (Sj+p1 , . . . , Sj+py). Then,

P


S∗

p(y) = sp(y) | An,m(j, n, s, k)


=
s!

(s − |sp(y) |)!

y
i=1

(1 − α)(sj+pi )

sj+pi !
×

(k − y)!
k!

αy C

s − |sp(y) |, k − y; α


C (s, k; α)

(A.2)

for any vector sp(y) = (sj+p1 , . . . , sj+py) of positive integers such that |sp(y) | =
y

i=1 sj+pi ≤ s. Finally, Sq(x) and S∗

p(y) are

independent, conditionally on (Kn,Nn, L
(n)
m , K (n)

m ).

Proof of Theorem 1. For any pair of integers n ≥ 1 and 1 ≤ j ≤ n we denote by Mn,j the partition set of {1, . . . , n} which
contains all the vectors m = (m1, . . . ,mn) ∈ {0, 1, . . . , n}n such that

n
i=1 mi = j and

n
i=1 imi = n. Hence, resorting to

the Gibbs-type sampling formula (6), we can write

E


q

i=1

(Mli,n)[ri]


= n!

n
j=1

Vn,j


m∈Mn,j

q
i=1

(mli)[ri]

n
i=1


(1 − α)(i−1)

i!

mi 1
mi!

.

Note that, according to the definition of the set Mn,j, the sum over the index j is different from zero when
q

i=1 ri ≤ j ≤

n −
q

i=1(liri − ri). Accordingly, we have

E


q

i=1

(Mli,n)[ri]


= n!

n−
q

i=1 liri+
q

i=1 ri
j=
q

i=1 ri

Vn,j

×


m∈Mn,j

q
i=1


(1 − α)(li−1)

li!

mli 1
(mli − ri)!


i∉{l1,...,lq}


(1 − α)(i−1)

i!

mi 1
mi!

= n!
q

i=1


(1 − α)(li−1)

li!

ri n−
q

i=1 liri+
q

i=1 ri
j=
q

i=1 ri

Vn,j

×


m∈M

n−
q

i=1 liri,j−
q

i=1 ri

n
i=1


(1 − α)(i−1)

i!

mi 1
mi!

. (A.3)
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Then, a direct application of Equation (2.82) in Charalambides [4] leads to the identity


m∈M

n−
q

i=1 liri,j−
q

i=1 ri

n
i=1


(1 − α)(i−1)

i!

mi 1
mi!

=

 q
i=1

liri


!

n!

 n
q

i=1
liri

 C


n −

q
i=1

liri, j −
q

i=1
ri; α


αj−

q
i=1 ri

, (A.4)

with C (n, k; α) being the generalized factorial coefficient. The proof is completed by combining (A.3) with (A.4) and by
means of standard algebra for falling factorials. �

Proof of Corollary 1. We present a sketch of the proof. Of course the starting point is Eq. (8). In particular, we set q = τ
and, according to (4), we set

Vn,j+
τ

i=1 ri =
αj+

τ
i=1 ri

(θ)(n)


θ

α


(
τ

i=1 ri)


θ

α
+

τ
i=1

ri


(j)

.

The sum over k in the resulting expression is solved by standard algebra on rising factorials and bymeans of Equation (2.49)
in Charalambides [4]. Then (9) follows by setting li = i for i = 1, . . . , τ , (10) follows by setting τ = 2 and r1 = r2 = 1, and
(11) follows by applying the Stirling approximation, for largem. �

Proof of Theorem 2. Using the definition of the random variable O(n)
l,m in (18), we can write

E


q

i=1

(O(n)
li,m

)ri


=

m
s=0

s
k=0

P[K (n)
m = k, L(n)

m = s | An(j,n)] × E


q

i=1


Kn
t=1

1{li}(Nt + St) | An,m(j,n, s, k)

ri
(A.5)

where

P[K (n)
m = k, L(n)

m = s | An(j,n)] =
Vn+m,j+k

Vn,j

m
s


(n − jα)(m−s)

C (s, k; α)

αk
. (A.6)

See Lijoi et al. [29] for details on (A.6). The proof is along lines similar to the proof of Theorem 2 in Favaro et al. [12]. By a
repeated application of the Binomial theorem, we rewrite the power function on the right-hand side of (A.5) as

Kn
t=1

1{li}(Nt + St)

ri

=

Kn∧ri
xi=1

ri−1
i1=1

i1−1
i2=1

· · ·

ixi−2−1
ixi−1=1

0
ixi=0


ri
i1


i1
i2


· · ·


ixi−2

ixi−1


×


c(xi)i ∈Axi

(1{li}(Nci,1 + Sci,1))
ri−i1(1{li}(Nci,2 + Sci,2))

i1−i2 · · ·

× · · · (1{li}(Nci,xi−1 + Sci,xi−1))
ixi−2−ixi−1(1{li}(Nci,xi

+ Sci,xi ))
ixi−1 (A.7)

where

Axi = {c(xi)
i = (ci,1, . . . , ci,xi) ∈ {1, . . . , Kn}

xi : ci,t < ci,s if t < s}

is the set of all vectors c(xi)
i of length xi that can be defined with elements of the set {1, . . . , j} and without repetitions. If

j < ri then the set Axi is empty for any xi > j, for i = 1, . . . , q. Therefore, as a matter of convenience, we set the upper bound
of the sum over xi to be ri. Since the power function on the right-hand side of (A.7) is written as a function of terms with
exponent different from zero, we ignore the exponents of the indicator functions. Then, we have

Kn
t=1

1{li}(Nt + St)

ri

=

ri
xi=1

ri−1
i1=1

i1−1
i2=1

· · ·

ixi−2−1
ixi−1=1

0
ixi=0


ri
i1


i1
i2


· · ·


ixi−2

ixi−1

 
c(xi)i ∈Axi

xi
i=1

1{li}(Nci,t + Sci,t )

=

ri
xi=1

S(ri, xi)xi!


c(xi)i ∈Axi

xi
t=1

1{li}(Nci,t + Sci,t ) (A.8)

where S(n, k) is the Stirling number of the second kind. See Charalambides [4] for details. The last equality of (A.8) is obtained
by means of the well-known identity

ri−1
i1=1

i1−1
i2=1

· · ·

ixi−2−1
ixi−1=1

0
ixi=0


ri
i1


i1
i2


· · ·


ixi−2

ixi−1


= xi!S(ri, xi)
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for any ri ≥ 1 and 1 ≤ xi ≤ ri. Indeed, according to the combinatorial meaning of Stirling number of the second kind, the
factor xi!S(ri, xi) in (A.8) is the number of ways of distributing ri distinguishable objects into xi distinguishable groups. From
(A.8), and by means of standard algebra, we can write

E


q

i=1


Kn
t=1

1{li}(Nt + St) | An,m(j,n, k, s)

ri
=

r1
x1=1

· · ·

rq
xq=1

q
i=1

S(ri, xi)xi!

×


c(x)∈Cx

P[S
c(x1)

1
= l11x1 − n

c(x1)

1
, . . . , S

c
(xq)
q

= lq1xq − n
c
(xq)
q

| An,m(j,n, s, k)] (A.9)

where x = (x1, . . . , xq), 1xi = (1, . . . , 1),n
c(xi)i

= (nci,1 , . . . , nci,xi
) and where we set

Cx = {c(x)
= (c(x1)

1 , . . . , c(xq)
q ) : c(xi)

i ∈ Cxi and ci,t ≠ ci′,h ∀ t, h, if i ≠ i′ }

with Cxi = {c(xi) = (ci,1, . . . , ci,xi) : Nci,t ≤ li ∀ t and 1 ≤ ci,t < ci,h ≤ Kn if t < h }. See Cesari [3] for further details about
the derivation of the set Cx. A similar construction will be considered in the proof of Theorem 3. The conditional probability
in (A.9) can be obtained from (A.1) in Lemma 1. Specifically, by combining (A.9) with (A.1) we can write the expected value
in (A.9) as

E


q

i=1


Kn
t=1

1{li}(Nt + St) | An,m(j,n, k, s)

ri

=

r1
x1=1

· · ·

rq
xq=1

q
i=1

S(ri, xi)xi! ×


c(x)∈Cx

(m − s)!
m − s −

q
i=1

(lixi − |n
c(xi)i

|)


!

q
i=1

xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!

×


n −

q
i=1

|n
c(xi)i

| − α


j −

q
i=1

xi


m−s−

q
i=1(lixi−|n

c
(xi)
i

|)


(n − jα)(m−s)

. (A.10)

The proof in completed by marginalizing the last expression over (K (n)
m , L(n)

m ), with respect to the conditional distribution in
(A.6), and by means of standard algebra involving rising factorials. In particular, by combining (A.5) with (A.10),

E


q

i=1

(O(n)
li,m

)ri


=

m
k=0

α−k Vn+m,j+k

Vn,j

m
s=k

C (s, k; α)

r1
x1=1

· · ·

rq
xq=1

q
i=1

S(ri, xi)xi!

×


c(x)∈Cx

q
i=1

xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!
×

m!
m −

q
i=1

(lixi − |n
c(xi)i

|)


!

m −

q
i=1

(lixi − |n
c(xi)i

|)

s


×


n −

q
i=1

|n
c(xi)i

| − α


j −

q
i=1

xi



m−s−

q
i=1(lixi−|n

c
(xi)
i

|)

 .

Note that the sum over s has lower bound k and upper bound m −
q

i=1(lixi − |n
c(xi)i

|). Indeed, according to the definition

of Binomial coefficient, one obtainsm −

q
i=1

(lixi − |n
c(xi)i

|)

s

 = 0

for any s > m −
q

i=1(lixi − |n
c(xi)i

|). Hence, we can write the last expression as

r1
x1=1

· · ·

rq
xq=1

q
i=1

S(ri, xi)xi! ×


c(x)∈Cx

q
i=1

xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!

×
m!

m −

q
i=1

(lixi − |n
c(xi)i

|)


!

m−
q

i=1(lixi−|n
c
(xi)
i

|)
k=0

α−k Vn+m,j+k

Vn,j
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×

m−
q

i=1(lixi−|n
c
(xi)
i

|)
s=k

m −

q
i=1

(lixi − |n
c(xi)i

|)

s

 C (s, k; α)

×


n −

q
i=1

|n
c(xi)i

| − α


j −

q
i=1

xi



m−s−

q
i=1(lixi−|n

c
(xi)
i

|)


(by means of Equation (2.56) in Charalambides [4])

=

r1
x1=1

· · ·

rq
xq=1

q
i=1

S(ri, xi)xi! ×


c(x)∈Cx

q
i=1

xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!

×
m!

m −

q
i=1

(lixi − |n
c(xi)i

|)


!

m−
q

i=1(lixi−|n
c
(xi)
i

|)
k=0

α−k Vn+m,j+k

Vn,j

× C


m −

q
i=1

(lixi − |n
c(xi)i

|), k; α, −n +

q
i=1

|n
c(xi)i

| + α


j −

q
i=1

xi


,

with C (n, k; α) being the generalized factorial coefficient. Eq. (20) follows from the last expression by the relation between
the mixed moment of order r and the mixed falling factorial moment of order r. See Charalambides [4] for details. �

Proof of Corollary 2. We present a sketch of the proof. Of course the starting point is Eq. (20). In particular, we set q = τ
and, according to (4), we set

Vn+m,j+k

Vn,j
=

αk

(θ + n)(m)


θ

α
+ j


(k)
.

The sum over k in the resulting expression is solved by standard algebra on rising factorials and bymeans of Equation (2.49)
in Charalambides [4]. Then (21) follows by setting li = i for i = 1, . . . , τ , (22) follows by setting τ = 2 and r1 = r2 = 1, and
(23) follows by applying the Stirling approximation, for largem. �

Proof of Theorem 3. Using the definition of the random variable N (n)
l,m in (17), we can write

E


q

i=1

(N (n)
li,m

)ri


=

m
s=0

s
k=0

P[K (n)
m = k, L(n)

m = s | An(j,n)]E

 q
i=1

K (n)
m

t=1

1{li}(SKn+t) | An,m(j,n, s, k)

ri , (A.11)

where the distribution of (K (n)
m , L(n)

m ) | An(j,n) in (A.11) is given by (A.6). Then, the proof is along lines similar to the proof
of Theorem 3 in Favaro et al. [12]. Specifically, by means of a repeated application of the Binomial theorem, we rewrite the
power function on the right-hand side of (A.11) as followsK (n)

m
t=1

1{li}(SKn+t)

ri

=

K (n)
m ∧ri
yi=1

ri−1
i1=1

i1−1
i2=1

· · ·

iyi−2−1
iyi−1=1

0
iyi=0


ri
i1


i1
i2


· · ·


iyi−2

iyi−1


×


d(yi)
i ∈Byi

(1{li}(SKn+di,1))
ri−i1(1{li}(SKn+di,2))

i1−i2 · · ·

× · · · (1{li}(SKn+di,yi−1))
iyi−2−iyi−1(1{li}(SKn+di,yi

))iyi−1 , (A.12)

where

Byi = {d(yi)
i = (di,1, . . . , di,yi) ∈ {1, . . . , K (n)

m }
yi : di,t < di,s, t ≠ s}

is the set of all vectors d(yi)
i of length yi that can be defined with elements of the set {1, . . . , k} and without repetitions. As

in the proof of Theorem 2, as a matter of convenience, we set the upper bound of the sum over yi to be ri. Because the power
function on the right-hand side of (A.12) is written as a function of terms with exponent different from zero, we can ignore
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the exponents of the indicator functions. Hence, we write the last expression as followsK (n)
m

t=1

1{li}(SKn+t)

ri

=

ri
yi=1

ri−1
i1=1

i1−1
i2=1

· · ·

iyi−2−1
iyi−1=1

0
iyi=0


ri
i1


i1
i2


· · ·


iyi−2

iyi−1

 
d(yi)
i ∈Byi

yi
i=1

1{li}(SKn+di,t )

=

ri
yi=1

S(ri, yi)yi!


d(yi)
i ∈Byi

yi
t=1

1{li}(SKn+di,t ). (A.13)

See the proof of Theorem2 for details on the last equality of (A.13). According to the identity (A.13), and bymeans of standard
algebraic manipulations, we have

E

 q
i=1

K (n)
m

t=1

1{li}(SKn+t) | An,m(j,n, k, s)

ri
=

r1
y1=1

· · ·

rq
yq=1

q
i=1

S(ri, yi)yi! ×


d(y)∈By

P[S∗

d(y1)

1
= l11y1 , . . . , S

∗

d
(yq)
q

= lq1yq − n
d
(yq)
q

| An,m(j,n, s, k)] (A.14)

where y = (y1, . . . , yq), 1yi = (1, . . . , 1),n
d(yi)
i

= (ndi,1 , . . . , ndi,yi
) and where we set

By = {d(y)
= (d(y1)

1 , . . . , d(yq)
q ) : d(yi)

i ∈ Byi , di,t ≠ di′,h, 1 ≤ i ≠ i′ ≤ q}.

See Cesari [3] for further details about the derivation of the set By. The conditional probability in (A.14) is obtained from
(A.2) in Lemma 1. Specifically, by combining (A.14) with (A.2) we can write the expected value in (A.14) as

E

 q
i=1

K (n)
m

t=1

1{li}(SKn+t) | An,m(j,n, k, s)

ri

=

r1
y1=1

· · ·

rq
yq=1

q
i=1

S(ri, yi)yi! ×


d(y)∈By

s!
s −

q
i=1

liyi


!

q
i=1

yi
t=1

(1 − α)(li−1)

li!


k −

q
i=1

yi


!

k!

× α
q

i=1 yi

C


s −

q
i=1

liyi, k −

q
i=1

yi; α


C (s, k; α)

=

r1
y1=1

· · ·

rq
yq=1

q
i=1

S(ri, yi)
s!

s −

q
i=1

liyi


!

q
i=1


(1 − α)(li−1)

li!

yi
× α

q
i=1 yi

C


s −

q
i=1

liyi, k −

q
i=1

yi; α


C (s, k; α)

, (A.15)

where the last equality is obtained by using the cardinality of the set By; this cardinality is k

y1, . . . , yq, k −

q
i=1

yi

 .

The proof is completed by marginalizing the last expression over (K (n)
m , L(n)

m ), with respect to the conditional distribution in
(A.6), and by means of standard algebra involving rising factorials. In particular, by combining (A.11) with (A.15),
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Note that the sum over k has lower bound zero and upper boundm−
q

i=1 liyi while the sum over s has lower bound k and
upper bound m −

q
i=1 liyi. Indeed, according to the definition of generalized factorial coefficient, one has
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for any k and s such that s −
q

i=1 liyi < k −
q

i=1 yi. Hence, we can write the last expression as
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(by means of Equation (2.56) in Charalambides [4])

=
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with C (n, k; α) being the generalized factorial coefficient. Eq. (24) follows from the last expression by the relation between
the mixed moment of order r and the mixed falling factorial moment of order r. See Charalambides [4] for details. �

Proof of Corollary 3. We present a sketch of the proof. Of course the starting point is Eq. (24). In particular, we set q = τ
and, according to (4), we set
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.

The sum over k in the resulting expression is solved by standard algebra on rising factorials and bymeans of Equation (2.49)
in Charalambides [4]. Then (26) follows by setting li = i for i = 1, . . . , τ , (27) follows by setting τ = 2 and r1 = r2 = 1, and
(23) follows by applying the Stirling approximation, for largem. �

Proof of Theorem 4. We provide a sketch of the proof because it combines arguments applied in the proofs of Theorems 2
and 3. Using the definition ofM(n)

l,m in (19),
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where the distribution of (K (n)
m , L(n)

m ) | An(j,n) in (A.11) is given by (A.6). We proceed along lines similar to the proof of
Theorem 4 in Favaro et al. [12]. In particular, we apply the Vandermonde identity to expand the power function on the
right-hand side of (A.16) and, combining (A.8) and (A.13), we have Kn
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According to (A.17), and by means on standard algebraic manipulations, we can write
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As in the proofs of Theorems 2 and 3, the conditional probability in (A.18) is obtained from (A.1) and (A.2) in Lemma 1.
Specifically, by combining (A.18) with (A.1) and (A.2) in Lemma 1 we can write the expected value in (A.18) as
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The proof in completed by marginalizing the last expression over (K (n)
m , L(n)

m ) with respect to the conditional distribution in
(A.6) and bymeans of standard algebra involving rising factorials. In particular, combining (A.16) with (A.19) and along lines
similar to the last part of the proofs of Theorems 2 and 3,

E


q

i=1

(M(n)
li,m

)ri


=

r1
x1=0

· · ·

rq
xq=0

r1−x1
y1=0

· · ·

rq−xq
yq=0

q
i=1

S(ri, xi + yi)
(xi + yi)!

yi!

×

q
i=1


(1 − α)(li−1)

li!

yi 
c(x)∈Cx

q
i=1

xi
t=1

(nci,t − α)(li−nci,t )

(li − nci,t )!

×
m!

m −

q
i=1

(lixi − |n
c(xi)i

|) −

q
i=1

liyi


!

×

m−
q

i=1(lixi−|n
c
(xi)
i

|)−
q

i=1
liyi

k=
q

i=1 yi

α−k
Vn+m,j+k+

q
i=1 yi

Vn,j

× C


m −

q
i=1

(lixi − |n
c(xi)i

|) −

q
i=1

liyi, k; α, −n +

q
i=1

|n
c(xi)i

| + α


j −

q
i=1

xi



with C (n, k; α) being the generalized factorial coefficient. Eq. (29) follows from the last expression by the relation between
the mixed moment of order r and the mixed falling factorial moment of order r. See Charalambides [4] for details. �
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Proof of Corollary 4. We present a sketch of the proof. Of course the starting point is Eq. (29). In particular, we set q = τ
and, according to (4), we set
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.

The sum over k in the resulting expression is solved by standard algebra on rising factorials and bymeans of Equation (2.49)
in Charalambides [4]. Then (30) follows by setting li = i for i = 1, . . . , τ , (31) follows by setting τ = 2 and r1 = r2 = 1, and
(32) follows by applying the Stirling approximation, for largem. �
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