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Abstract In the present paper we introduce a generalization of the well–known Chu–
Vandermonde identity. In particular, by inductive reasoning, the identity is extended
to a multivariate setup in terms of the fourth Lauricella function. The main interest in
such generalizations derives from the species diversity estimation and, in particular,
prediction problems in Genomics and Ecology within a Bayesian nonparametric
framework.
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1 Introduction

Among elegant results implied by the binomial theorem, one of the most attractive
and widely known results is Vandermonde’s identity, named after Alexandre–
Théophile Vandermonde: (

n + m
q

)
=

q∑
q1=0

(
n
q1

)(
m

q − q1

)
(1)

for n, m, q ∈ N0. Combinatorially, we can think of this identity as related to the
following illustrative example: a group of people consists of n left-handed and m
right-handed persons, and we are trying to establish how many combinations exist
such that there are exactly q women in the group. We can categorize each possible
arrangement into one of r + 1 categories. The r + 1 categories are indexed from
0 to r, and an arrangement falls under category q1 if there are exactly q1 left-
handed women, and the remaining women (q − q1) are right-handed. In particular,
the

( n
q1

)( m
q−q1

)
part merely counts how many arrangements fall under category q1.

The sum adds up all possible arrangements which fall under one of the categories.
From a probabilistic point of view, the Vandermonde identity is related to the
hypergeometric probability distribution. In particular, when both sides of Eq. 1 are
divided by

(n+m
q

)
, then for each q1,

( n
q1

)( m
q−q1

)
/
(n+m

q

)
is interpreted as the probability

that exactly q1 objects are defective in a sample of q distinctive objects drawn from an
urn with n + m objects in which n are defective, i.e. there are

(n+m
q

)
possible samples

(without replacement); there are
( n

q1

)
ways to obtain q1 defective objects and there

are
( m

q−q1

)
ways to fill out the rest of the sample with non-defective objects.

The Vandermonde identity can be generalized to non-integer arguments. In this
case, it is known as the Chu–Vandermonde’s identity and takes on the form

(a1 + a2)q =
q∑

q1=0

(
q
q1

)
(a1)q1(a2)(q−q1) (2)

for any complex-valued a1 and a2 with (a)n being the Pochhammer symbol for the
ascending (or rising) factorial of a of order n, i.e. (a)n := a(a + 1) · · · (a + n − 1) =∏n−1

i=0 (a + i) (see Comtet 1974 and references therein).
In this paper we introduce a new generalization of the Chu–Vandermonde

identity. In particular, the multivariate version of this new generalization of the Chu–
Vandermonde identity is then derived by inductive reasoning in terms of the fourth
Lauricella function. The motivation for studying such a generalization of the Chu–
Vandermonde identity stems from applications to species diversity estimation and,
in particular, to prediction problems in Genomics. In fact, by adopting a Bayesian
nonparametric approach for predicting the number of new genes to be discovered in
sequencing a cDNA library, the determination of suitable estimators crucially relies
on obtaining closed form solutions for multivariate convolutions generalizing the one
of Chu–Vandermonde; see Lijoi et al. (2008) and reference therein. The proposed
results and its application in Bayesian nonparametrics highlights once again the
interplay between Bayesian nonparametrics on one side and the theory of Lauricella
functions on the other. Further examples of this close connection can be found in
Regazzini (1998), Lijoi and Regazzini (2004) and James (2005) where functionals of
the Dirichlet process are considered. It is worth noting that there is growing literature
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concerning Bayesian nonparametric approaches to species sampling and related
prediction and estimation problems. See, for instance, Müller and Quintana (2004),
Navarrete et al. (2008), Petrone et al. (2009), Quintana (2006) and Hjort et al. (2010)
for a recent review of the discipline.

2 Generalized Chu–Vandermonde Identity

The topic of multiple hypergeometric functions was first approached, in a systematic
way, by Lauricella (1893) at the end of the 19th century and further investigated
by Appell and Kampé de Fériet (1926). See the comprehensive and stimulating
monograph by Exton (1976). The original paper by Lauricella (1893) proceeded to
define and study four n-dimensional functions which bear his name. In particular,
here we focus on the fourth Lauricella function, which, for any n ∈ N, is characterized
by the following Laplace-type integral representation

F(n)

D (a,b1, . . . ,b n; c;x1, . . . , xn) = 1

�(b 1) · · ·�(b n)

×
∫

(R+)n
e−∑n

i=1 ti
n∏

i=1

tb i−1
i 1 F1

(
a;c;

n∑
i=1

xiti

)
dt1 · · · dtn.

(3)

for any a, c ∈ R and any b1, . . . , b n ∈ R+, with � being the Gamma function and 1 F1

being the confluent hypergeometric function of the first kind.
If n = 2, the fourth Lauricella function reduces to the Appell hypergeometric

function F1, whereas, if n = 1, it becomes the Gauss hypergeometric function 2 F1

which has been the starting point in the definition of the F(n)

D .
The following proposition provides an extension of the Chu–Vandermonde iden-

tity, which, to the authors’ knowledge and although simple to derive, is not present
in the literature.

Proposition 1 For any q ≥ 1, w1, w2 ∈ R+ and a1, a2 > 0

q∑
q1=0

(
q
q1

)
w

q1

1 w
q−q1

2 (a1)q1(a2)(q−q1) = w
q
2 (a)q 2 F1

(
−q, a1; a; w2 − w1

w2

)
(4)

where a := a1 + a2.

Proof Several proofs can be given by using different known characterizations of
the Gauss hypergeometric function 2 F1. Here, a straightforward proof is given by
the direct application of two known representation for the Gauss hypergeometric
function 2 F1:

i) for any a, b ∈ R and n ∈ N

2 F1(a, b ; b − n; z) = (1 − z)−a−n
n∑

k=0

(−n)k(b − a − n)kzk

(b − n)kk! (5)
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and
ii) for any a, b ∈ R and n ∈ N

2 F1(a, b ; b − n; z) = (−1)n(a)n

(1 − b)n
(1 − z)−a−n

2 F1(−n, b − a − n; 1 − a − n; 1 − z).

(6)

Now set n := q, b := 1 − a2, a := −a2 − q + 1 − a1, k := q1 and z := w1/w2 in Eqs. 5
and 6. Then, by using the representation (Eq. 5) we obtain the relation

q∑
q1=0

(
q
q1

)
w

q1

1 w
q−q1

2 (a1)q1(a2)(q−q1) = 2 F1

(
a1,−q; −a2 − q + 1; w1

w2

)
w

q
2 (a2)q.

and by resorting to Eq. 6 we have

2 F1

(
a1,−q; 1 − a2 − q; w1

w2

)
= (a1 + a2)q

(a2)n
2 F1

(
−q, a1; a1 + a2; w2 − w1

w2

)
.

which implies Eq. 4. ��

Note that the Chu–Vandermonde identity (Eq. 2) is immediately recovered from
Eq. 4 by setting w1 = w2 = 1. The following proposition, obtained by inductive
reasoning from Eq. 4, provides the multivariate extension of the identity given in
Proposition 1 and represents the main result of the paper. In fact, as concisely
illustrated in Section 3, it represents a crucial tool for determining computable
expressions for the estimators of interest and may turn out to be useful also in
different applied contexts.

Proposition 2 For any q ≥ 1, j ≥ 1 let D j,q := {(q1, . . . , q j) ∈ {1, . . . , q} j : ∑ j
i=1 qi =

q} and let w1, . . . , w j ∈ R+ and a1, . . . , a j > 0. Then

∑
(q1,...,q j)∈D j,q

(
q

q1, . . . , q j

) j∏
i=1

w
qi
i (ai)qi

= w
q
j (a)q F( j−1)

D

(
−q, a1, . . . , a j−1, a; w j − w1

w j
, . . . ,

w j − w j−1

w j

)
(7)

where a := ∑ j
i=1 ai.

Proof Using Eq. 4, the proof follows by inductive reasoning. Suppose the identity
holds true for j − 1, i.e.,

∑
(q1,...,q j−1)∈D j−1,q

(
q

q1, . . . , q j−1

) j−1∏
i=1

w
qi
i (ai)qi

=
∑

(q1,...,q j−1)∈D j,q

q!
q1! · · · q j−1!w

q j−1

j−1 (a j−1)q j−1

j−2∏
i=1

w
qi
i (ai)qi

= w
q
j−1(a − a j)q F( j−2)

D

(
−q, a1, . . . , a j−2, a − a j; w j−1 − w1

w j−1
, . . . ,

w j−1 − w j−2

w j−1

)
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and we show it holds for j as well. Observe that

∑
(q1,...,q j)∈D j,q

q!
q1! · · · q j!

j∏
i=1

w
qi
i (ai)qi =

q∑
q j=0

q!
q j!(q − q j)!w

q j

j (a j)q j

×
∑

(q1,...,q j−1)∈D j−1,q−q j

(q − q j)!
q1! · · · q j−1!

j−1∏
i=1

w
qi
i (ai)qi .

For any n ∈ N let �(n) := {(u1, . . . , un) : ui ≥ 0, i = 1, . . . , n,
∑n

i=1 ui ≤ 1} be the n–
dimensional simplex; then, we can write

∑
(q1,...,q j)∈D j,q

q!
q1! · · · q j!

j∏
i=1

w
qi
i (ai)qi

=
q∑

q j=0

q!
q j!(q − q j)!w

q j

j (a j−1)q jw
q−q j

j−1 (a − a j)(q−q j)

× F( j−2)

D

(
−q + q j, a1, . . . , a j−2, a − a j; w j−1 − w1

w j−1
, . . . ,

w j−1 − w j−2

w j−1

)

= �(a − a j)

�(a1) · · ·�(a j−1)

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1

×
q∑

q j=0

q!
q j!(q − q j)!w

q j

j (a j)q jw
q−q j

j−1 (a−a j)(q−q j)

(
1−

j−2∑
i=1

zi
w j−1 − wi

w j−1

)q−q j

dz1 · · · dz j−2

= �(a − a j)

�(a1) · · ·�(a j−1)

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1 q∑
q j=0

q!
q j!(q − q j)!w

q
j (a j)q j

×
(

1

w j

)q−q j
[
w j −

j−2∑
i=1

zi(w j − wi) −
(

1 −
j−2∑
i=1

zi

)
(w j − w j−1)

]q−q j

× (a − a j)(q−q j)dz1 · · · dz j−2

= �(a − a j)

�(a1) · · ·�(a j−1)

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1

×
(

1 −
j−2∑
i=1

zi
w j − wi

w j
−

(
1 −

j−2∑
i=1

zi

)
w j − w j−1

w j

)q

×
q∑

q j=0

q!
q j!(q − q j)!w

q−q j

j (a j)q j

⎛
⎝ −w j∑ j−2

i=1 zi
w j−wi

w j
+

(
1 − ∑ j−2

i=1 zi

)
w j−w j−1

w j
− 1

⎞
⎠

q j

× (a − a j)(q−q j)dz1 · · · dz j−2.
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By applying Eq. 4, from the last equation we obtain

�(a − a j)

�(a1) · · ·�(a j−1)
w

q
j (a)q

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1

×
(

1 −
j−2∑
i=1

zi
w j − wi

w j
−

(
1 −

j−2∑
i=1

zi

)
w j − w j−1

w j

)q

×2 F1

⎛
⎝−q, a j; a;

∑ j−2
i=1 zi

w j−wi

w j
+

(
1 − ∑ j−2

i=1 zi

)
w j−w j−1

w j∑ j−2
i=1 zi

w j−wi

w j
+

(
1 − ∑ j−2

i=1 zi

)
w j−w j−1

w j
− 1

⎞
⎠ dz1 · · · dz j−2

or, equivalently,

�(a − a j)

�(a1) · · · �(a j−1)
w

q
j (a)q

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1

×2 F1

(
−q, a − a j; a;

j−2∑
i=1

zi
w j − wi

w j
+

(
1 −

j−2∑
i=1

zi

)
w j − w j−1

w j

)
dz1 · · · dz j−2.

Since a − a j > 0 and

1 > max

{
0, �

( j−2∑
i=1

zi
w j − wi

w j
+ (w j − w j−1)

(
1 −

j−2∑
i=1

zi

))}

then we can apply Eq. 7.621.4 in Gradshteyn and Ryzhik (2000) in order to obtain
the expression

1

�(a1) · · · �(a j−1)
w

q
j (a)q

∫ +∞

0
e−z j−1 z

a−a j−1
j−1

∫
�( j−2)

j−2∏
i=1

zai−1
i

(
1 −

j−2∑
i=1

zi

)a j−1−1

×1 F1

(
−q; a; z j−1

( j−2∑
i=1

zi
w j − wi

w j
+

(
1 −

j−2∑
i=1

zi

)
w j − w j−1

w j

))
dz1 · · · dz j−2dz j−1

Finally, using the change of variable yi = ziz j−1 for i = 1, . . . , j − 2 and y j−1 = z j−1

we obtain the expression

1

� (a1) · · ·� (
a j−1

)w
q
j (a)q

∫ +∞

0
e−y j−1

∫
B(y j)

j−2∏
i=1

yai−1
i

(
y j−1 −

j−2∑
i=1

yi

)a j−1−1

×1 F1

(
−q; a;

j−2∑
i=1

yi
w j − wi

w j
+

(
y j−1 −

j−2∑
i=1

yi

)
w j − w j−1

w j

)
dy1 · · · dy j−1

where

B
(
y j

) =
{(

y1, . . . , y j−1
) : yi ≥ 0,

j−1∑
i=1

yi ≤ y j

}
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and using the change of variable ui = yi per i = 1, . . . , j − 2 e u j−1 = y j−1 − ∑ j−2
i=1 yi

we have

w
q
j (a)q

�(a1) · · ·� (
a j−1

)
∫

(R+) j−1
e−∑ j−1

i=1 ui

j−1∏
i=1

uai−1
i 1 F1

(
−q; a;

j−1∑
i=1

ui
w j − wi

w j

)
du1 · · · du j−1

and the proof is completed by applying the identity (Eq. 3). ��

In the following corollary identity (Eq. 7) in Proposition 2 is specialized to the
setup arising in the derivation of the estimators.

Corollary 1 For any q ≥ 1, j ≥ 1 let w1, . . . , w j ∈ R+, a1, . . . , a j > 0 and p1, . . . , pj ∈
N. Then

∑
(q1,...,q j)∈D j,q

(
q

q1, . . . , q j

) j∏
i=1

w
qi
i (ai)(qi+pi)

= w
q
j (p + a)q

j∏
i=1

(ai)pi F
( j−1)

D

(
−q, a1, . . . , a j−1, p + a; w j − w1

w j
, . . . ,

w j − w j−1

w j

)
(8)

where a := ∑ j
i=1 ai and p := ∑ j

i=1 pi.

3 Application to Species Diversity Estimation

We first introduce the framework and then highlight the usefulness of the multi-
variate generalized Chu–Vandermonde identity derived in Section 2. Let (Xn)n≥1

be a sequence of exchangeable random variables defined on some probability space
(�,F , P) with values in a complete and separable metric space X equipped with
the corresponding Borel σ–field X . Then, by de Finetti’s representation theorem,
there exists a random probability measure P̃ such that given P̃, a sample X1, . . . , Xn

from the exchangeable sequence is independent and identically distributed with
distribution P̃. That is, for every n ≥ 1 and any A1, . . . , An ∈ X

P

(
X1 ∈ A1, . . . , Xn ∈ An|P̃

)
=

n∏
i=1

P̃(Ai).

By assuming the random probability measure P̃ to be almost surely discrete, ties
will appear in the sample with positive probability, namely (X1, . . . , Xn) will contain
Kn ≤ n distinct observations X∗

1 , . . . , X∗
Kn

with frequencies Nn := (N1, . . . , NKn)

such that
∑k

j=1 N j = n.
The joint distribution of Kn and Nn provides the partition distribution of the

exchangeable sample X1, . . . , Xn and plays an important role in a variety of research
areas such as population genetics, machine learning, Bayesian nonparametrics,
combinatorics, excursion theory and statistical physics. See Pitman (2006) for an
exhaustive and stimulating account. In particular, recent applications of exchange-
able partition distributions concern species sampling problems, which gained a
renewed interest due to their importance in Genomics where the population is
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typically a cDNA library and the species are unique genes which are progressively
sequenced; see Lijoi et al. (2007a, b, 2008) and references therein. Specifically, given
an exchangeable sample (X1, . . . , Xn) from some almost surely discrete random
probability measure P̃ consisting of a collection of Kn = j distinct species with labels
(X∗

1 , . . . , X∗
j ) and frequencies (n1, . . . , n j), the main interest relies in estimating the

number of distinct species to be observed in a hypothetical additional sample of
size m.

Formally, let X1, . . . , Xn be the so–called “basic sample” of size n containing
Kn distinct observations with frequencies Nn and corresponding to the typically
available information. Denote by K(n)

m = Km+n − Kn the number of new partition
sets C1, . . . , CK(n)

m
generated by the additional sample Xn+1, . . . , Xn+m. Further-

more, if C := ∪K(n)
m

i=1 Ci whenever K(n)
m ≥ 1 and C ≡ ∅ if K(n)

m = 0, we set L(n)
m :=

card({Xn+1, . . . , Xn+m} ∩ C) as the number of observations belonging to the new
clusters Ci. It is clear that L(n)

m ∈ {0, 1, . . . , m} and that m − L(n)
m observations belong

to the sets defining the partition of the original n observations. According to this,
if SL(n)

m
:= (S1,L(n)

m
, . . . , SK(n)

m ,L(n)
m

), then the distribution of SL(n)
m

conditional on Ln
m = s,

is supported by all vectors (s1, . . . , sK(n)
m

) of positive integers such that
∑K(n)

m
i=1 si = s.

The remaining m − L(n)
m observations are allocated to the “old" Kn clusters with

vector of nonnegative frequencies Rm−L(n)
m

:= (R1,m−L(n)
m

, . . . , RKn,m−L(n)
m

) such that∑Kn
i=1 Ri,m−L(n)

m
= m − L(n)

m . Based on this setup of random variables, the issue we
address consists in evaluating, conditionally on the partition induced by the basic
sample of size n, the probability of sampling in m further draws a certain number of
new partition groups (species), i.e. ,

P
(
K(n)

m = k|X1, . . . , Xn
)

=
∑

Pm,k+ j

P

(
L(n)

m =s,Kn= j,Nn=(n1,...,nKn),K
(n)
m =k,S

L(n)
m

=
(

s1,...,sK(n)
m

)
,R

m−L(n)
m

=
(

r1,...,rKn

))

P
(
Kn = j, Nn = (

n1, . . . , nKn

)) (9)

where Pm, j+k denotes the set of all allocations of m observations into q ≤ m classes,
with q ∈ {k, . . . , k + j}; in other terms k observations are new species and q − k ≤ j
coincide with some of the j already observed distinct species in X1, . . . , Xn. In
particular, expression (Eq. 9) can be written as

P
(
K(n)

m = k|X1, . . . , Xn
)∝

m∑
s=k

(
m
s

) ∑
(r1,...,r j)∈D j,n

(
m − s

r1, . . . , r j

)
1

k!
∑

(s1,...,sk)∈D∗
k,s

(
s

s1, . . . , sk

)

×P
(
L(n)

m = s, Kn = j, Nn = (
n1, . . . , nKn

)
, K(n)

m = k,

SL(n)
m

=
(

s1, . . . , sK(n)
m

)
, Rm−L(n)

m
= (

r1, . . . , rKn

))

with

D∗
k,s :=

{
(s1, . . . , sk) : si ≥ 1 for i = 1, . . . , k,

k∑
i=1

si = s

}
.
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At this point the usefulness of Corollary 1 becomes evident. Consider a species
sampling problem characterized by a joint distribution P(L(n)

m = s, Kn = j, Nn =
(n1, . . . , nKn), K(n)

m = k, SL(n)
m

= (s1, . . . , sK(n)
m

), Rm−L(n)
m

= (r1, . . . , rKn)) assuming the
following quite general form, which includes all explicitly known instances,

P

(
L(n)

m = s, Kn = j, Nn = (
n1, . . . , nKn

)
, K(n)

m = k, SL(n)
m

=
(

s1, . . . , sK(n)
m

)
,

Rm−L(n)
m

= (
r1, . . . , rKn

)) = g (n, m, j, k)

j∏
i=1

w
ri
i (ai)(ni+ri)

k∏
i=1

fi(m, k, si)

for some positive functions g(·) and fi(·) for i = 1, . . . , k and for some w1, . . . , w j ∈
R+ and a1, . . . , a j ∈ R+. Then the identity (Eq. 8) provided Corollary 1 can be
usefully applied in order to obtain closed form solutions for the multivariate con-
volutions generalizing the one of Chu–Vandermonde, i.e.

P
(
K(n)

m = k|X1, . . . , Xn
)

∝
m∑

s=k

(
m
s

) ∑
(r1,...,r j)∈D j,n

(
m − s

r1, . . . , r j

)
1

k!
∑

(s1,...,sk)∈D∗
k,s

(
s

s1, . . . , sk

)

× g(n, m, j, k) f (m, k, (s1, . . . , sk))

j∏
i=1

w
ri
i (ai)(ni+ri) (10)

= g(n, m, j, k)

m∑
s=k

(
m
s

)
wm−s

j (n + a)(m−s)

j∏
i=1

(ai)(ni)

× F( j−1)

D

(
−m + s, a1, . . . , a j−1, n + a; w j − w1

w j
, . . . ,

w j − w j−1

w j

)

× 1

k!
∑

(s1,...,sk)∈D∗
k,s

(
s

s1, . . . , sk

) k∏
i=1

fi(m, k, si) (11)

With reference to the sum over the set of partitions D∗
k,s it has to be evaluated ac-

cording to the analytic form of the functions fi(m, k, si) for i = 1, . . . , k. In particular,
if fi(m, k, si) = f (m, k, si) for i = 1, . . . , k, for some positive function f (·), then it is
well–known that

1

k!
∑

(s1,...,sk)∈D∗
k,s

(
s

s1, . . . , sk

) k∏
i=1

f (m, k, si) = Bs,k(v•)

where Bs,k(v•) is the (s, k)–partial Bell polynomial with weight sequence v• := {vi, i ≥
1} such that vi := h(m, k, i) for i ≥ 1; see Comtet (1974). For some examples, where
Eq. 11 can be evaluated explicitly leading to a readily applicable estimator of
K(n)

m |Kn = j we refer to Lijoi et al. (2007a, 2008) and Favaro et al. (2010).
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