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 Abstract 
 
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative 

approach for cancer therapy. All of the clinical experience to date with NCT is done with 10B, known 

as BNCT, a binary treatment combining neutron irradiation with the delivery of boron-containing 

compounds to tumors. Currently, the use of gadolinium for NCT has been getting more attention 

because of its highest neutron cross-section. Although Gd-NCT was first proposed many years 

ago, its development has suffered due to lack of appropriate tumor-selective Gd-agents. This 

review aims to highlight the recent advances for the design, synthesis and biological testing of new 

Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the 

NCT clinical outcome.  
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1. General introduction on NCT: rationale and application  

 
Neutron Capture Therapy (NCT) is a non-conventional radiotherapy that combines low energy 

neutron irradiation with the presence of a neutron-absorbing substance at the targeted cells [1-

2].Two isotopes are of major interest because of their large capture cross section: 10B and 157Gd. In 

the case of 10B, the non radioactive isotope captures neutrons and disintegrates into alpha 

particles and lithium nuclei that cause non reparable damage to the cell where they were 

generated [3]. Thus, this technique permits the selective damage of tumor cells without affecting 

adjacent healthy cells if 10B atoms are selectively accumulated intracellularly. This makes BNCT a 

promising option for the treatment of infiltrating tumors and disseminated metastasis that cannot be 

treated by methods requiring a precise localization of the mass, such as surgery or conventional 

radiotherapy. Exploiting a thermal neutron flux of the order of 109n/cm2s (value easily attainable at 

the presently working NCT facilities) it has been estimated that approximately 10-30 μg of boron 

per gram of tumor mass are needed to deliver therapeutic doses of radiation in the tumor without 

exceeding the normal tissue tolerance using an irradiation time equal or less than 1 hour. The 

selective delivery to tumor cells is crucial to increase the amount of internalized boron, while 

maintaining a low concentration in surrounding healthy tissues and in blood to minimize damage. 

Currently, two BNCT drugs are available for clinical investigation namely: i) L-

paraboronophenylalanine (BPA), that has been used in clinical trials to treat glioblastoma[4-5], 

head and neck recurrent cancer[6-7], melanoma[8] and adenocarcinoma liver metastases[9]; ii) 

sodium mercaptoundecahydro-closo-dodecaborate (BSH) that has been investigated for the 

treatment of malignant glioma[10]. Despite their clinical use and the safe and effective BNCT, trials 

performed with these two drugs until now, both BPA and BSH show low selectivity and great efforts 

have been made by several research groups to develop new and more selective boron delivery 

agents[11-12].The use of BNCT to destroy malignant cells was proposed long time ago[13]. In 

spite of huge promises, it has not attained an established position in the mainstream medicine. 

However, the methodology has never been discarded and it remains in an intermediate state with a 

small group of enthusiast supporters and many critical spectators. The reasons why BNCT has not 

maintained the original promises rely mainly in the lack of properly designed agents. The 

conditions for an effective therapeutic output are well established: the BNCT agent must reach 

selectively a given concentration inside cells and the not-attainment of this task makes the therapy 

less effective. Only a proper NCT agent design (based on an improved knowledge on how 

molecules enter healthy and diseased cells) allows to reach selectively the needed threshold of 

intracellular concentration required to drive the breakthrough of BNCT in the field of conventional 

and diffused treatments for cancer. Moreover, the in vivo assessment of the amount of NCT agent 

can now be tackled by its conjugation to a suitable imaging-reporter.[14-15] To date there is no 

non-invasive means to evaluate boron concentration in tumor and healthy tissues of the subject 

undergoing the irradiation. Thus, dose calculations are based on boron content values in blood, 
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tumor, and normal tissue obtained from biodistribution studies performed beforehand. One of the 

problems is that the boron distribution varies from patient to patient and that large uncertainties 

exist in the tumor-to-blood 10B concentration ratio. The possibility of detecting the in vivo 

localization of BNCT agents by highly sensitive, non invasive imaging protocols greatly enhances 

the chances of success of this therapeutic treatment as it allows to determine the optimal neutron 

irradiation conditions, i.e. when the concentration of BNCT agents at the tumor nodule is the 

highest possible.  

Currently, the use of gadolinium as NCT agent has been getting more attention because of its 

highest neutron cross-section (255,000 barns for the 157Gd isotope), which is around 65 times 

larger compared to boron thermal neutron cross-section[12]. Although the idea of Gd-NCT was first 

formulated in the 1980s [16,17] its development has suffered due to lack of appropriate Gd 

containing tumor-selective agents. Another advantage of Gd-NCT is that several Gd based 

compounds are commonly used, in clinical, as Magnetic Resonance Imaging (MRI) contrast 

agents, which makes them “ideal” theranostic agents able to integrate neutron therapy and MRI 

diagnosis for an improved personalized treatment of the patient. In fact, since the signal intensity 

enhancement of a T1-weighted MRI image is directly proportional to the Gd-based contrast agent 

(Gd-CA) concentration in the target tissue, by comparing images recorded before and after Gd-CA 

injection, it is possible to estimate Gd concentration at the pathological site and in the other organs 

and on this basis to set-up NCT therapeutic protocols (irradiation time and duration).  

This review aims to highlight the recent advances in Gd selective and efficient delivery methods 

and the preclinical outcome of Gd-NCT with the task of finding the best system to improve 

preclinical applications.  

 
 
2. Gd as an alternative neutron capture agent 

 

The probability of an element to absorb thermal neutrons is represented by its neutron absorption 

cross section (abs). Naturally occurring Gd is composed of 6 stable isotopes two of which are of 

particular interest to  NCT  for their high neutron absorption cross sections: 155Gd (abs = 55000 b; 

14.8%) and 157Gd (abs = 255000 b; 15.7%)[2].  

Gd provides two main advantages with respect to boron, namely i) the possibility to follow the 

agent biodistribution through the body via MRI, thus allowing a theranostic approach to cancer 

treatment [18], and ii) the highest absorption cross section for thermal neutrons among stable 

elements (157Gd). Precise determinations of the intratumor Gd concentration would facilitate the 

optimization of the neutron irradiation duration reducing damage to normal organs. The advantage 

of a high neutron absorption cross section of Gd is that the same number of capture reactions 

obtained with a given amount of boron can be produced by 157Gd with a significantly lower thermal 

fluence or lower concentrations of the NCT agent. With lower amounts of NCT agent, the tissue 
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toxicity related to the compound administration is reduced and with a lower fluence the dose 

absorbed by normal tissues is reduced as well. Nonetheless, this advantage is counterbalanced by 

the non local energy deposition of the secondary radiations emitted by the neutron capture reaction 

of 157Gd. The 157Gd neutron capture reaction forms excited  158Gd* that generate complex inner-

shell transition with long mean free paths in tissues, internal-conversion electrons (ICEs) and, 

finally, Auger electrons together with characteristic X-rays (scheme 1). 

The mean energy per capture reaction of rays is of 2.4 MeV with mean free paths in tissue of 

several tens of cm. On the other side and despite their low mean energy per capture reaction 

(approximately 4 keV), Auger electrons are high-LET particles as a consequence of their short 

ranges in tissues of few nm, having an average LET of 300 keV/μm, and can induce highly lethal 

damages in the cell only when 157Gd directly targets DNA molecule or other vital organelles (e.g., 

mitochondria). Due to the limited amount of energy transferred by the ICEs and Auger electrons, 

the neutron Kerma factor (a physical quantity representing the energy transferred by neutrons to 

charged particles through their nuclear reactions) of the capture reactions on 157Gd is significantly 

lower than that of 10B capture reaction. As consequence, the 157Gd concentration required to 

deposit a certain dose, that means a certain biological effect, is typically one order of magnitude 

higher than the 10B concentration needed to get the same result. 
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Scheme 1: Gd neutron capture reaction 

 The emission of secondary rays depositing energy over a longer path length than the boron 

reaction products limits the selectivity of the therapy and could be considered as a drawback of 

Gd-NCT. However, if 157Gd uptake is strictly limited to tumor bulk and considering a tumor volume 

of the order of some cm3, these rays can produce an additional positive effect that is to increase 

the radiation dose to the tumor also if the NCT agent is not intracellularly distributed, lowering the 

requirement of uptake by the cell nucleus.[19,20].  

The optimal 157Gd concentration in tumors for Gd-NCT was reported to be 50–200 g/g of tumor 

tissues but less than 1000 g/g, since neutron fluence rapidly decrease in the depth of the tissue 

due to high absorption of neutron by gadolinium atoms [21]. Gd-NCT has been performed in many 

tumor animal models (mouse, rat, rabbit, canine) but to date this therapy has never been proved in 

human clinical trials.  
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3. Gd as MRI contrast agent  
 

MRI is a non-invasive technique and can provide detailed information on the anatomy, function and 

metabolism of tissues in vivo with a superb anatomical resolution. The amount of intrinsic contrast 

between tissues normally produced in a MR image depends on differences in the T1 and/or T2 

relaxation times of the tissues under observation. Pathologic tissues may not have significant 

differences in T1 or T2 from the surrounding normal ones. This signal difference can be increased 

through the administration of a contrast agent. Approximately 25–30% of all MRI scans today use 

some kind of non-specific Gd based contrast agents (Gd-CA) [22] that typically makes appear 

diseased tissue brighter. The high magnetic moment of the Gd ion, the presence of 7 unpaired 

electrons and a fast exchanging coordinated water molecule are essential to providing contrast. 

The most representative class of contrast agents is represented by polyaminocarboxylate 

complexes of Gd3+ ion[23]. The ligands are multidentate (seven or eight donor atoms) in order to 

strongly limit the release of free metal ions that are highly toxic because they interfere with Ca2+ 

pathways. The coordination cage of the Gd3+ ion is completed with 1-2 water molecules that are 

responsible for transferring the paramagnetic properties to the overall bulk water molecules 

through chemical exchange. The ability of a Gd chelate to affect the water proton relaxation rates 

is represented by the relaxivity value (i.e. the relaxation enhancement of solvent water protons in 

the presence of 1 mM concentration of the paramagnetic ion). In a proton MR image there is a 

direct proportionality between the observed relaxation enhancement and the concentration of the 

paramagnetic MRI reporter. Thus these agents can be exploited to carry out Gd quantification at 

the pathological tissue. All Gd-CA are administered intravenously and rapidly equilibrate in the 

intravascular and interstitial compartments (extracellular compartment). Then, depending on their 

structure, they will be cleared by the liver or kidneys by passive diffusion or specific uptake 

processes[24]. Most Gd-CA are approved at a dose of 0.1 mmol Gd/kg. Clinically available Gd-CA 

contrast agents can be classified on the basis of their distribution in: i) extracellular fluid agents, ii) 

liver agents, and iii) intravascular or blood pool agents. For these Gd-CA, there is no intracellular 

distribution except for, in particular cases, the liver through organic anion transporters (OATP).  

Upon injection, extracellular fluid agents (Figure1) quickly distribute to the extracellular space. The 

terminal half-life for blood elimination is about 1.5 h for all these compounds when administered to 

subjects with normal renal function [24] and they are excreted almost exclusively renally by 

glomerular filtration. Liver agents, which bring a benzylic group to increase the liver uptake, (Figure 

2) have a partial hepatobiliary elimination. Gd-BOPTA (gadobenate dimeglumine, Figure 2) has a 

terminal blood half-life on the order of 1.5 – 2 h in healthy subjects. For Gd-EOB-DTPA (gadoxetic 

acid disodium, Figure 2) acid the blood half-life is shorter, about 1 h, and this is probably due to the 

significant liver uptake of the compound by hepatocytes.  
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Figure 1: Chemical structures of Gd based extracellular fluid agents. 

 

 

 

 

Figure 2: Chemical structures of Gd based liver complexes.  

 

There is only one blood pool agent approved in the European Union and the USA for peripheral 

MR angiography (MS-325, gadofosveset trisodium, Figure 3). It is functionalized with a lipophilic 

biphenylcyclohexyl group with high affinity to serum albumin. The terminal plasma half-life of 
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gadofosveset was 18.5 h which is considerably longer than other contrast agents as a 

consequence of the binding with albumin and the absence of liver clearance. 

 

 

Figure 3: Chemical structure of MS-325 complex 

 

 

In patients with advanced kidney disease, exposure to the less stable Gd-CAs can produce a 

chronic fibrosing condition (nephrogenic systemic fibrosis, NSF) that involves skin, muscles and 

other organs due to the injury caused by Gd3+ cations release and deposition in tissues.[25]  The 

inadequate Gd-CA clearance caused by renal failure could trigger the development of NSF. 

Molecular, cellular, and animal studies have provided great insight into the pathophysiologic 

mechanisms of NSF. The prevailing hypothesis is that free Gd released from the less stable Gd-

CAs activates the NLRP3 inflammasome, with resulting production of IL-1β and presumably of 

other profibrotic cytokines [26]. NSF can be prevented by avoiding the use of less stable Gd-CA, 

such as Gd-DTPA-BMA in patients with compromised renal function. Since successful treatment of 

NSF are limited, its prevention is fundamental.  In current practice, Gd-CAs have been considered 

safe when used at clinically recommended doses in patients without severe renal insufficiency[27] . 

By performing either unenhanced or reduced-dose-enhanced studies and by using the most stable 

contrast agents, in particular in the case of patients with renal failure, NSF has been significantly 

reduced since 2009. Although nanosized Gd-CAs have demonstrated enhanced MRI contrast 

efficacy, their translation to the clinic has often been hampered by their slow, and sometimes 

incomplete excretion that causes an increase of tissue retention and consequently of the toxic side 

effects relating to Gd release [28]. Recent efforts for the development of macromolecular Gd-CAs 

have focused on introducing biodegradable materials and/or linkers. Biodegradable Gd 
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nanocarriers maintain the ability to carry high payloads of Gd, with the advantage that, following 

intravenous administration they are degraded into smaller species that can be easily excreted. 

Furthermore, by using selectively targeted nanocarriers, endowed with high accumulation at the 

target site, it is possible to reduce the injected dose and therefore the potentially toxic 

macromolecular Gd–CAs unspecifically distributed in the body. 

 

 

 

4.  Small sized Gd chelates for Gd-NCT 

 

First attempts to test the use of Gd derivatives as NCT agents concerned commercially available 

MRI agents. One of the first papers reporting the application of Gd chelates as NCT agents was 

proposed by the research group of Brugger.[16] In this study, Gd-DTPA (gadopentetate 

dimeglumine, Figure 1) and Gd-DOTA (gadoterate meglumine, Figure 1) were used for the 

treatment of brain tumors by intravenous injection. It was demonstrated that up to 300 µg of 

157Gd/g of tissue could be achieved in brain tumors with these Gd derivatives. This concentration 

could be increased up to 800 µg of 157Gd/g using Gd-EDTMP 

(ethylenediaminetetrabismethylenephosphonate, Figure 4). Moreover, Gd concentration calculation 

and measurements showed a good tumor to normal tissue ratio.  

 

Figure 4: Chemical structure of Gd-EDTMP complex. 

One year later, a short communication by Kanda and co. reported the results of the continuous 

infusion of Gd-DTPA through a branch of the left femoral artery of New Zealand white rabbit with 

VX-2 tumors growing in hind legs[29]. Although no differential distribution of Gd was achieved 

between the tumor and its adjacent normal tissues, the Gd concentration in the infused tumor was 

approximately 5-6 folds higher than that in the contralateral tumor. Growth of Gadolinium-infused 

tumors was significantly inhibited compared to that of control tumors between the 16th and 23rd 
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days after treatment. In vivo Gd-DTPA therapeutic effect in rats with Jensen sarcomas was also 

reported[30]. Gd-DTPA was administered directly into the tumor prior to neutron irradiation. 

Intratumoral administration of 13,750 ppm gadolinium and subsequent neutron irradiation 

significantly increased the tumoricidal effect (i.e., decrease of tumor growth up to a complete 

regression of the tumors in about 80%). More recently, Hosmane and coworkers [31] observed the 

significant survival prolongation of 9L brain tumor rat by intra-venous injection of Gd-DTPA. Mean 

survival via Gd-NCT was 33.5 ± 3.0 days, and that of control rats was 16.4 ± 0.6 days. The 

maximum contribution of  rays on tumor absorbed dose was less than 50%. Gd-BOPTA (Figure 

2), another clinically used Gd MRI contrast agent, was tested and demonstrated to be an efficient 

targeting agent for neutron capture therapy[32, 33]. Four groups of rat tumor models were 

subcutaneously injected with gliosarcoma cells (9L cell line) in both hind legs with the same dose 

of Gd-BOPTA and Gd-DTPA directly into the tumor. The Gd-BOPTA group showed significantly 

longer tumor growth delay than that of DTPA as determined in vivo by MRI and confirmed ex vivo 

by ICP-MS Gd measurements. In the author’s opinion, the stronger enhancing effect of Gd-BOPTA 

respect to Gd-DTPA was partially due to the weak binding affinity of this agent for albumin, which 

increased its tumor retention. Therefore, Gd-BOPTA was proposed as an effective targeting 

compound for NCT. Further interesting in vitro results, on the use of Gd-DTPA as potential agent 

for Gd-NCT, were reported by De Stasio et al. [17] The microdistribution of Gd in cultured human 

glioblastoma cells exposed to Gd-DTPA was observed and it was demonstrated that not only it 

penetrated in the plasma membrane of the cells but accumulated at higher concentration in the 

nucleus than in the cytoplasm; moreover no deleterious effect on cell survival was detected without 

neutron irradiation. The therapeutic gain of Gd-NCT with the imaging resonance contrast agent 

Gadobutrol (Gd-DO3A-butrol, Figure 1) was evaluated through in vitro and in vivo studies [34]. 

Human malignant melanoma cells were irradiated in the presence or absence of Gd-DO3A-butrol. 

These studies showed a Gd-dependent delay of cell proliferation as a consequence of neutron 

irradiation. In vivo tests were performed on tumor-bearing nude mice. The tumor site was irradiated 

after intratumoral injection of Gadobutrol. Cell proliferation was inhibited and tumor growth was 

delayed; moreover, in the irradiated animals only transient skin damage was observed. 

Therapeutic gadolinium-containing agents are also known to acts as a radiosensitizer in the 

treatment of diseases, such as cancer. In 2010, Rendina and coworkers reported the first example 

of gadolinium delivery to a tumor-cell nucleus by a platinum complex[35]. They presented a new 

Pt-Gd complex that can effectively target the nuclei of tumor cells by means of a functionalized 

DTPA ligand linked to two {PtII (terpy)} (terpy= 2,2’:6’,2’’-terpyridine) (PtDTPA, Figure 5) units that 

have the capacity to bind DNA in an intercalative manner. They reasoned that the related Pt-Gd 

species PtDTPA would have the capacity to deliver gadolinium to DNA in order to fully exploiting 

Auger electrons toxic effects.  
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Figure 5: Chemical structure of the functionalized DTPA ligand linked to two {PtII (terpy)} (terpy= 

2,2’:6’,2’’-terpyridine) PtDTPA 

Cellular uptake of PtDTPA was determined by means of ICP-MS analyses of A549 human lung 

carcinoma cells and human aortic endothelial cells. The results indicate that tumor cells showed a 

capacity to accumulate PtDTPA by at least one order of magnitude higher than that of human 

endothelial cells. 

A theranostic agent Gd-DO3A-BTA (Gd-DO3A-benzothiazole-aniline, Figure 6) functionalized with 

a benzothiazole derivative with high antitumor activity was synthesized and tested. [36] The 

biodistribution pattern of in vivo MRI compares well with those of DTPA-based, liver-specific MRI 

Gd-CAs. Gd-DO3A-BTA revealed antitumor effect against three cell lines such as MCF-7, MDA-

MB-231, and SKHEP-1 and all of them revealed apoptotic characteristics. MR images of 

fractionated cytosols and nuclei confirmed that the Gd complex was intracellular as well as tumor-

specific. Moreover, the amount of Gd accumulated in the tumor site for 24 h was 40−220 μg Gd/g 

tumor which falls within the range of the optimal amount (50−200 μg Gd/gtumor) for Gd-NCT. Thus 

this complex is a good candidate for Gd-NCT that will improve the therapeutic effect of the 

benzothiazole-aniline conjugated with the complex.  

 

 

Figure 6: Chemical structure of Gd-DO3A-BTA complex 

 



13 
 

 

5. Nano sized Gd carriers for Gd-NCT  

 
The success in Gd-NCT depends on the ability to deliver and maintain, during the neutron 

irradiation, sufficient amount of gadolinium in tumor tissues. Commercially available MRI contrast 

agents, introduced for the first as Gd-NCT agents, are not specifically targeted to tumor cells and, 

during neutron irradiation, due to their fast clearance, can not be retained in tumor tissues in an 

effective Gd concentration [24]. Therefore, continuous infusion or intratumor injection of Gd-CAs 

are mandatory in order to reach the concentrations needed for a therapeutic outcome. Thus, for 

the optimization of Gd-NCT, effective drug delivery systems are needed[37].Furthermore, the 

systemic distribution of the clinically approved contrast agents can induce unnecessary exposure 

of healthy tissues to γ-rays generated during the neutron capture reaction. Since the literature 

about the use of nanoparticles to deliver selectively drugs, vaccines and imaging agents [38-39] is 

increased exponentially in the last years, they appear good candidates for the specific delivery of 

Gd-based NCT agents to tumor cells.  Moreover, nanoparticles, with a diameter ranging from 50-

100 nm can be loaded with a large amount of Gd atoms to be delivered specifically into tumors 

thus avoiding intratumor injection endowed with many disadvantages. In fact, the most appropriate 

Gd administration is intravenous (i.v.), because it allows the accumulation into tumors through 

active (receptor mediated endocytosis) or passive (enhanced permeation retention, EPR) targeting 

while avoiding systemic distribution in normal tissues. Furthermore, a lot of Gd containing 

nanoparticles, with improved accumulation properties, were developed for MR molecular imaging 

applications [40-41] and they can be exploited without any modification for Gd-NCT therapeutic 

protocols[42]. Table 1 reports many examples found in the literature of nanocarriers designed for 

delivering Gd-based NCT agents to tumor tissues to achieve effective treatment based on precise 

imaging-guided thermal neutron irradiation. Some of them have been used for in vivo tumor 

irradiation. Most of the nanoparticles reported in Table 1 are loaded with clinically used Gd-CA and 

in particular with Gd-DTPA. As expected, the highest intratumor concentrations have been 

obtained after intra tumor (500-1800 ppm) or peritumoral subdermal Gd injection (466 ppm). 

Fukumori Y. and coworkers [43,44] observed a significant reduction of tumor growth after neutron 

irradiation using Gd-DTPA-loaded chitosan nanoparticles (intratumor injected) that it was not 

observed after injection of the same amount of free Gd-DTPA due to its lower tumor retention. This 

result evidenced that the incorporation of Gd-DTPA in a nanosized particle increases significantly 

its retention time in the tumor mass and at the same time, the presence of positive charges on the 

external surface of chitosan increases cell interaction and uptake. Mi P. and coworkers obtained 

similar results comparing Calcium phosphate micelles incorporating Gd-DTPA i.v. administrated 

[45,46]. Also in this case, only nanoformulated Gd-DTPA (Gd-DTPA/CaP) showed an effective 

suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP 



14 
 

for safe cancer treatment (Figure 7). Furthermore, as a consequence of the increased 

accumulation of Gd-DTPA in tumors, a selective contrast enhancement of tumor tissues was 

observed for precise tumor location by MRI. 
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Table 1: Nanocarriers designed for delivering Gd-based NCT agents to tumor tissues  

Nanoparticle Gd-
complex 

Size 
(nm) 

Active/Passive 
targeting 

Tumor  
Model (in vivo/in 

vitro study) 

Route of 
administration 

NCT 
test 

Intratumoral 
Gd 

concentration 

Ref 

         

liposome GdHPDO3A 100-
300 

Passive  Colon-26  
Tumor bearing 
mice (in vivo) 

i.v. yes 40.3 g/g 37 

liposome Gd-DTPA  136-
152 

Active (Folate 
or DOTAP) 

F98 rat glioma and 
LN229  
Human 
glioblastoma  
cell lines (in vitro) 

- yes  
F98 ((Folate: 
250ng/106 
cells; DOTAP: 
3000ng/106); 
LN229 (Folate: 
200ng/106 
cells; DOTAP: 
2000ng/106); 

47 

liposome Gd-DTPA  <150 Passive  TC-1 Lung Tumor 
bearing mice (in 
vivo) 

i.v. no 158.8 g/g 21 

Ca/P Gd-DTPA  60  Passive  Colon-26 tumor 
bearing mice (in 
vivo) 

i.v. yes 8 (single 

i.v.(double 

i.v 16 g/g 

45 

Ca/P Gd-DTPA 60  Passive Colon-26 tumor 
bearing mice (in 
vivo) 

i.v. yes 4% ID/g of 
tumor 

46 

Avidin-
dendrimer-
(1B4M-Gd)254 

Gd-DTPA - Active (Avidine) SHIN3 human 
ovarian cancer 
bearing mice (in 
vivo) 

i.v. no 162 g/g 48 

Chitosan Gd-DTPA 391, 
214 

Positively 
charged 
particles 

B16F10 C57 tumor 
bearing mice (in 
vivo) 

Intra tumor yes 500 and 1500 
ppm for 391 
and 214 nm 
sized particles 

43 

Chitosan Gd-DTPA 430 Positively 
charged 
particles 

B16F10 C57 tumor 
bearing mice (in 
vivo) 

Intra tumor yes 1800 ppm 
(double 
administration) 

44 

Chitosan Gd-DTPA nd Positively 
charged 
particles 

Malignant fibrosis 
histiocytoma(MFH) 
cell-line (in vitro) 

- no 30.5mg in a 
cell flask 

49 

Chitosan Gd-DTPA 426   Positively 
charged 
particles 

L929 fibroblast, 
B16F10 and  SCC-
VII cell lines. (in 
vitro) 

- no 18.0 , 27.1, 
59.8 mg 
Gd/106 cells for 
L929 
fibroblast, 
B16F10 and  
SCC-VII cells, 
respectively. 

50 

Microemulsion Gd- 
hexanedione 

85  Active (Folate) KB  tumor bearing 
mice (in vivo) 

i.v. no 33 g/g 51 

GdFeO3/Fe3O4 
/SiO2 

GdFeO3 60 Passive - - no - 52 

 Gd/Co-carbon 
nanoparticles 
GdCo@CNPs 

Gd-oxide 20-
50 

Active (Folate) Hela (human 
cervice cancer) cell 
line (in vitro) 

- yes - 53 

G6 dendrimer Gd-DTPA 9 passive sentinel lymph 
nodes and  PT-18 
(murine mast cell 
line) 
micrometastasis on 
mice models. (in 
vivo) 

peritumoral 
subdermal 
injection 

no 466 g/g 54 

Gd@C82-PEG-b-
PAMA  
metallofullerenes 

Gd 15–

25  
Passive colon-26 cell line 

(in vitro) 
- yes - 55 

chylomicron 
emulsion 

Gd acetyl 
acetonate 

100 Passive WT Balb/C mice (in 
vivo) 

i.v. no - 56 
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Figure 7: Reprinted with permission from ref 46 (Mi P, Dewi N, Yanagie H et al. Hybrid calcium 

phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium 

neutron capture tumor therapy. ACS Nano. 9(6), 5913–5921 (2015)). Copyright 2015 American 

Chemical Society 

 

Nanoparticles injected intravenously showed a lower intratumor concentration, ranging from 8 to 

162 ppm. Some of them were actively targeted to tumor cells using folate [47,51,53], positive 

charges [43,44,49,50,51] or avidin.[48] All the reported studies used naturally occurring Gd 

containing only the 15.7% of 157Gd thus suggesting that the therapeutic outcome can be improved 

by using the 157Gd enriched isotope. 

 

 

 
 



17 
 

6. Combination of Gd/B agents 
 
The two most diffused forms of Neutron Capture Therapy, BNCT and Gd-NCT, exploit very 

different secondary radiation patterns to attain their therapeutic effects. On one side, BNCT takes 

advantage of the very selective and localized energy deposition assured by the high LET 

secondary charged particles (α particle and 7Li recoil nucleus) emitted by 10B neutron capture 

reaction. These products have short ranges in tissues (for each particle, less than 10 μm) allowing 

the deposition of almost all the emitted energy inside the volume of the 10B loaded cell. On the 

other side, the effectiveness of Gd-NCT is a little more complex in term of physical mechanisms, 

but already clearly reported by several authors. Very likely, in this case a delicate synergy operates 

between the selective, point-wise damage of cell DNA carried out by high LET Auger electrons and 

the spread and non-local irradiation performed by the low LET prompt γ rays. The former effect is 

extremely difficult to exploit and see due to the mandatory requirement of specific binding of the 

DNA molecule, or other sensitive targets inside cell, by the 157Gd-compound. On the contrary, the 

effect of the prompt γ rays can be clearly showed only when a significant volume of tumor is 

treated, such as in medium size canine models as reported by Mitin et al [19]. Having these 

different mechanisms of action, it is pretty logic to investigate the possible advantage of combining 

BNCT and Gd-NCT. Besides, the possibility of exploiting Gd-based compounds in MR imaging to 

detect in vivo the spatial distribution of the NCT agent in tissues has recently further increased the 

attention of the NCT scientific society towards Gd-NCT and its combination with BNCT (GdBNCT). 

Two possible strategies are available: 1) simultaneous administration of two NCT agents, one 

carrying 10B while the other 157Gd; 2) development of a single NCT agent containing both 10B and 

157Gd compounds. In the first strategy, the uptake and distribution within the tumor may be different 

among these compounds. Thus, the combination of the boron and gadolinium compounds may be 

beneficial for enhancing the radiation dose to the tumor. Few examples of in vivo studies of 

GdBNCT are reported in literature, maybe for the difficulty to effectively prepare molecules which 

contain both boron and gadolinium nuclei. First studies were proposed by the research group of 

Matsumura which in 1994 presented a conference communication titled “Boron-gadolinium-

porphyrin derivatives for neutron capture therapy: MRI and ICP study” at the Symposium on 

Neutron Capture Therapy for Cancer, in Kobe, Japan. [57] Few years later the same group utilized 

a mixture of 10BSH and 157Gd-BOPTA at different concentrations for an in vitro study on Chinese 

hamster fibroblast V79 cells. [58] The combination of the boron and gadolinium compounds 

showed an additive effect when the gadolinium concentration was lower than 1600 ppm. This 

additive effect decreased as a function of gadolinium concentration at 2400 ppm and resulted in no 

additive effect at more than 3200 ppm of gadolinium; it was then demonstrated that the 

combination of the boron and gadolinium compounds can enhance the therapeutic effect when an 

optimum concentration ratio is used. A p-Boronophenylalanine conjugated Gd–DTPA complex 

(BPA-Gd-DTPA, Figure 8), was then synthesized and its in vivo biodistribution was evaluated by 
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prompt  ray analysis and α-autoradiography using rats with a AH109A tumor implanted on their 

back [59]. Compound BPA-Gd-DTPA was injected intravenously into a rat via the tail vein. High 

accumulation of gadolinium was observed in the kidney and the %ID values were 0.17 and 0.088 

at 20 and 60 min after injection of BPA-Gd-DTPA, respectively. The accumulation was also 

observed in the tumor and the %ID values were 0.010 and 0.0025 at 20 and 60min after injection, 

respectively. A higher accumulation of complex BPA-Gd-DTPA was observed in the tumor tissue in 

comparison with the case of a carborane–Gd–DTPA complex previously reported, due to the 

higher expression of BPA transporters on tumor cells [60]. However, the conjugation of a Gd-DTPA 

unit (Mw=590) to BPA (Mw= 209) causes a dramatic change in biodistribution and intratumor 

concentration of B atoms in BPA/Gd-DTPA with respect to BPA alone. 

 

Figure 8: Structures of BPA conjugated Gd–DTPA complex (BPA-Gd-DTPA) 

Very recently, Matsumura et al. studied the additive effect of gadolinium and boron co-

administration using colony forming assay. [61] In vitro tests were accomplished on CT26 mouse 

carcinoma, C6 rat glioma and V79 chinese hamster cell lines. As a result, the survival of tumor 

cells with additional 5 ppm of Gd-DTPA decreased to 1/10 compared to the cells with boron only. 

In the biodistribution tests, C6 cells were inoculated subcutaneously in Wistar rats in 6 locations on 

the back of each rat, the concentration of boron in subcutaneous tumor tissue did not change 

significantly, though the concentration of gadolinium decreased from 13.2 to 4.1 ppm within first 60 

min after injection. There was no difference in gadolinium concentration between the groups with 

independent and simultaneous BPA and Gd-DTPA administration. In conclusion, using BPA with 

Gd-DTPA might enhance the effect of NCT and an additional curative effect of Gd has to be 

expected. Hawthorne et coworkers recently reported the synthesis, relaxivity measurements and in 

vivo assessment of a carborane-Gd-DOTA-monoamide (CB-GdDOTA-MA, Figure 9) amphiphilic 

conjugate. In vivo MRI studies in mice using CB-GdDOTA-MA at a Gd dose of 0.1 mmol per kg 

body weight showed that the significant contrast enhancement of the vascular system persisted for 

about 3–4 min post injection and quickly diminished over time. The short plasma half-life of CB-

GdDOTA-MA could possibly limit its application as blood pool contrast agent and more than one 

moiety per Gd-chelate may be necessary. [62] 
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Figure 9: Carborane-Gd-DOTA-monoamide (CB-GdDOTA-MA) 

Afterwards, new carborane derivatives have been proposed as GdBNCT/MRI agents in order to 

pursue the second strategy described at the beginning of this section. In Figure 10, some of these 

derivatives are presented, a carborane unit is linked to a lipophilic chain and to a Gd-DOTA 

complex through amidic bonds (AT101, figure 10, left), or triazole units (MEA01, Figure 10, right), 

respectively [63], [64].  

 

 

 

 

 

 

  

Figure 10: Chemical structures of Gd-BNCT/MRI agents where carborane unit is linked to a 

lipophilic chain and to a Gd-DOTA complex  

Since these derivatives were able to form stable adducts with low density lipoproteins (LDLs), 

LDLs were exploited as nanosized carriers for highly proliferating tumor cells that overexpress LDL 

receptors. In particular AT101 was exploited for in vitro and in vivo tests. [65] Up to 190 Gd/B/L 

(AT101) probes were loaded per LDL particle. The uptake from tumor cells was initially assessed 

on cell cultures of human hepatoma (HepG2), murine melanoma (B16), and human glioblastoma 

(U87). Measurements were undertaken in vivo on mice bearing tumors in which B16 tumor cells 

were inoculated at the base of the neck. Intratumor Gd and (indirectly) B concentrations have been 

measured by analyzing MR images before and after AT101 administration, thus establishing that 

after 4–6 hours the amount of boron taken up by the tumor (30±5 ppm) was above the threshold 

required for successful NCT treatment (Figure 11). After neutron irradiation, tumor growth was 

followed for 20 days by MRI. The group of treated mice showed markedly lower tumor growth with 

respect to the control group. It was then demonstrated that the use of nanoparticles with a high 
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payload of NCT and MRI imaging agents appears to be the route to achieving considerable 

improvement in the NCT technique allowing noninvasive measurements of B atoms in vivo.  

Figure 11: MRI in vivo in B16 tumor-bearing mice after administration of the Gd/B/L particles. A) 

Representative T1-weighted MR images of C57BL/6 mice grafted subcutaneously with B16 

melanoma cells acquired before and 4 and 24 h after the administration of Gd/B/L–LDL particles. 

The arrows indicate tumor regions. B) A plot of MRI SI enhancements (%) measured in different 

organs 4 and 24 h after the administration of the Gd/B/L–LDL adduct. Reprinted with permission 

from ref 65. 

 

Very recently it has been proposed an innovative theranostic approach for lung tumor and 

metastases treatment, based on the use of LDLs as biological carriers and AT101 as 

GdBNCT/MRI agent.[66] Tumor cells uptake was initially assessed by ICP-MS and MRI on four 

types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung 

metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) 

in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. As reported 

above B (indirectly) and Gd concentrations taken-up by lung metastases were measured by MRI 

before performing BNCT. After neutron irradiation, tumor growth was followed for 30-40 days by 

MRI. Tumor masses of boron/Gd treated mice increased markedly more slowly than the control 

group. It was observed a tumor re-growth on both mice models about 25-30 days after the 
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treatment that might be associated to the insufficient neutron dose delivered to the lung tumor in 

order to kill all the cells or to the presence in the tumor mass of quiescent cells, whose observed 

higher resistance to targeted therapies could be the consequence of a lower expression of target 

receptors with respect to highly proliferating cells. These results supports the hypothesis that the 

combination of BNCT with chemotherapic agents or different therapeutic strategy such us 

photodynamic therapy can be an effective option.  

Figure 12:  A) T2-weighted RARE coronal image of a representative 6 weeks old EML4-ALK 

mouse. Disseminated tumors are clearly visible in both lungs and they are indicated with arrows. 

(B) Tumor volume increase measured by MRI on irradiated control mice (●) and irradiated and 

AT101/ LDL treated mice (■). Error bars indicate the SD. Reprinted with permission from ref 66. 

 

Other synthetic strategies have been accomplished in order to insert a cholesterol moiety or 

shorten the preparation by the use of the hydroboration reaction [67], [68]. In particular the 

cholesterol derivative AC01 (Figure 13) was prepared with the aim of using liposomes as 

nanoplatforms for the delivery of Gd and B agents. In order to endow the BNCT agent with specific 

delivery properties, the liposome embedded with the MRI/BNCT dual probes was functionalized 

with a pegylated phospholipid containing a folic acid residue at the end of the PEG chain. The 
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BNCT treatment of IGROV-1 cells (human ovarian adenocarcinoma) showed that the number of 

surviving cells was markedly smaller when they were irradiated after internalization of the folate-

targeted AC01/liposomes. Therefore, the amount of internalized B was enough to perform an 

efficient BNCT treatment and the selective folate-targeting decreased significantly healthy cell 

damage in the surrounding regions. 

 

Figure 13: Chemical structure of the cholesterol derivative AC01 

 

7. Features and problems in the Gd-NCT dosimetry and comparison with BCNT 

Independently from the nucleus (10B or 157Gd) used to induce the neutron capture reaction and the 

technology on which the neutron source relies (nuclear reactor-based or more modern accelerator-

based facilities), the radiation field at the tumor depth during an NCT treatment is made by various 

components characterized by radiation of different LET. The main components comprise: (i) low 

LET photons spreading on a wide energy spectrum and due mainly to the neutron capture reaction 

on Hydrogen 1H(n,γ)2H or belonged to the photon contamination of the primary neutron beam; (ii) 

high LET protons produced by neutron scattering reaction on Hydrogen of high energy neutrons 

(epithermal and fast neutrons, belonged to the primary neutron beam); (iii) high LET 

monoenergetic protons emitted by the thermal neutron capture reaction on Nitrogen 14N(n,p)14C; 

(iv) finally, the therapeutic radiations intentionally induced by the neutron interaction with the 

specific NCT agent under use. The first three components are always present in variable fractions 

due to the fundamental composition of biological tissues (in particular, their content of nitrogen and 

hydrogen) and the basic nuclear interactions between neutrons and light elements.  

The crucial point in the computational dosimetry for NCT is that the biological effect induced by a 

certain radiation depends on its LET and, considering a single type of radiation, the LET can 

change significantly varying the energy of the particle. As a consequence, to correctly evaluate the 

dose delivered by the NCT mixed radiation field and to properly estimate its biological effect, the 

doses imparted by the different radiations must be weighted to be translated into photon-equivalent 

doses. The fixed factors used in this conversion are called Relative Biological Effectiveness (RBE) 

factors [69]. In case of the NCT agents, the absorbed dose is biologically weighted using the 

Compound Biological Effectiveness (CBE) factor which takes into account the NCT agent 

microdistribution at the cellular and subcellular level. The importance of the definition of CBE finds 
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a clear example in the Auger electrons exploited in Gd-NCT. As previously described, these 

electrons have actually a significant biological effect only when the 157Gd nucleus directly binds the 

DNA molecule of the malignant cell due to the extremely short ranges (few tens of hundreds of nm) 

in tissue. As a consequence, the computation of the energy imparted by these electrons based 

only on the physical processes cannot take into account the pivotal role of the 157Gd 

microdistribution in the final biological effect, leading to an incorrect evaluation of the delivered 

effective dose.  

The extreme short ranges of Auger electrons require accurate data acquisition of the spatial 

localization of the Gd-NCT agent with nanoscale resolution. Nowadays such information is hard to 

be obtained by available techniques, in particular when in vivo distributions (in patients or animals) 

are necessary. As reported by Cerullo et al [20], the CBE for 157Gd Auger electrons can vary by a 

factor of 4 going from a uniform distribution of 157Gd around DNA molecule to its localization on the 

surface of the DNA strand. The value is further increased by a factor 2 if V is internalized inside the 

volume of DNA. It is worth to notice that such numbers depend on the chemical vector carrying 

157Gd and on the experimental set-up (cell line/tissue) used to perform CBE evaluation. Finally, 

even supposing to have an accurate knowledge of the gadolinium spatial distribution inside the cell 

and particularly its relative position with respect to DNA, the energy released by Auger electrons 

affects volumes at the order of nanoscale, requiring Track Structure Monte Carlo codes to properly 

evaluate the amount of imparted energy, such as PENELOPE [70], PARTRAC [71] or the most 

recent Geant4-DNA [72]. 

To illustrate the importance of taking into account the RBE/CBE factors in the calculation of the 

tumor dose due to Auger electrons in Gd-NCT, we refer to Protti et al [73] when the dose 

calculations obtained with Monte Carlo code MCNP [74] for a combined (Gd+B)-NCT in vivo 

treatment are reported considering a lung metastases model induced in mice. No RBE/CBE 

preliminary evaluations of the used NCT agent were carried out, meaning that the reported values 

are simply absorbed doses, not accounting for the microscopic spatial distribution of 10B /157Gd 

nuclei. The dose enhancement in the tumor volumes due to the secondary radiations emitted by 

157Gd neutron captures is very modest, accounting for 0.4-0.5 Gy. Assuming a direct binding of 

DNA by the 157Gd carrier and the CBE values reported by Cerullo et al in [19], these doses 

increase to 5.0-6.3 Gy-photon-equivalent. 

Similar considerations about RBE/CBE factors are valid for 10B-NCT. In this case, the longer 

ranges of the secondary radiations (few μm in tissues) make history condensed Monte Carlo codes 

such as MCNP and FLUKA [75] suitable options for dosimetry calculations, without the mandatory 

requirement of a reconstruction event-by-event of the interactions between radiation and the 

biological material. Nonetheless, the highly stochastic nature of the energy deposition by the 

secondary products of 10B capture reaction limits the validity of the estimations obtained through 



24 
 

macroscopic dosimetry calculations and suggest the use of microdosimetric models to properly 

evaluate the deposited energy and dose. 
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8. Future perspective  

 

The following approaches should be applied in order to further develop Gd-NCT agents, to be 

competitive with respect the other routine tumor treatment protocols and with the final aim of 

bridging the gap between research and the clinical use of these alternative radiotherapies: 

 

1) Designing new Gd carriers able to accumulate on cell DNA or other compartments (i.e. 

mitochondria, lysosomes) in order to fully exploit the toxic effect generated by Auger electrons, 

endowed with a really short range that has to be very close to the cellular target molecule to 

produce an appreciable biological effect. 

2) Providing selective therapy using targeting vectors, able to deliver Gd-NCT probes only to 

tumor cells. This procedure is expected to affect only pathological cells with a lethal dose of 

radiations, even in case of spreading and infiltrative cases. Currently, conventional radiotherapy 

unavoidably involves a significant mass of healthy tissue around the pathological target.  

3) Personalization of the neutron therapy. Optimization of neutron irradiation time and the 

delivered radiation dose can be performed by measuring local Gd concentration exploiting the 

intrinsic theranostic nature of this metal ion. In vivo biodistribution in the tumor and in the 

surrounding tissues by MRI can be detected in real time just before and during the neutron 

irradiation.  

4) Improving the use of enriched 157Gd compounds in nano- or small sized Gd-agents. The 

natural abundance of 157Gd is only 15.7% while enriched compounds may have up to 98% of 

157Gd. The use of the 157Gd enriched isotope will reduce the minimum Gd concentration necessary 

to obtain a significant therapeutic outcome. 

5) To combine Boron and Gadolinium to improve the therapeutic efficacy. Depending on the 

development of a highly selective 157Gd carrier able to specifically target malignant cell nucleus and 

DNA molecule (or other organelles, such as cell mitochondria as studied by Busse et al. [76] The 

high citotoxic effect of 157Gd Auger electrons could be properly exploited to increase the lethal 

damages induced by BNCT within malignant cells. 

6) Maximize the therapeutic effect by combining different treatments to obtain a complete 

eradication of tumor cells, including the radioresistant clones, to avoid tumor recurrence. 

This approach can be pursued by combining Gd-NCT with synergic therapeutic strategies, 

exploiting the same versatile theranostic platform or different ones. NCT can be coupled, for 

example, with the co-administration of other anti-tumor agents such as doxorubicin or pemetrexed, 

routinely used in cancer treatments. 
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Executive Summary 

1. General introduction on NCT: rationale and application. A general introduction of the main 

preclinical and clinical applications of Neutron Capture Therapy focusing of the strengths and 

critical points of this frontier therapy endowed with an enormous potentiality till unexploited.  

 

2. Gd as an alternative neutron capture agent. Description of Gd characteristics as a neutron 

capture agent. Critical evaluation of the advantages and disadvantages of the use of this metal 

as an alternative to boron.  

 

3. Gd as MRI contrast agent. A short overview of the classification and clinical use of Gd-based 

commercially available MRI contrast agents. What can we learn from MRI studies and to transfer 

to NCT applications.   

4.Small sized Gd chelates for Gd-NCT. A description of the main therapeutic outcomes 

obtained by using small sized Gd-NCT agents with particular attention to the use of 

commercially available Gd-CA. 

 

5. Nano sized Gd carriers for Gd-NCT.  A description of the main therapeutic outcomes 

obtained using nano-sized Gd-NCT agents. Critical discussion about the advantages of the 

nano- objects with respect small sized Gd complexes.  

 

6. Combination of Gd/B agents. Evaluation of the therapeutic improvement given by the 

simultaneous administration of B and Gd agents. Two strategies have been pursued: 1) 

administration of two separate compounds, one carrying 10B while the other 157Gd; 2) 

administration of single NCT agent containing both 10B and 157Gd. 

7. Features and problems in the Gd-NCT dosimetry and comparison with BCNT 

Overview of the general methods used in Gd-NCT and BNCT dosimetry. Microscopic spatial 

distribution dependence of the evaluated dose. 
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