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The vibration spectrum of single-walled zigzag Boron Nitride (BN) nanotubes is simulated with an
ab initio periodic quantum chemical method. The trend towards the hexagonal monolayer (h-BN)
in the limit of large tube radius R is explored for a variety of properties related to the vibrational
spectrum: vibration frequencies, infrared intensities, oscillator strengths and vibration contributions
to the polarizability tensor. The (n,0) family is investigated in the range from n = 6 (24 atoms
in the unit cell and tube radius R = 2.5 Å) to n = 60 (240 atoms in the cell and R = 24.0 Å).
Simulations are performed using the Crystal program which fully exploits the rich symmetry of
this class of one-dimensional periodic systems: 4n symmetry operators for the general (n,0) tube.
Three sets of infrared active phonon bands are found in the spectrum. The first one lies in the 0 -
600 cm−1 range and goes regularly to zero when R increases; the connection between these normal
modes and the elastic and piezoelectric constants of h-BN is discussed. The second (600 - 800 cm−1)
and third (1300 - 1600 cm−1) sets tend regularly, but with quite different speed, to the optical modes
of the h-BN layer. The vibrational contribution of these modes to the two components (parallel and
perpendicular) of the polarizability tensor is also discussed.

I. INTRODUCTION

Carbon nanotubes are a class of materials with quasi
one-dimensional (1D) structure which attract the at-
tention of the scientific community due to their unique
electrical, mechanical and thermal properties.1,2 Given
the structural analogy between graphite and hexagonal
Boron Nitride (h-BN) monolayers, the existence of BN
nanotubes was first proposed theoretically in 19943,4 and
then proved experimentally soon after.5 Even if graphite
and h-BN exhibit the same structure and are isoelec-
tronic, the corresponding nanotubes show many differ-
ences in their properties. In particular, BN nanotubes
show a larger thermal stability and, thanks to a wide
band gap (∼ 5.5 eV), a less dramatic dependence of
the electrical properties on rolling direction and tube
diameter.4 Such stability of the properties with respect
to tube size is a major advantage of BN over Carbon
nanotubes for which the poor control of tube size and
chirality guaranteed by current synthesis techniques may
result in a poor tuning of tube properties. As in the case
of Carbon nanotubes, BN nanotubes are object of intense
experimental6–8 and theoretical9–12 analysis, because of
their possible applications as super-tough composite ma-
terials and components of nanoelectronic devices.

From a geometrical viewpoint, a single-walled BN nan-
otube may be regarded as the result of the rolling of a
h-BN monolayer into a cylinder along a (n,m) lattice vec-
tor. The two integer indices n and m determine the diam-
eter and chirality of the tube, that are the key parameters
of their structure.13,14

The computational cost of quantum chemical simu-
lations of these one-dimensional periodic systems, es-
pecially when performed at ab inito level, is rather

high,15–17 as nanotubes can contain dozens or hundreds
of atoms in the unit cell, depending on rolling direc-
tion and tube radius. The rich symmetry which char-
acterizes this class of materials, if adequately exploited,
can drastically reduce their computational costs; inter-
estingly, the symmetry of nanotubes increases with their
size: for instance, the (n,0) family of Carbon and BN
nanotubes exhibits 8n and 4n symmetry operators, re-
spectively. When n increases along the series, the to-
tal number of atoms per cell increases linearly while the
number of symmetry-irreducible atoms per cell remains
constant: 2 for BN nanotubes. If these symmetry fea-
tures are exploited, a constant scaling of the computa-
tional cost can be achieved with respect to the size of
the system; the resulting reduction in computing time
is dramatic.18,19 A program, Crystal,20,21 which fully
exploits both translational and point symmetry of the
nanotubes is used for all calculations to be reported in
this work. The additional exploitation of point symme-
try permits to investigate tubes as huge as (100,0), about
twice as huge as in our previous studies.22–24

In this paper we present a fully ab initio study of the vi-
bration spectrum, and related properties, of single-walled
zigzag BN nanotubes of the (n,0) family. Nanotubes are
investigated from n = 6 to n = 60, that is, from 24 to 240
atoms per cell and from tube radius R = 2.5 Å to R =
24.0 Å. Vibration frequencies (and their connection with
elastic constants), infrared (IR) intensities (and their link
with piezoelectricity), oscillator strengths and vibration
contributions to the polarizability tensor are illustrated.
The convergence, as a function of n, of these properties
to the h-BN monolayer limit values is also discussed.

The paper is organized as follows. A detailed descrip-
tion of the methodological and computational setup used
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is presented in Section II, in particular as regards the cal-
culation of the vibration frequencies with a full exploita-
tion of symmetry. Results are presented and discussed in
Section III, conclusions drawn in Section IV.

II. COMPUTATIONAL DETAILS AND

METHOD

All calculations to be reported in the next section have
been performed with the Crystal program for quantum
chemistry of solid state.20,21 A split valence plus polariza-
tion basis set of Gaussian-type-orbitals (namely a 6-31G∗

basis set25,26 with 14 atomic orbitals per atom and 2640
functions per cell in the largest tube) is used in conjunc-
tion with the hybrid B3LYP functional of the density
functional theory (DFT).27 The exponents of the most
diffuse sp shell of each atom have been re-optimized. In
Crystal, the truncation of infinite lattice sums is con-
trolled by five thresholds, which are here set to 8,8,8,8,16.
The DFT exchange-correlation contribution is evaluated
by numerical integration over the cell volume: radial and
angular points of the atomic grid are generated through
Gauss-Legendre and Lebedev quadrature schemes, using
the most accurate predefined pruned grid available: the
accuracy in the integration procedure can be estimated
by evaluating the error associated to the integrated elec-
tronic charge density in the unit cell versus the total num-
ber of electrons per cell: 0.001 % for the largest (60,0)
nanotube with 1440 electrons per cell. For any further
detail about the grid generation and its influence on the
accuracy and cost of the calculations, the reader may be
addressed to Refs. 28–30. The convergence threshold
on energy for the self-consistent-field (SCF) step of the
calculations is set to 10−8 hartree for geometry optimiza-
tions and to 10−11 hartree for frequency calculations.

A. Geometry optimizations

All structures have been optimized by use of analytical
energy gradients with respect to both atomic coordinates
and unit-cell parameters,31–33 with a quasi-Newton tech-
nique combined with the BFGS algorithm for Hessian
updating.34–37 Convergence has been checked on both
gradient components and nuclear displacements; the cor-
responding tolerances on their root mean square are cho-
sen 10 times more severe than the default values: 0.00003
a.u. and 0.00012 a.u., respectively. In order to save com-
putational time and help the convergence of the largest
tubes, the optimized geometry of each nanotube n was
used to guess the initial geometry of the nanotube n+1
which follows in the (n,0) series; an automatic rebuild op-
tion for nanotubes is implemented in the Crystal pro-
gram (see the documentation of the NANORE keyword in
the manual).20

B. Vibration frequencies

The calculation of vibration frequencies has been per-
formed within the harmonic approximation to the lattice
potential. For a detailed description of the method, we
refer to previous works.38,39 Here, let us simply remind
that the vibration frequencies at the Γ point (k = 0, at
the center of the first Brillouin zone in reciprocal space),
those directly comparable to the outcomes of IR mea-
surements, can be obtained from the diagonalization of
the mass-weighted Hessian matrix of the second deriva-
tives of the total energy per cell with respect to atomic
displacements u:

WΓ
ai,bj =

H0

ai,bj√
MaMb

with H0

ai,bj =

(

∂2E

∂u0

ai∂u0

bj

)

, (1)

where atoms a and b (with atomic masses Ma and Mb)
in the reference cell are displaced along the i-th and j-th
Cartesian directions.

The first derivatives of the total energy per cell (vai =
∂E/∂uai) with respect to atomic displacements from the
equilibrium configuration Req are computed analytically,
whereas second derivatives numerically, using a two-point
formula:

∂2E

∂uai∂ubj
≈ vai(Req, ubj = +u) − vai(Req, ubj = −u)

2u
,

where u = 0.003 Å, a value 10 - 50 times smaller than that
used in other solid state programs.40–42 In order to check
the accuracy of the calculated Hessian, the vibration fre-
quencies of the (10,0) nanotube have been recalculated
by using a simpler one point formula: ∂2E/(∂uai∂ubj) =
vai(Req, ubj = +u)/u. The mean absolute difference be-
tween the two sets is as small as 0.32 cm−1 and the max-
imum difference is only 1.5 cm−1.

The calculation of the vibration frequencies of nan-
otubes is, in general, a resource demanding problem.
The present numerical second derivative scheme would
require, in principle, a total number of SCF plus gradi-
ents (+G) calculations NSCF+G = 6 Nat + 1 = 24n +1
for the general (n,0) tube, where Nat is the number of
atoms per cell and +1 refers to the equilibrium config-
uration Req; this would mean NSCF+G = 145 for the
(6,0) tube and NSCF+G = 1441 for the (60,0) one. If the
rich symmetry of this class of materials is fully exploited
then NSCF+G reduces to 9 for any tube, irrespective of
its size. Out of these 9 SCF+G calculations, 1 exploits
the full symmetry (4n operators), 4 exploit 2 operators
and other 4 have no left symmetry to be exploited.

C. Born effective tensors

Atomic Born effective tensors Z
∗
a can be computed

with the Crystal program by means of a Berry-phase
approach.43,44 Vibrational contributions to the static po-
larizability α0, IR intensities and long-range electrostatic
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FIG. 1: (color online) Graphical representation of the struc-
ture of (a) the h-BN monolayer and (b) a (12,0) BN nanotube.
These pictures have been prepared using the J-ICE online in-
terface to Jmol.50

force constants can be computed from them. The static
polarizability tensor is computed as the sum of the elec-
tronic polarizability αel and the vibration contribution
αvib:

α0
i,j = αel

i,j + αvib
i,j with αvib

i,j =
∑

p

Zp,iZp,j

ν2
p

. (2)

In the above expression, p labels vibration modes
with frequency νp, Zp is the mass-weighted mode
effective Born vector45 and αel can be computed
via a coupled-perturbed Hartree-Fock/Konh-Sham
(CPHF/KS) scheme.46–49 The individual contribution
αp,i,j = Zp,iZp,j/ν2

p in equation (2) corresponds to the
i, j element of the oscillator strength (OS) tensor of
mode p. In the present case, all the above mentioned
tensors are diagonal by symmetry. The intensity Ip of
IR absorbance for a given mode p is defined as:

Ip = Zp · Zp . (3)

D. Structural details

The h-BN monolayer conventionally lies in the xy
plane, z being the non-periodic direction; it has 2 atoms
(i.e. 1 BN unit) per cell and then 6 modes at the Γ point
(all of them are IR active): three are translations with
zero frequency while the other three have vibration fre-
quencies at 836 cm−1 (non degenerate) and 1371 cm−1

(twofold degenerate). The reader may refer to Figure 1
for a graphical representation of h-BN and correspond-
ing nanotubes. The two lattice vectors a

2D
1 and a

2D
2 in

h-BN form an angle of 60◦ with each other; a
2D
2 is ori-

ented along y and |a2D
2 | = 2.51 Å. Nanotubes are one-

dimensional periodic structures conventionally oriented
along the x direction; y and z are non-periodic directions
in this case. The lattice parameter a

1D
1 is then oriented

along x and |a1D
1 | =

√
3|a2D

2 | = 4.35 Å. Normal modes
polarized along non-periodic directions are then twofold
degenerate and non-degenerate in nanotubes and mono-
layer, respectively.

FIG. 2: Convergence of the IR active vibration frequencies of
the (n,0) family of BN nanotubes as a function of n to the h-
BN monolayer limit (horizontal lines). The frequencies of the
band A tend regularly to zero when n increases (see Figure
4).

III. RESULTS AND DISCUSSION

In the (n,0) family of BN nanotubes, there are three
sets of IR active modes that we label with letters A, B
and C, in the order of increasing frequencies. These sets
contains 5, 3 and 6 modes each, respectively; the corre-
sponding frequencies are reported in Table I for all the
considered nanotubes. In that table, all non-degenerate
modes belong to the totally-symmetric irrep of the group
while all twofold degenerate modes, marked with an as-
terisk, belong to the same bi-dimensional irrep. Figure 2
shows the convergence of the IR active vibration frequen-
cies of the (n,0) family of BN nanotubes as a function of
n to the h-BN monolayer limit of 0 cm−1 for A, 836 cm−1

for B and 1371 cm−1 for C. In the following of this section
we will discuss these three sets of modes independently.
Graphical animations of all these modes can be viewed
online.51

A. The A set of smooth modes

The A set contains 3 frequencies; the first and third
ones, A1∗ and A3∗, are twofold degenerate and the cor-
responding modes are then polarized in a direction or-
thogonal to the tube. In A1∗, B and N atoms are both
displaced along +x at the top of the ring and along −x
at the bottom. The variation of the cell (ring) dipole mo-
ment is null along x: the xx (parallel, ‖) component of
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the oscillator strength is then α
‖
A1∗ = 0. Nonetheless, due

to the geometry deformation on the equatorial regions of
the tube, opposite displacements of B and N atoms of
the same unit appear in the yz plane thus making this
mode slightly IR active; this leads to non-zero yy ≡ zz
(transverse, ⊥) components of the oscillator strength, see

Figure 3 for the dependence on n of this quantity. In the
limit n → ∞, this contribution of 0.207 a.u. to the static
polarizability tensor is non-vanishing thus corresponding
to a piezoelectric effect on the h-BN monolayer, as dis-
cussed below.

A B C

n 1∗ 2 3∗ 4∗ 5 6 7∗ 8 9∗

6 269.32 414.41 537.33 794.75 832.58 1266.68 1315.97 1342.44 1458.33

12 137.85 216.88 300.15 822.61 834.58 1348.35 1360.00 1366.52 1512.06

16 103.67 163.81 228.86 826.82 834.86 1359.61 1366.10 1369.77 1505.91

20 83.03 131.50 184.50 829.19 835.20 1364.94 1369.19 1371.54 1496.52

24 69.23 109.73 154.45 830.67 835.43 1367.70 1370.73 1372.35 1487.12

30 55.39 87.88 124.01 832.08 835.73 1370.07 1371.46 1372.50 1474.53

36 46.18 73.29 103.50 832.86 835.78 1371.70 1372.76 1373.47 1464.53

44 37.77 59.94 84.82 833.69 835.96 1372.77 1373.31 1373.76 1453.60

50 33.23 52.69 74.78 834.20 836.17 1373.53 1373.73 1374.04 1446.99

60 27.69 44.00 62.31 834.67 836.24 1373.91 1373.94 1374.13 1438.03

h-BN 0 836 1371

TABLE I: Vibration frequencies (in cm−1) of the three sets (A, B and C) of IR active modes for h-BN (last row) and BN
nanotubes of the (n,0) family as a function of n. The symbol ∗ labels twofold degenerate modes.

The second mode, A2, corresponds to the ring breath-
ing (see animation)51 and is IR inactive in the yz plane
(i.e. α⊥

A2 = 0). Opposite displacements of B and N
atoms in the x direction make this mode IR active along

the periodic direction. In Figure 3 α
‖
A2 decreases along

the (n,0) series as a function of n, reaching a plateau
of 0.195 ± 0.003 a.u. per BN unit in the n → ∞ limit
(value obtained from the fit illustrated in Figure 3). This
stretching mode is then creating a non-vanishing polar-
izability xx component related to the piezoelectricity of
the h-BN monolayer (vide infra).

The third mode, A3∗ corresponds to the rigid clockwise
rotation in the yz plane of half the ring and anti-clockwise
of the other half. The B-N bonds affected by this strain
are those at the two borders of these two halves of the
ring. Along the x periodic direction, the dipole moment
generated by the B-N contraction at one border is annihi-
lated by that generated by the B-N dilation at the other

border so that α
‖
A3∗ = 0. As shown in Figure 3, this mode

gives a vanishing contribution to the static polarizability
as n increases (α⊥

A3∗ = 0.022 a.u. per BN for n = 12,
0.009 a.u. for n = 30 and 0.004 a.u. for n = 60). This
mode does not contribute to the piezoelectricity of the
h-BN monolayer. In summary, the A1∗ and A2 modes

only are contributing to the polarizability for large n.

1. Connection with elastic tensor

In Figure 4 we report the three vibration frequencies of
the the A set of (n,0) nanotubes as a function of 1/n. A
linear behavior is observed which is confirmed by the re-
sults of a linear fitting (lines shown in the figure). From
inspection of the figure, it clearly emerges that the vi-
bration frequencies of these modes vanish in the limit
n → ∞. The slopes of the three lines, reported in the
figure, are 1675, 2688 and 3862 cm−1 for A1∗, A2 and
A3∗, respectively. As discussed in what follows, the val-
ues of these slopes can be related to the components of
the symmetryc elastic tensor C of the h-BN monolayer.
The elements of the elastic tensor are usually defined, for
3D systems, as:52

Cvu =
1

V

∂2E

∂ǫv∂ǫu

∣

∣

∣

∣

0

, (4)

where ǫ is the rank 2 symmetric tensor of pure strain
and Voigt’s notation has been used according to which
v, u = 1, . . . , 6 (1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz,
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FIG. 3: Vibrational contribution αp to the polarizability ten-
sor (oscillator strength) of the three modes of the A set of
(n,0) BN nanotubes, as a function of n (values in a.u. per
BN unit). For A1 we report the yy ≡ zz component, for A2
the xx and for A3 the yy ≡ zz ones. Data-points have been
fitted to the function: αp = c0 + c1/n+ c2/n2; the coefficients
obtained using the 6 largest tubes are reported in the figure.

6 = xy). For a 2D system, the volume V is not defined
and is omitted (note that a surface unit could be used
instead) and all the elements involving the non-periodic
direction z are null by definition. Due to the hexagonal
symmetry of the h-BN monolayer, its elastic tensor C

thus exhibits the following structure:

C =

∣

∣

∣

∣

∣

∣

∣

C11 C12 0

C12 C11 0

0 0 1
2
(C11 − C12)

∣

∣

∣

∣

∣

∣

∣

. (5)

The elements of this tensors are known as elastic con-
stants; they have been computed for the h-BN mono-
layer. Let us give explicitly the values of two of them
to be used below: C22 = C11 = 3.954 hartree and
C66 = 1/2(C11 − C12) = 1.630 hartree.

Now we start looking for the connection between the
vibration frequencies reported in Figure 4 and the elas-
tic constants of h-BN. We consider first the A2 mode of
the ring breathing; for n large enough, the frequencies de-
pend only on the elastic constant of the monolayer and on
the deformation induced by the vibrational mode. The
energy of the mode Evib of a (n,0) tube should then be
equal to the energy required to induce an equivalent de-
formation of the 2n BN units in the monolayer Eelast:

Evib = Eelast → 1

2
ν2

A2Q
2
A2 = nC22ǫ

2
2 , (6)

FIG. 4: Vibration frequencies of the A set of IR active modes
as a function of 1/n in the (n,0) series of nanotubes. The
results of a linear fitting are shown as well.

where QA2 is the harmonic normal coordinate of the
mode and ǫ2 ≡ ǫyy = δ|a2D

2 |/|a2D
2 | is the parallel compo-

nent of the strain tensor in the monolayer. In the n → ∞
limit, when the ring width a

1D
1 becomes irrelevant com-

pared to the tube radius Rn we can write:

QA2 =
√

2n(MB + MN)δRn , (7)

where MB and MN are the atomic masses of B and
N atoms. The corresponding distortion in the mono-
layer is a dilatation of the cell. As 2πRn = n|a2D

2 | and
δRn/Rn = δ|a2D

2 |/|a2D
2 | = ǫ2 and substituting equation

(7) into equation (6), we obtain:

νA2 =

√

C22

(MB + MN )R2
n

=

√

C22

(MB + MN )

2π

|a2D
2 |

1

n
.

From the above expression, by using the calculated value
of C22 and |a2D

2 | = 2.51 Å, we get νA2
= 2725 cm−1

/n, to be compared to the value of 2688 cm−1 obtained
from the linear fitting in Figure 4. The same procedure
can be followed for the A1∗ twofold degenerate mode
(see Appendix A) that is related to the ǫ6 component
of the strain tensor and to the C66 elastic constant of
the monolayer. At the end, one gets νA1∗ = 1749 cm−1

/n somehow close to the value 1675 cm−1 obtained from
the fit in Figure 4. The strain induced by the twofold
degenerate A3∗ mode is similar to that of the A2 mode
so that the corresponding elastic constant is C22 again
(see animation);51 the only difference is that the reduced
mass is half the mass of the total ring so that, at the
end, one finds νA3∗ =

√
2νA2 = 3854 cm−1 /n, which is
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comparable to the value 3862 cm−1 obtained from the
fitting of Figure 4. Bearing in mind that this comparison
passes through the computation of very different quan-
tities (vibration frequencies of the nanotubes and elastic
constants of the monolayer), the agreement can be con-
sidered rather impressive.

2. Connection with piezoelectric tensor

As shown in Figure 3, the A band provides a non-
vanishing contribution to the polarizability tensor in the
n → ∞ limit. In particular, the A1∗ mode gives a limit
value of 0.207 a.u. per BN unit to the yy ≡ zz transverse
components while the A2 mode 0.195 a.u. per BN unit to
the xx parallel component. These non-vanishing contri-
butions can be related to the piezoelectricity of the h-BN
monolayer. The piezoelectric (rank 3) tensor e elements
can be defined as (in Voigt’s notation):53,54

eiv =
∂Pi

∂ǫv

∣

∣

∣

∣

0

, (8)

where P is the polarization, i = 1, . . . , 3 while v =
1, . . . , 6 is one of the strain components and the derivative
is calculated at zero strain. As discussed before for the
elastic tensor, for 2D systems all the components involv-
ing the non-periodic direction z vanish. The piezoelectric
tensor for the h-BN monolayer has been computed; we
report the values of two components (equal by virtue of
symmetry) to be used later: e12 ≡ e26 = 2.28 a.u..

The oscillator strengths, OS, (directly related to the IR
intensities, see equation 3) of the A modes have been fit-
ted to the function: αp(n) = c0 +c1/n+c2/n2. From the
results of this fit, reported in Figure 3, it clearly emerges
the 1/n2 character of the OS and, as a consequence, of IR
intensities of both A1∗ and A2 while the corresponding
vibration frequencies have a 1/n character (see Figure 4).

Let us consider the simple symmetric A2 mode (ring
breath). In this case the dipole moment of the tube (δµx)
per unit length induced along the periodic x direction
can be related to the dipole moment of a h-BN unit
cell (δµ2D

x ) induced by the deformation ǫ2 in the slab.
Since all the microscopic dipole moments generated by
the symmetric A2 mode on the ring are equal to each
other along x, δµx is equal to n times the dipole moment
of each hexagon (BN)3 constituting the ring of the tube.
Since there are 2 BN units per hexagon, the intensity of
the mode per BN unit can be written as follows:

1

2n

(

δµx

δQA2

)2

=
1

3n

(

nδµ2D
x

√

2n(MB + MN)nδ|a2D
2 |/2π

)2

=
1

6

4π2

(MB + MN)(|a2D
2 |)2

(

δµ2D
x

ǫ2

)2
1

n2
.

We can notice that the intensity of the A2 mode per BN
unit is proportional to 1/n2. The vibrational contribu-
tion of A2 to the parallel polarizability of the tube is

FIG. 5: Convergence of the IR intensity of modes B (full cir-
cles) and C (full squares) of (n,0) BN nanotubes as a function
of n. The corresponding values for the h-BN monolayer are
reported as horizontal lines. The last 6 points of the two sets
of data have been fitted to the function Ip = c0+c1/n+c2/n2;
The coefficients of the fitting are c0 = 13.20, c1 = 44 and c2

= 1137 for B and c0 = 2303, c1 = -21296 and c2 = 173474 for
C.

then:

α
‖
A2 =

1

ν2
A2

(

δµx

δQA2

)2

=
1

6

e2
12

C22

, (9)

where e12 is the “microscopic” piezoelectric component
of the h-BN monolayer. From the computed values of e12

and C22 for the monolayer, we get α
‖
A2 = 0.22 a.u., to be

compared with the value obtained for this parallel vibra-
tional component of the polarizability of the nanotubes
in the n → ∞ limit from the fit of Figure 3: 0.20 a.u.

For the A1∗ mode, its contribution to the transverse
polarizability can be obtained as α⊥

A1∗ = e2
26/(16C66)

= 0.20 a.u. to be compared with the direct calculation
of the polarizability component of the nanotubes in the
n → ∞ limit: 0.21 a.u. For a detailed discussion of this
case, see Appendix B.

B. The B and C sets of modes

The B and C sets of modes correspond to opposite
displacements of B and N atoms of the same unit and
are directly related to the vibration modes of the h-BN
monolayer in the n → ∞ limit. As marked in Table I, the
lowest frequency of the B set and the first and third ones
of the C set are twofold degenerate. As shown in Figure
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FIG. 6: Vibrational contributions to the polarizability tensor
(oscillator strengths αp) of the two modes of the B set of
(n,0) BN nanotubes, as a function of n (values in a.u. per
BN unit). Data-points have been fitted to the function: αp =
c0 +c1/n+c2/n2; the coefficients obtained using the 6 largest
tubes are reported in the figure.

2, one of the two frequencies in the B band is already
quite close to the h-BN limit for n = 6 while the second
one starts from 794 cm−1 when n = 6 and ends up at
834.7 cm−1 at n = 60, at just 1 cm−1 from the h-BN
value. The C band is about 200 cm−1 wide at n = 6; at
n = 60 three out of four frequencies are very close to the
h-BN value of 1371 cm−1, whereas the last one remains
about 70 cm−1 higher and decreases very slowly: in this
case, the extrapolation to n = ∞ still differs by about 10
cm−1 from the monolayer limit.

In Figure 5 we report the behavior of the IR intensity
Ip of B and C modes as a function of n. The last 6
points in the series, corresponding to the largest tubes,
have been fitted to the function Ip = c0 + c1/n + c2/n2.
As regards B, apart from the n = 6 case that shows an
anomalous high intensity (≈ 60 km/mol), the intensity
decreases quite regularly along the series with a strong
1/n2 character. The c0 coefficient, that gives the value
of the intensity in the n → ∞ limit, is 13.20 km/mol,
to be compared with the h-BN value of 13.06 km/mol
(horizontal line at the bottom of Figure 5). The situation
is different for the intensities of the C modes. In this
case the n = 6 case is in line with the larger tubes; the
IR intensity increases very slowly in this case; even at
the largest tube, n = 60, the intensity (1998 km/mol) is
still very far from the h-BN limit (2371 km/mol). From
the fit, however, an asymptotic value of 2303 km/mol is
obtained which is only 3 % smaller than the h-BN value.

Let us analyze into detail the B and C modes. The

FIG. 7: As in Figure 6 for the C set of modes.

B4∗ mode is twofold degenerate and represents opposite
displacements of B and N atoms of the same unit per-
pendicularly to the ring, in the yz plane. An oscillating
dipole moment is created so that this mode is IR active;
given the nature of this mode, the polarizability compo-
nent α⊥

B4∗ of the tube tends (in the n → ∞ limit) to half
the vibrational perpendicular component α2D

zz = 0.506
a.u. of the polarizability of the slab (see Table IV of Ref.
22). In Figure 6, we report such quantity as a function of
n along the (n,0) nanotube series. The last 6 points, cor-
responding to the 6 largest tubes here considered, have
been fitted to the function: αp = c0 + c1/n + c2/n2; the
coefficients obtained are reported in the figure. From
the fitting we obtain α⊥

B4∗ = 0.254 ± 0.001 a.u. to be
compared with α2D

zz /2 = 0.253 a.u.

The B5 mode is somehow similar to the A2 ring breath
except that B and N atoms of the same BN unit are
displacing in opposite directions: when the sub-ring of
B atoms is contracted, the N atoms sub-ring is dilated
and vice versa. As a consequence of its symmetry, the
mode is IR inactive in the yz plane since the projection of
the dipole moment in the yz plane is null (α⊥

B5 = 0 ∀n)
but a strain along x makes the mode slightly IR active
in the periodic direction, at least in the limit of small
n’s. Indeed, it is seen from Figure 6 that the component

α
‖
B5 of the polarizability regularly decreases to zero as

a function of n. This mode becomes IR inactive in the
n → ∞ limit.

The first two modes, C6 and C7∗, of the C set are IR
inactive (α‖ = α⊥ = 0 ∀n) while the other two, C8 and
C9∗, are IR active. The C8 mode represents opposite
displacements of B and N atoms of the same unit in the
x-direction all around the ring. In this case, the non-



8

zero polarizability component is α
‖
C8 which tends (in the

n → ∞ limit) to the parallel component of the monolayer
α2D

xx . In Figure 7, we report such quantity as a function
of n. As done before for the B set, the last 6 points
have been fitted to the function: αp = c0 + c1/n + c2/n2

and the corresponding coefficients reported in the figure.

From the fitting we obtain α
‖
C8 = 17.05 ± 0.05 a.u. to

be compared with α2D
xx = 17.01 a.u., see Table IV of Ref.

22.
C9∗ is similar to B4∗ but where the opposite displace-

ments of B and N atoms of the same unit are along the
ring. In this case, the transverse component α⊥

C9∗ tend
slowly to α2D

xx /2 as a function of n. From the fit reported
in Figure 7, a limit value of 7.69 ± 0.07 a.u. is obtained
to be compared with α2D

xx /2 = 8.50 a.u..

IV. CONCLUSIONS

In this paper we have investigated the vibration spec-
trum of single-walled zigzag BN nanotubes of the (n,0)
family, where n is an integer defining the tube size, by
means of ab initio quantum chemical simulations. We
have considered tubes up to n = 60 with 240 atoms and
2640 basis functions per cell. A program, Crystal, has
been used that fully exploits the rich symmetry of this
class of one-dimensional periodic systems. A variety of
properties related to the vibrational spectrum have been
computed, from vibration frequencies and infrared in-
tensities to oscillator strengths and vibration contribu-
tions to the polarizability tensor. The trend towards the
hexagonal monolayer (h-BN) in the limit of large tube
radius has also been explored.

In the vibration spectrum, there are three sets of IR
active phonon bands. The first one, A, lies in the 0 - 600
cm−1 range and the corresponding frequencies go regu-
larly to zero when n increases; the connection between
these normal modes and both the elastic and piezoelec-
tric tensors of the h-BN monolayer has been illustrated.
The second, B, (600 - 800 cm−1) and third, C, (1300 -
1600 cm−1) sets tend regularly to the optical modes of
the h-BN layer. The vibrational contribution of these
modes to the polarizability tensor of the tubes and their
connection to the polarizability of the h-BN monolayer
have been presented.

From the complete solution of the lattice dynamical
problem (i.e. from complete phonon dispersion), other
quantities could be computed such as thermodynamic
properties, phonon bands, inelastic neutron scattering
spectra, atomic anisotropic displacement parameters and
Debye-Waller factors. Such an investigation is currently
in progress for this class of materials.
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Appendix A: Link between vibration frequency and

elastic constants for the A1∗ modes

In Section III A 1 we have discussed the connection be-
tween the vibration frequencies of the A set of modes
of the nanotubes, as n increases, and the elastic con-
stants of the h-BN monolayer. To do so, we should equal
the energy of the mode to that required for inducing an
equivalent deformation in the monolayer:

Evib = Eelast . (A1)

Let us consider here in detail the case of the A1∗ modes.
Given the nature of these modes, for large values of n, the
corresponding distortion in h-BN is not of the size of the
unit cell but of the lattice angles. The elastic constant
involved is thus C66 and the corresponding component of
the strain tensor ǫ6. The general atomic displacement l
along the periodic direction x is not uniform along the
circumference of the tube as was in the case of the A2
mode; since the ring is inclined of an angle φ with respect
to x, the displacement l is proportional to the distance
d of the atom from the rotation axis of the mode (y or z
in the two degenerate modes):

l = d sinφ = Rnsinθ sinφ , (A2)

where θ is an angle that spans the circumference of the
tube: θ = 0 corresponds to the mode axis.

The vibration energy of the A1∗ mode Evib =
1/2ν2

A1∗Q2
A1∗ depends on the corresponding normal co-

ordinate QA1∗ ; in order to obtain its expression, we can
make the sensible approximation of considering the ring
(tube cell) as an uniform ring of mass m; in this case we
can write:

Q2
A1∗ =

∫

l2dm = 2

∫ π

0

(Rnsinθ sinφ)2ρRndθ

= 2R3
nρ

π

2
sin2φ

= n(MN + MB)sin2φ , (A3)

where ρ = 2n(MN + MB)/2πRn is the linear mass den-
sity. The mode energy is then:

Evib =
1

2
ν2

A1∗n(MN + MB)sin2φ . (A4)

The elastic energy is Eelast = nC66ǫ
2
6; the strain compo-

nent ǫ6 is the derivative of the atomic displacement:

ǫ6 =
dl

dr
=

Rnsinφ

Rn

d sinθ

dθ
= sinφ cosθ . (A5)
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The elastic energy can then be written as:

Eelast =
n

π

∫ +π/2

−π/2

C66sin
2φ cos2θdθ =

n

2
C66sin

2φ . (A6)

Using 2πRn = n|a2D
2 |, considering that Evib = Eelast

and exploiting equations (A4) and (A6) we obtain:

νA1∗ =

√

C66

(MB + MN )

2π

|a2D
2 |

1

n
, (A7)

that provides the desired connection between the vibra-
tion frequency of the tube and the elastic constant of the
monolayer for the A1∗ modes.

Appendix B: Link between vibration frequency and

piezoelectricity for the A1∗ modes
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47 M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi, J. Chem.

Phys. 129, 244110 (2008).
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