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STABILITY OF RANK 2 ULRICH BUNDLES

ON PROJECTIVE K3 SURFACE

GIANFRANCO CASNATI, FEDERICA GALLUZZI

Abstract. Let F ⊆ P
a+1 be a non–degenerate K3 surface of degree 2a, where a ≥ 2.

In this paper we deal with Ulrich bundles on F of rank 2. We deal with their stability
and we construct K3 surfaces endowed with families of non–special Ulrich bundles of
rank 2 for each a ≥ 2.

1. Introduction and Notation

Throughout the whole paper, PN will denote the projective space of dimension N over
the complex field C.

Each smooth surface F ⊆ P
N is endowed with a polarization OF (h) := OPN (1) ⊗OF .

A natural problem in the study of the geometry of F is to deal with the vector bundles
that it supports.

Clearly we can restrict our attention to indecomposable bundles, i.e. bundles which do
not split as a direct sum of bundles of lower rank. From the cohomological viewpoint, the
simplest vector bundles are the arithmetically Cohen–Macaulay (aCM for short) ones, i.e.
bundles E such that h1

(

F, E(th)
)

= 0 for t ∈ Z. Notice that such a property is trivially
invariant up to shifting degrees. Thus we can focus on initialized bundles, i.e. bundles E
such that h0

(

F, E(−h)
)

= 0 and h0
(

F, E
)

6= 0.
Horrocks theorem (see [21] and the references therein) guarantees that OF is the unique

initialized, indecomposable, aCM bundle when F ⊆ P
N is a plane. Recall that a closed

subscheme F ⊆ P
N is aCM if it is projectively normal and OF is aCM. A very general

result of D. Eisenbud and D. Herzog (see [12]) implies that, besides planes, only few
other surfaces support at most a finite number of aCM bundles, namely smooth quadrics,
smooth rational scrolls of degree up to 4, the Veronese surface.

M. Casanellas and R. Hartshorne proved in [3] and [4] that a smooth cubic surface
in P

3 is endowed with families of arbitrary dimension of non–isomorphic, indecomposable
initialized aCM bundles. In order to achieve their results, the authors constructed families
of initialized aCM bundles with an extra property. Indeed they are Ulrich bundles, i.e.
bundles E on F whose minimal free resolution as sheaves on P

3 is linear. To complete the
picture in the case of a cubic surface, we recall that D. Faenzi completely described aCM
bundles of ranks 1 and 2 in [14].

Some results are known also for quartic surfaces F ⊆ P
3. K. Watanabe classified in

[24] aCM line bundles on F , identifying Ulrich line bundles. E. Coskun, R. Kulkarni, Y.
Mustopa proved in [10] that such an F always supports a family of dimension 14 of Ulrich
bundles of rank 2 with first Chern class OF (3h). As a consequence of the existence of these
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bundles one can also infer that F is linear pfaffian, i.e. the quartic polynomial defining F
is the pfaffian of a 8× 8 skew–symmetric matrix with linear entries.

Moreover, another almost immediate application of this existence result is that such a
surface also supports families of arbitrary dimension of non–isomorphic, indecomposable
Ulrich bundles (see the note [7]). In [8] other interesting families of initialized aCM bundles
of rank 2 are constructed: their existence implies that F is quadratic pfaffian, i.e. the
quartic polynomial defining F is also the pfaffian of a 4× 4 skew–symmetric matrix with
quadratic entries. Finally, the complete description of initialized aCM bundles of rank 2
on each linear determinantal smooth quartic surface, i.e. a surface defined by a quartic
polynomial which is the determinant of a 4× 4 matrix with linear entries, is exploited in
[6]. As far as we know there are no other general results for smooth quartic surfaces.

When the codimension increases the picture becomes quickly vague. E.g. even for del
Pezzo surfaces only scattered results are known: for this class of surfaces J. Pons Lopis
and F. Tonini studied aCM line bundles in [22], while in [11] the authors gave, among the
other results, restrictions on the first Chern class of Ulrich bundles.

Notice that quartic surfaces are a particular case of K3 surfaces, i.e. smooth regular
surfaces F such that ωF

∼= OF . These surfaces can be embedded in P
a+1 as a non–

degenerate aCM surface of degree 2a for some a ≥ 2 (see [23] for the details). M. Aprodu,
G. Farkas, A. Ortega generalized in [1] the results of [10] to this family of K3 surfaces
F , under an extra technical condition. They construct therein families of rank 2 Ulrich
bundles with first Chern class OF (3h): following Proposition 6.2 of [13], they call such
bundles special.

As we already pointed out, the role of Ulrich bundles is particularly important, hence
we ask for further informations on them. For example, it would be interesting to answer
the following questions.

(1) Are there restrictions on the Chern classes of Ulrich bundles on a K3 surface?
(2) Are there other rank 2 Ulrich bundles on a K3 surface besides the special ones

described in [10] and [1]?
(3) Which are the (semi)stability properties of a rank 2 Ulrich bundle?

In this paper we give partial answers to the questions listed above. E.g., at the end
of Section 4 we prove the following easy proposition answering the first question (see
Proposition 4.2).

Partial answer to question 1. Let E be a Ulrich bundle of rank r on a non–degenerate
K3 surface F ⊆ P

a+1 of degree 2a, where a ≥ 2.
Then c1(E)

2 is an even integer satisfying

4(a− 1)r2 ≤ c1(E)
2 ≤

9

2
ar2,

where c1(E)
2 6= 9

2ar
2−2 if r is even. Moreover, c1(E)

2 = 9
2ar

2 if and only if c1(E) = 3rh/2.

If E is simple, then (4a− 2)r2 − 2 ≤ c1(E)
2.

We also show that both the above upper and lower bounds are trivially sharp. Moreover,
in Section 5, we are also able to answer the second question, proving that, when we restrict
to bundles of rank 2, all the intermediate values of the above inequality are actually
attained (see Theorem 5.3) for suitable K3 surfaces. The bundles that we construct are
non–special in the sense of [1], i.e. their first Chern class is not OF (3h).

Partial answer to question 2. Let a ≥ 2. For each choice of an integer u in the range
4a − 1 ≤ u ≤ 5a + 4, u 6= 5a + 3, there exists a non–degenerate K3 surface F ⊆ Pa+1
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of degree 2a and rk(Pic(F )) = 3 supporting a simple Ulrich bundle E of rank 2 with
c1(E)

2 = 8a− 8 + 2u and c2(E) = u.

Notice that when rk(Pic(F )) = 1 only the bundles with u = 5a + 4 can actually exist
on F and they are exactly the aforementioned special bundles constructed in [10] and [1]
(see [9]: see also [5]).

Our construction cannot be extended for obtaining bundles on a non–degenerateK3 sur-
face F ⊆ P

a+1 of degree 2a with rk(Pic(F )) = 2: in particular we are unfortunately unable
to prove or disprove the existence of these bundles on surfaces satisfying rk(Pic(F )) = 2.
Moreover, as pointed out in Section 2 of [13], the Chow forms of the surfaces we use are
always linear determinantal. Thus the problem of the existence of non–special rank 2
Ulrich bundles on K3 surfaces whose Chow form is not determinantal remains wide open.

Finally, in Section 6, we answer the third question raised above. Indeed we prove therein
the following result (see Theorem 6.2).

Partial answer to question 3. Let F ⊆ P
a+1 be a non–degenerate K3 surface of degree

2a, where a ≥ 2.
If E is an indecomposable Ulrich bundle of rank 2 on F which is strictly semistable and

general in its moduli space, then it fits into an exact sequence of the form

(1) 0 −→ OF (A) −→ E −→ OF (B) −→ 0.

where OF (A) and OF (B) are Ulrich line bundles on F such that AB = 4a−1. In particular
c1(E)

2 = 16a − 10 and c2(E) = 4a− 1.

It follows that the general Ulrich bundle E of rank 2 with fixed Chern classes c1(E)
and c2(E) on a non–degenerate K3 surface F ⊆ P

a+1 of degree 2a is always stable when
c2(E) 6= 4a−1. Also in this case our answer is partial: indeed we are not able to deal with
the stability properties of each general Ulrich bundle E such that c2(E) = 4a− 1.

In Section 2 we recall the results that we need in the paper on Ulrich bundles. In Section
3 we summarize several facts about K3 surfaces. Section 4 is devoted to list and inspect
some properties of Ulrich bundles on K3 surfaces. In Section 5 we focus on rank 2 bundles.
Finally, in Section 6 we deal with the stability properties of rank 2 Ulrich bundles.

The authors would like to thank A. Knutsen for some helpful suggestions.
For all the notations and unproven results we refer to [15].

2. General results on Ulrich bundles

In this section we summarize some general results on Ulrich bundles on a smooth,
irreducible, closed subscheme X ⊆ PN . In what follows we will always set OX(h) :=
OPN (1)⊗OX .

Definition 2.1. Let X ⊆ P
N be a smooth irreducible closed subscheme and let F be a

vector bundle on X.
We say that:

• F is initialized if h0
(

X,F(−h)
)

= 0 6= h0
(

X,F
)

.

• F is aCM if hi
(

X,F(th)
)

= 0 for each t ∈ Z and i = 1, . . . ,dim(X)− 1.

• F is Ulrich if hi
(

X,F(−ih)
)

= hj
(

X,F(−(j + 1)h)
)

= 0 for each i > 0 and
j < dim(X).

Ulrich bundles collect many interesting properties (see Section 2 of [13]). E.g. they are
automatically initialized, aCM and globally generated. Every direct summand of a Ulrich
bundle is Ulrich as well. Finally, as already pointed out in the introduction, F is Ulrich if
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and only if it has a linear minimal free resolution over PN . Ulrich bundles also well behave
with respect to the notions of (semi)stability and µ–(semi)stability. Recall that for each
bundle F on X, the slope µ(F) and the reduced Hilbert polynomial pF(t) (with respect
to OX(h)) are defined as follows:

µ(F) = c1(F)hdim(X)−1/rk(F), pF (t) = χ(F(th))/rk(F).

The bundle F is µ–semistable (resp. µ–stable) if for all subsheaves G with 0 < rk(G) <
rk(E) we have µ(G) ≤ µ(E) (resp. µ(G) < µ(E)).

The bundle E is called semistable (resp. stable) if for all G as above pG(t) ≤ pE(t) (resp.
pG(t) < pE(t)) for t ≫ 0. We recall that in order to check the semistability and stability
of a bundle one can restrict the attention only to subsheaves such that the quotient is
torsion–free.

The following chain of implications holds for F :

F is µ–stable ⇒ F is stable ⇒ F is semistable ⇒ F is µ–semistable.

For the following result see Theorem 2.9 of [4].

Theorem 2.2. Let X ⊆ PN be a smooth, irreducible closed subscheme.
If E is a Ulrich bundle on X the following assertions hold.

(1) E is semistable and µ–semistable.
(2) E is stable if and only if it is µ–stable.
(3) If

(2) 0 −→ L −→ E −→ M −→ 0

is an exact sequence of coherent sheaves with M torsion free and µ(L) = µ(E),
then both L and M are Ulrich bundles.

We conclude this section with the following helpful result.

Lemma 2.3. Let X ⊆ P
N be a smooth, irreducible closed subscheme with h1

(

X,OX

)

= 0.
If E is a Ulrich bundle of rank 2 on X, then E is simple if and only if it is indecomposable.

Proof. If E is simple, then it is trivially indecomposable. Conversely, assume that E is
indecomposable. If it is µ–stable, then it is simple (see [17], Corollary 1.2.8).

Assume that E is strictly semistable. In particular E fits into Sequence (2) with M
torsion–free and µ(L) = µ(E). It follows from Theorem 2.2 that L ∼= OX(A) and
M ∼= OX(B) are Ulrich line bundles, µ(OX(A)) = µ(OX(B)). Thus E fits into the
exact sequence

0 −→ OX(A) −→ E −→ OX(B) −→ 0.

IfOX(A) ∼= OX(B) the above sequence would split because h1
(

X,OX(A−B)
)

= h1
(

X,OX

)

in this case. Thus we can assume OX(A) 6∼= OX(B).
The above sequence splits if and only if it corresponds to 0 ∈ Ext1F

(

OX(B),OX (A)
)

,
thus if and only if E is not simple, due to Proposition 5.3 of [22]. Since we are assuming
that E is indecomposable, it follows that E is simple. �

3. General results on K3 surfaces

We recall some facts on a K3 surface F ⊆ P
N with hyperplane line bundle OF (h). They

are collected from several places (e.g. see [23] and [16]).
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We know that ωF
∼= OF and q(F ) = 0. In particular pa(F ) = pg(F ) = 1. The first

important fact is that Serre duality for each locally free sheaf F on F becomes

hi
(

F,F
)

= h2−i
(

F,F∨
)

, i = 0, 1, 2.

Moreover Riemann–Roch theorem on F is

(3) h0
(

F,F
)

+ h2
(

F,F
)

= h1
(

F,F
)

+ 2rk(F) +
c1(F)2

2
− c2(F).

In particular, if F ∼= OF (D) for a divisor D with D2 ≥ −2, then either D or −D is
necessarily effective.

If D is an effective divisor on F , then h2
(

F,OF (D)
)

= h0
(

F,OF (−D)
)

= 0. Moreover

h1
(

F,OF (D)
)

= h1
(

F,OF (−D)
)

= h0
(

D,OD

)

− 1

(see [23], Lemma 2.2). It follows that

(4) h0
(

F,OF (D)
)

= 2 +
D2

2
, deg(D) = Dh, pa(D) = 1 +

D2

2
,

for each integral divisor D on F (see [23], Paragraph 2.4). In particular, the integral fixed
divisors D satisfy D2 = −2 and D ∼= P

1.
We summarize the other helpful results we will need in the following statement.

Proposition 3.1. Let F be a K3 surface.
For each effective divisor D on F such that |D| has no fixed components the following

assertions hold.

(1) D2 ≥ 0 and OF (D) is globally generated.
(2) If D2 > 0, then the general element of |D| is irreducible and smooth: in this case

h1
(

F,OF (D)
)

= 0.

(3) If D2 = 0, then there is an irreducible divisor D with pa(D) = 1 such that OF (D) ∼=
OF (eD) where e − 1 := h1

(

F,OF (D)
)

: in this case the general element of |D| is
smooth.

Proof. See [23], Proposition 2.6 and Corollary 3.2. �

Now let h2 = 2a with a ≥ 2. The induced embedding F ⊆ P
a+1 is non–degenerate and

projectively normal thanks to [23], Theorem 6.1. Moreover, OF (th) is very ample too for
each t ≥ 1, hence by Serre duality we have h1

(

F,OF (−th)
)

= h1
(

F,OF (th)
)

= 0 in the

same range. Since we have h1
(

F,OF

)

= 0 by definition, it follows that the embedding

F ⊆ P
a+1 is actually aCM.

It would be interesting to classify aCM line bundles on the embedded surface. When
a = 2 a complete classification can be found in [24]. A similar classification for double
covers of P2 can be found in [25]. The problem of identifying aCM line bundles on K3
surfaces is by no way trivial, as one can check by looking at the quoted papers.

4. Ulrich bundles on K3 surfaces

In this section we will prove some general preliminary results about Ulrich bundles on
non–degenerate K3 surfaces F ⊆ P

a+1 of degree 2a, where a ≥ 2, giving a partial answer
to the first question raised in the introduction.

Lemma 4.1. Let F ⊆ P
a+1 be a non–degenerate K3 surface of degree 2a, where a ≥ 2.

The following assertions are equivalent for a vector bundle E of rank r on F :

(1) E is Ulrich;
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(2) E∨(3h) is Ulrich;
(3) E is aCM and

(5) c1(E)h = 3ar, c2(E) =
c1(E)

2

2
− 2(a− 1)r;

(4) h0
(

F, E(−h)
)

= h0
(

F, E∨(2h)
)

= 0 and Equalities (5) hold.

Proof. If E is Ulrich then the same is true for E∨(3h) due to [11], Proposition 2.11. Since
(E∨(3h))∨ (3h) ∼= E , it follows that the converse is true as well. Thus the first and second
assertion are equivalent.

The equivalence of the third and first assertions is [11], Propositions 2.10.
Assume that E is aCM and Equalities (5) hold. Thus h1

(

F, E(−th)
)

= 0 for t = 1, 2,
hence Formula (3) and Equalities (5) imply

h0
(

F, E(−h)
)

≤ χ(E(−h)) = 0,

h0
(

F, E∨(2h)
)

= h2
(

F, E(−2h)
)

≤ χ(E(−2h)) = 0.

Finally, assume that h0
(

F, E(−h)
)

= h0
(

F, E∨(2h)
)

= 0, whence h2
(

F, E(−2h)
)

=

h0
(

F, E∨(2h)
)

= 0. We have

h0
(

F, E(−2h)
)

≤ h0
(

F, E(−h)
)

h2
(

F, E(−h)
)

= h0
(

F, E∨(h)
)

≤ h0
(

F, E∨(2h)
)

= h2
(

F, E(−2h)
)

.

It follows that h1
(

F, E(−th)
)

= −χ(E(−th)), for t = 1, 2. Formula (3) and Equalities (5)

yield h1
(

F, E(−th)
)

= 0. We deduce that E is Ulrich. �

Notice that if r = 1, then OF (D) is Ulrich if and only if D2 = 4(a − 1), Dh = 3a and
h0

(

F,OF (D − h)
)

= h0
(

F,OF (2h−D)
)

= 0.
Let E be a Ulrich bundle of rank r on F with Chern classes c1 and c2. Thanks to

Theorem 2.2, E is µ–semistable, thus Bogomolov inequality (see [17], Theorem 3.4.1)
holds for E . Taking into account of Equalities (5) we thus obtain c21 − 4(a− 1)r2 ≥ 0.

Since E is globally generated, it follows that the same is true for det(E). We know
that det(E) 6= OF , because µ(E) = 3ar. Thus there is a smooth curve C ⊆ F such that
det(E) ∼= OF (C). Trivially we have Ch = 3ar and C2 = c21. Hodge index theorem applied
to h and C yields

2ac21 − 9a2r2 =

∣

∣

∣

∣

2a 3ar
3ar C2

∣

∣

∣

∣

≤ 0,

hence c21 ≤ 9
2ar

2. Moreover, equality holds if and only if c1 = 3rh/2, because Num(F ) ∼=
Pic(F ) on a K3 surface (see [16], Proposition 1.2.5) and det(E) is globally generated.
Finally recall that c21 is necessarily even.

Assume now that E is also simple, thus the coarse moduli space SplF (r; c1, c2) for rank
r simple, vector bundles on F with Chern classes c1 and c2 has a non–empty component
containing E . As pointed out in Theorem 0.1 of [20], thanks to Equalities (5), such a
component has dimension c21 − (4a − 2)r2 + 2 ≥ 0. Thus if E is an indecomposable
rank 2 Ulrich bundle on F the above lower bound for c21 can be strengthened as follows:
(4a− 2)r2 − 2 ≤ c21.

We can summarize the above computations in the first pair of inequalities of the fol-
lowing statement.
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Proposition 4.2. Let E be a Ulrich bundle of rank r on a non–degenerate K3 surface
F ⊆ P

a+1 of degree 2a, where a ≥ 2.
Then c1(E)

2 is an even integer satisfying

4(a− 1)r2 ≤ c1(E)
2 ≤

9

2
ar2,

where c1(E)
2 6= 9

2ar
2−2 if r is even. Moreover, c1(E)

2 = 9
2ar

2 if and only if c1(E) = 3rh/2.

If E is simple, then (4a− 2)r2 − 2 ≤ c1(E)
2.

Proof. We have to prove that there are no indecomposable Ulrich bundles E of even rank
r = 2s such that c1(E)

2 = 9
2ar

2 − 2.
Assume that such a bundle E actually exists. The line bundle det(E) is globally gener-

ated, because the same is true for E . Let C ∈ |det(E)| be a smooth integral curve. Since
Ch = 3ar and C2 = 9

2ar
2 − 2, it follows that C is a curve of degree 6as and genus 9as2.

Thus ωC(−3sh) cannot be effective, hence Riemann–Roch theorem on C yields

h0
(

C,OC(3sh)
)

= 9as2 + 1.

The cohomology of sequence

0 −→ IC|F (3sh) −→ OF (3sh) −→ OC(3sh) −→ 0

and the first Equality 4 for OF (3sh) imply the existence of a surface S of degree 3s
intersecting F along a curve containing C. Since deg(S∩F ) = 6as it follows that C = S∩F .
Adjunction formula on F now would imply that the genus of C would be 9as2 + 1, a
contradiction. �

Remark 4.3. The bounds above are sharp in many cases.
Indeed let F support a Ulrich line bundle D, so that D2 = 4(a − 1) and Dh = 3a (see

Equalities (5)). Thus E := OF (D)⊕s is a Ulrich bundle of rank r := s with c1(E)
2 =

4(a− 1)r2.
Similarly, every general non–degenerate K3 surface F ⊆ P

a+1 supports an indecompos-
able Ulrich bundle F of rank 2 with c1(E) = 3h (see [1], Theorem 0.4). It is easy to check
that E := F⊕s is a Ulrich bundle of rank r := 2s with c1(E)

2 = 9
2ar

2.
Obviously, such bundles are not simple, unless s = 1 and F is indecomposable.

On the one hand, we will see in the next section that the above bound is optimal when
E is a Ulrich bundle of rank r = 2. On the other hand when E is a Ulrich bundle of odd
rank r, the upper bound c1(E)

2 ≤ 9r2 of Proposition 4.2 is never sharp, because D2 is
even for each divisor D on F . Actually, for r = 1, we can certainly say that such a bound
is very far from optimality. Thus the following question raises naturally.

Question 4.4. When r is odd, is there any bound which is sharper than the one given in
Proposition 4.2?

5. Ulrich bundles of rank 2 on K3 surfaces

The second question raised in the introduction is to prove whether indecomposable
Ulrich bundles satisfying the above bounds actually exist. We will give below a partial
answer to this question, by constructing explicitly K3 surfaces endowed with suitable
Ulrich bundles of rank 2.

Let E be a Ulrich bundle on F of rank 2. We have

c1(E)h = 6a, c2(E) =
c21(E)

2
− 4(a− 1)
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(see Equalities (5)), hence µ(E) = 3a.
It follows from Lemma 2.3 and Proposition 4.2 that an indecomposable rank 2 Ulrich

bundle E is simple, hence c1(E)
2 is an even integer satisfying

16(a− 1) ≤ c1(E)
2 ≤ 18a, c1(E)

2 6= 18a− 2.

We already know that both the cases c1(E)
2 = 16(a− 1) and 18a occur (see Remark 4.3).

Assume the existence of a Ulrich bundle E of rank 2 with c1(E)
2 = 16a − 14 (resp.

16a − 12). Due to Proposition 4.2, the bundle E is not simple. Thus Lemma 2.3 implies
that E ∼= OF (A)⊕OF (B), hence OF (A) and OF (B) are both Ulrich. Equalities (5) yield
A2 = B2 = 4(a − 1): the equality c1(E)

2 = 16a − 14 (resp. 16a − 12) finally forces
AB = 4a− 3 (resp. AB = 4a− 2).

Assume that AB = 4a− 3. Thus A(3h−B) = 5a+3, hence E := OF (A)⊕OF (3h−B)
would be a Ulrich bundle with c1(E)

2 = (A + B)2 = 18a − 2, contradicting Proposition
4.2. We conclude that such a case cannot occur.

We will now show that also all the other remaining cases occur, in the sense that there is
a non–degenerate K3 surface F ⊆ P

a+1 of degree 2a with Picard number rk(Pic(F )) = 3
supporting Ulrich bundles E of rank 2 with c1(E) such that 16a − 12 ≤ c1(E)

2 ≤ 18a.
The above discussion shows that if c1(E)

2 = 16a − 12, then E ∼= OF (A) ⊕ OF (B) with
AB = 4a− 2.

The next proposition is the first step in this direction.

Proposition 5.1. Let a ≥ 2. For each choice of an integer u in the range 4a− 2 ≤ u ≤
5a+ 2, there exists a non–degenerate K3 surface F ⊆ P

a+1 of degree 2a such that Pic(F )
is freely generated by h, A, B, where OF (A) and OF (B) are Ulrich line bundles.

Proof. We fix the lattice Λ := Zh⊕ ZA⊕ ZB having

M :=





2a 3a 3a
3a 4(a− 1) u
3a u 4(a− 1)





as its intersection matrix. Such a lattice is even. Moreover, it is an easy exercise to check
that it has signature (1, 2) in the range 4a − 3 ≤ u ≤ 5a + 3. Corollary 14.3.1 of [16]
implies the existence of a projective K3 surface F having Pic(F ) ∼= Λ.

Recall that for each divisor Γ with Γ2 = −2 on F we have the Picard–Lefschetz reflection
πΓ of Pic(F ) defined byD 7→ D+(DΓ)Γ. IfD′ is another divisor on F then πΓ(D)πΓ(D

′) =
DD′, because Γ2 = −2.

As pointed out in [16], Corollary 8.2.11, the cone of big and nef divisors is a fundamental
domain for the group generated by the above reflections. In particular we can find divisors
Γi with ΓiΓj = −2δi,j , i = 1, . . . , γ, such that

h′ := h+

γ
∑

i=1

(hΓi)Γi

is nef. Let

A′ := A+

γ
∑

i=1

(AΓi)Γi, B′ := B +

γ
∑

i=1

(BΓi)Γi.

Then h′, A′, B′ generate Pic(F ) and they still have M as intersection matrix. Omitting
the prime in the superscript we can thus assume that h is nef.

We will now show that h is actually very ample. Since h2 = 2a it will follow that the
surface F can be embedded as a non–degenerate K3 surface F ⊆ Pa+1 of degree 2a.
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Since h2 = 2a ≥ 4, thanks to Theorem 7 of [18] (see also [19], Lemma 2.4), we have
to check that there are no effective divisors E on F satisfying anyone of the following
conditions:

• E2 = 0 and Eh = 1, 2;
• E2 = 2 and OF (h) ∼= OF (2E);
• E2 = −2 and Eh = 0.

Notice that, in any case, if E ∈ |xA+ yB + zh|, then Eh = 3ax+ 3ay + 2az is a multiple
of a ≥ 2.

Thus the first case can occur only if a = 2 and, in this case, Eh = 2 necessarily, i.e.
2z = 1− 3x− 3y. Simple computations show that

E2 = −5x2 − (18− 2u)xy − 5y2 + 1.

Consider the ellipse 5x2 + (18 − 2u)xy + 5y2 = 1, where 4a − 2 = 6 ≤ u ≤ 12 = 5a + 2.
The x–coordinate intersection point of the ellipse with the line y = 1 is a root of the
polynomial 5x2 + (18− 2u)x+ 4.

The discriminant of this polynomial is ∆(u) := u2 − 18u + 61 which is an increasing
function for u ≥ 9 and symmetric around u = 9. Thus

u2 − 18u+ 61 ≤ ∆(12) = −11

in the whole range 6 ≤ u ≤ 12.
We conclude that the line y = 1 have no points in common with the ellipse. Since the

ellipse is symmetric with respect to the origin, it immediately follows that it is strictly
contained in the square with vertices (±1, 0) and (0,±1): in particular there are no points
with integral coordinates on the ellipse, because it does not pass through the origin.

The second case E2 = 2 cannot occur because h is an element of a basis of Pic(F ) (see
the comments after Lemma 2.4 of [19]).

Thus we look at the third case E2 = −2. In this case equality Eh = 0 implies 2z =
−3x− 3y. Simple computations show that

E2 = −
a+ 8

2
x2 − (9a− 2u)xy −

a+ 8

2
y2.

Consider the ellipse (a+ 8)x2 + 2(9a − 2u)xy + (a+ 8)y2 = 4, where a ≥ 2 and 4a− 2 ≤
u ≤ 5a+2. Intersecting with the line y = 1 we obtain (a+8)x2 +2(9a− 2u)x+a+4 = 0.
The discriminant is ∆a(u) := 4u2 − 36au + 80a2 − 12a − 32 is an increasing function for
u ≥ 9a/2 and it is symmetric around u = 9a/2. Thus

4u2 − 36au+ 80a2 − 12a− 32 ≤ ∆a(5a+ 2) = −4(a+ 4) < 0

in the range 4a− 2 ≤ u ≤ 5a+ 2.
We conclude that OF (h) is very ample, hence it embeds F in P

a+1 as a non–degenerate
K3 surface of degree 2a. We will now prove that OF (A) and OF (B) are Ulrich line
bundles with respect to such an embedding. We restrict our attention to OF (A) because
the argument for OF (B) is similar.

Since A2 = 4(a− 1) ≥ 4, it follows from Equality (3) that either OF (A) or OF (−A) is
effective. Since Ah = 3a ≥ 6 and h is very ample it follows that OF (A) is effective.

Assume that h0
(

F,OF (A − h)
)

6= 0 and let D ∈ |A − h|. The divisor D is a curve of

degree deg(D) = (A − h)h = a such that D2 = (A − h)2 = −4, thus there is a proper
integral subscheme E ⊆ D with E2 = −2. Again let E ∈ |xA + yB + zh|. The degree of
E is deg(E) = (xA + yB + zh)h = 3ax + 3ay + 2az, hence it is a positive multiple of a.
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It follows from the chain of inequalities a ≤ deg(E) ≤ deg(D) = a that deg(E) = deg(D),
whence E = D, a contradiction. We conclude that h0

(

F,OF (A− h)
)

= 0.
Notice that 3h − A enjoys the same intersections properties with h as A. Thus we

can repeat the above discussion showing that h0
(

F,OF (2h − A)
)

= 0. We conclude that
OF (A) is Ulrich, by applying Lemma 4.1. �

Remark 5.2. It is not possible to extend the above proofs to the cases u = 4a − 3 and
u = 5a+3. Indeed, in these cases, (A−B)h = (3h−A−B)h = 0. Moreover (A−B)2 = −2
in the first case, and (3h−A−B)2 = −2 in the second, thus OF (h) is not very ample. In
these cases OF (h) embeds F as a singular surface.

We conclude the section with the following consequence of the above proposition. It
shows that the bounds of Proposition 4.2 are actually sharp.

Theorem 5.3. Let a ≥ 2. For each choice of an integer u in the range 4a − 1 ≤ u ≤
5a + 4, u 6= 5a + 3, there exists a non–degenerate K3 surface F ⊆ P

a+1 of degree 2a and
rk(Pic(F )) = 3 supporting a simple Ulrich bundle E of rank 2 with c1(E)

2 = 8a − 8 + 2u
and c2(E) = u.

Proof. Let u be an integer in the range 4a−1 ≤ u ≤ 5a+2 and F ⊆ P
a+1 a non–degenerate

K3 surface of degree 2a containing divisors A and B with AB = u as in Proposition 5.1.
Since u 6= 4(a − 1) = A2 = B2, it follows that OF (A) 6∼= OF (B), thus the equalities
(A−B)h = (B −A)h = 0 and the ampleness of OF (h) imply

h0
(

F,OF (A−B)
)

= 0, h2
(

F,OF (A−B)
)

= h0
(

F,OF (B −A)
)

= 0.

Equality (3) for OF (A−B) implies

h1
(

F,OF (A−B)
)

= −2−
(A−B)2

2
= AB − 4a+ 2 ≥ 1

We deduce the existence of the non–trivial Sequence

0 −→ OX(A) −→ E −→ OX(B) −→ 0,

thus E is a rank 2 Ulrich bundle with c1(E)
2 = (A+B)2 = 8a− 8+2AB and c2(E) = AB.

E is simple, hence indecomposable, due to Lemma 2.3. �

Remark 5.4. The existence of special Ulrich bundles E of rank 2 (i.e. such that c1(E) =
3h) on each non–degenerate K3 surface F ⊆ P

a+1 of degree 2a follows from [1], Theorem
0.4, when rk(Pic(F )) = 1. For each bundle of this type c1(E)

2 = 8a−8+2u and c2(E) = u
where u = 5a+ 4.

Similarly, Theorem 4.6 of [19] implies the existence of non–degenerate K3 surface F ⊆
P
a+1 of degree 2a whose Picard group is freely generated by h and by a smooth irreducible

curve A with Ah = 3a and A2 = 4(a−1). The line bundleOF (A) is Ulrich (one can imitate
the proof of the analogous statement in Proposition 5.1). As in the proof of Theorem 5.3
we still obtain special Ulrich bundles by extension of OF (A) by OF (3h−A).

Remark 5.5. Notice that the non–degenerate K3 surface F ⊆ P
a+1 of degree 2a defined

in Proposition 5.1 contains, besides the curves A and B with AB = u, also another curve,
namely C ∈ |3h −A|: we have BC = 9a− u.

In particular for 4a − 1 ≤ u ≤ 9a/2 there is a non–degenerate K3 surface F ⊆ P
a+1 of

degree 2a supporting indecomposable Ulrich bundles E of rank 2 with c1(E)
2 = 18a, 8a −

8 + 2u, 26a − 8− 2u.
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Remark 5.6. Each Ulrich bundle is semistable (see Theorem 2.2). Trivially the bundle E
constructed in Theorem 5.3 is strictly semistable, i.e. is semistable and not stable, because
it contains a Ulrich line bundle OF (A) with µ(OF (A)) = 3a = µ(E).

We showed that for each integer u in the range 4a− 1 ≤ u ≤ 5a + 4, u 6= 5a+ 3 there
exists a K3 surface F ⊆ P

a+1 of degree 2a with rk(Pic(F )) = 3 supporting Ulrich bundles
E of rank 2 with c1(E)

2 = 8a− 8 + 2u (see Theorem 5.3). It is obvious that such bundles
cannot exist if rk(Pic(F )) = 1. We thus ask the following question.

Question 5.7. If u is a fixed integer in the range 4a − 1 ≤ u ≤ 5a + 4, u 6= 5a + 3, is
there a non–degenerate K3 surface F ⊆ P

a+1 of degree 2a with rk(Pic(F )) = 2 supporting
a Ulrich bundle E of rank 2 with c1(E)

2 = 8a− 8 + 2u?

As we already pointed out in Remark 5.4, the above question has an immediate positive
answer when u = 5a+ 4.

Moreover, for each integer u in the range 4a − 1 ≤ u ≤ 9a/2 there exist K3 surfaces
F ⊆ Pa+1 of degree 2a supporting Ulrich bundles E of rank 2 with c1(E)

2 = 18a, 8a −
8 + 2u, 26a − 8 − 2u (see Theorem 5.3 and Remark 5.5). It is quite natural to raise the
following questions.

Question 5.8. Does there exist a single non–degenerate K3 surface F ⊆ P
a+1 of degree

2a supporting Ulrich bundles E of rank 2 with c1(E)
2 = 8a−8+2u for each u in the range

4a− 1 ≤ u ≤ 5a+ 4, u 6= 5a+ 3?

Question 5.9. If the answer to the previous question is positive, which is the minimal
admissible value of rk(Pic(F ))?

6. Stability of general Ulrich bundles of rank 2

If E is a semistable bundle of rank 2 with reduced Hilbert polynomial p(t) (with respect
to OF (h)), then the coarse moduli space Mss

F (p) parameterizing S–equivalence classes of
semistable rank 2 bundles on F with reduced Hilbert polynomial p(t) is non–empty (see
Section 1.5 of [17] for the notion of S–equivalence). We will denote by Ms

F (p) the open
locus inside Mss

F (p) of stable bundles.
The scheme Mss

F (p) is the disjoint union of open and closed subsets Mss
F (2; c1, c2) whose

points represent S–equivalence classes of semistable rank 2 bundles with fixed Chern classes
c1 and c2. Similarly Ms

F (p) is the disjoint union of open and closed subsets Ms
F (2; c1, c2).

Grauert semicontinuity theorem for complex spaces (see [2]) guarantees that the prop-
erty of being aCM in a family of vector bundles is an open condition.

Thus, on the one hand, we have open subschemes Mss,aCM
F (2; c1, c2) ⊆ Mss

F (2; c1, c2)

and Ms,aCM
F (2; c1, c2) ⊆ Ms

F (2; c1, c2) parameterizing respectively S–equivalence classes
of semistable and stable aCM bundles of rank 2 on F with Chern classes c1 and c2 (see
Section 2 of [4]).

On the other hand, the locus of aCM bundles SplaCM
F (r; c1, c2) inside SplF (r; c1, c2) is

open too. If we denote by Splns,aCM
F (2; c1, c2) ⊆ SplaCM

F (2; c1, c2) the locus of simple aCM

bundles which are not stable, then SplaCM
F (2; c1, c2)\Spl

ns,aCM
F (2; c1, c2) is an open subset

isomorphic to Ms,aCM
F (2; c1, c2).

We are interested in dealing with the moduli spaces of aCM bundles of rank 2 on F : in
particular we are interested in those ones constructed in the previous section.

Proposition 6.1. Let F ⊆ P
a+1 be a non–degenerate K3 surface of degree 2a, where

a ≥ 2.
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If OF (A) and OF (B) are Ulrich line bundles on F such that 4a − 1 ≤ AB ≤ 5a + 4,

AB 6= 5a+ 3, then the moduli space Mss,aCM
F (2;A +B,AB) is non–empty.

If AB ≥ 4a, for each irreducible component M ⊆ Mss,aCM
F (2;A + B,AB), the locus

M∩Ms,aCM
F (2;A +B,AB) is smooth and non–empty of dimension 2AB − 8a+ 2.

The points in Mss,aCM
F (2;A+B,AB) \Ms,aCM

F (2;A+B,AB) are in one–to–one cor-

respondence with the unordered pairs { OF (A),OF (B) } where OF (A) and OF (B) are
Ulrich line bundles such that OF (A+B) ∼= OF (A+B).

Proof. Notice that Lemma 4.1 implies that the points in SplaCM
F (2;A + B,AB) actually

parameterize rank 2 simple Ulrich bundles with Chern classes A+B and AB.

We have thatOF (A) 6= OF (B), because AB > 4(a−1) = A2. The locus Splns,aCM
F (2;A+

B,AB) is non–empty, due to Theorem 5.3 and Remark 5.6, hence SplaCM
F (2;A+B,AB)

is smooth, non–empty and its dimension is 4c2 − c21 − 6 = 2AB − 8a + 2 (e.g. see [20],
Theorem 0.1).

If E is a bundle representing a strictly semistable Ulrich bundle in SplaCM
F (2;A+B,AB),

then E must contain a line bundle L such that E/L is torsion free and µ(L) = µ(E).
Theorem 2.2 implies that E must fit into a sequence of the form

(6) 0 −→ OF (A) −→ E −→ OF (B) −→ 0.

where A and B are Ulrich line bundles such that A + B = A + B and AB = AB. Thus
we obtain a non–zero section of H1

(

F,OF (A−B)
)

∼= H1
(

F,OF (2A−A−B)
)

.

As a first consequence of the above discussion, we see that Splns,aCM
F (2;A +B,AB) is

dominated by the union of the projective spaces associated to H1
(

F,OF (2A−A−B)
)

as

A varies in the subset of Ulrich line bundles inside Pic(F ). Such a set is trivially countable,

thus Splns,aCM
F (2;A+B,AB) is a countable union of irreducible subschemes of dimension

at most AB−4a+1: in particular, when AB ≥ 4a, it cannot fill any irreducible component
S ⊆ SplaCM

F (2;A+B,AB) (which is smooth of dimension 4c2 − c21 − 6 = 2AB − 8a+ 2).

Since SplaCM
F (2;A+B,AB) contains Ms,aCM

F (2;A+B,AB) as an open subset, it follows

that S \ Splns,aCM
F (2;A+B,AB) is an irreducible component of Ms,aCM

F (2;A+B,AB).

We deduce that the S–equivalent class of each E ∈ S∩Splns,aCM
F (2;A+B,AB) is actually

in the closure of a non–empty component of Ms,aCM
F (2;A+B,AB).

As a second consequence of the above discussion we obtain a characterization of the S–

equivalence classes of each strictly semistable bundle E in Mss,U
F (2;A+B,AB). Indeed, if

E fits into Sequence (6), its Jordan–Hölder filtration is 0 ⊆ OF (A) ⊆ E , thus the associated
graded ring is

gr(E) := OF (A)⊕ E/OF (A) ∼= OF (A)⊕OF (B).

Let E ′ be in the same S–equivalence class of E . In particular E ′ is strictly semistable,
hence it fits into a sequence of the form

0 −→ OF (A
′
) −→ E ′ −→ OF (B

′
) −→ 0,

where OF (A
′
), OF (B

′
) are Ulrich line bundles which are non–isomorphic. Thus

OF (A
′
)⊕OF (B

′
) ∼= gr(E ′) ∼= gr(E) ∼= OF (A)⊕OF (B).

We have a non–zero morphism OF (A) → OF (A
′
)⊕OF (B

′
), thus either h0

(

F,OF (A
′
−

A)
)

6= 0, or h0
(

F,OF (B
′
−A)

)

6= 0. In the first case, the equality (A
′
−A)h = 0 and the
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ampleness of OF (h) imply OX(A − A) ∼= OX , hence the above non–zero map induces an

isomorphism OF (A) ∼= OF (A
′
), thus

OF (B
′
) ∼= OF (A+B −A

′
) ∼= OF (A+B −A) ∼= OF (B),

i.e. { OF (A),OF (B) } = { OF (A
′
),OF (B

′
) }.

An analogous argument holds if h0
(

F,OF (B
′
−A)

)

6= 0. �

The above proposition yields the following theorem (see also Proposition 3.22 of [10]).

Theorem 6.2. Let F ⊆ P
a+1 be a non–degenerate K3 surface of degree 2a, where a ≥ 2.

If E is an indecomposable Ulrich bundle of rank 2 on F which is strictly semistable and
whose S–equivalence class is a general point in its moduli space, then E fits into Sequence
(1) where OF (A) and OF (B) are Ulrich line bundles on F such that AB = 4a − 1. In
particular c1(E)

2 = 16a− 10 and c2(E) = 4a− 1.

Proof. If E is strictly semistable, then it contains a line bundle OF (A) with µ(OF (A)) =
µ(E) = 3a. Trivially µ(E/OF (A)) = 3a: due to Theorem 2.2 it follows that OF (A) and
E/OF (A) are Ulrich line bundles. Then E fits into Sequence (1).

If E is also general in its moduli space, then Proposition 6.1 forces AB = 4a− 1. �

The construction of Section 5 yields the existence of semistable Ulrich bundles of rank
2 with c1(E)

2 = 8a−8+2u for each integer u in the range 4a−1 ≤ u ≤ 5a+4, u 6= 5a+3.
On the one hand, Theorem 6.2 implies that when u ≥ 4a, the general such bundle is

actually stable. On the other hand, when u = 4a − 1 the Proposition 6.1 implies that
the moduli space is a finite set of points and we know that at least one of these points
corresponds to a strictly semistable bundle.

Question 6.3. Are there non–degenerate K3 surfaces F ⊆ P
a+1 of degree 2a supporting

a stable Ulrich bundle E of rank 2 with c1(E)
2 = 16a − 10?
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via Carlo Alberto 10, 10123 Torino, Italy
e-mail: federica.galluzzi@unito.it


	1. Introduction and Notation
	2. General results on Ulrich bundles
	3. General results on K3 surfaces
	4. Ulrich bundles on K3 surfaces
	5. Ulrich bundles of rank 2 on K3 surfaces
	6. Stability of general Ulrich bundles of rank 2
	References

