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Mean-Extended Gini portfolios personalized to the investor’s

profile
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Abstract

Since Shalit and Yitzhaki (1984) the Mean-Extended Gini (MEG) has been proposed

as a workable alternative to the classical Markowitz mean-variance Capital Asset Pricing

Model (CAPM). Although the MEG controls the risk belonging to the left-tail of the return

distribution, little attention is given to potential gains belonging to the right tail of the return

distribution. A generalization of the MEG able to select personalized optimal mean-risk

and/or mean-gain portfolios is proposed. We give evidence that if the portfolio distributions

are symmetrical and/or the investor has a moderate risk-gain profile, then the efficient mean-

risk portfolio always coincides with a not efficient mean-gain portfolio. In more realistic

scenarios admitting the existence of asymmetrically distributed assets and/or investors with

very defensive or very aggressive investment profiles, portfolios which are optimal under both

criteria may exist.
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Purpose - Since Shalit and Yitzhaki (1984), the Mean-Extended Gini (MEG) has been

proposed as a workable alternative to the Markowitz mean-variance approach. The challenge is

to extend the MEG approach to making customized optimal asset allocation to control down-

performance and/or up-performance.

Design/methodology/approach -The MEG approach is used to make strategical allo-

cation tailored to the investor risk aversion and gain propension measured by characteristic

parameters of the Extended Gini measures.

Findings -We set up two optimization problems: the former focused on controlling the risk,

the latter emphasizing the potential gains. Sufficient conditions such that the efficient MEG-risk

frontier coincides with the inefficient MEG-gain frontier are stated. In the realistic scenarios

that portfolios have asymmetrical distributions and/or the investor profile is very conservative

or very aggressive, the desirable occurrence that a portfolio is optimal under both optimizations

may occur.

Originality/value — The main contribution of this research is to have pointed out that op-

timal allocation must be tailored to both the investor’s risk and gain profile. And, the optimality

may be not preserved if the investor’s risk-gain profile changes. So, the statement “optimal al-

location" should be reworded as “optimal allocation personalized to the investor’s risk-aversion

and gain-propensity".
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1 Introduction

Since the seminal contributions of Markowitz (1952), the mean-variance (MV) approach has been

extensively used to select efficient portfolios focused on controlling risk. Nevertheless, it is well

known in the finance literature that the MV approach is inappropriate when asset returns are

not normally distributed or investors’ preferences are not characterized by quadratic functions

(see Meyer, 1987, 1989 for sufficient conditions for the MV use). In a pioneering paper Shalit

and Yitzhaki (1984, 2005) present the Mean-Extended Gini (MEG), as a sound and distribution-

free alternative to MV, that is consistent with the rules of stochastic dominance. Its key role

in personalized asset allocation has been acknowledged in recent years by both the academia

(see Shalit and Yitzhaki , 2010) and investment practitioners (see Sherman Cheung et al., 2005,

2008). But, strategical allocation made through the MEG is more focused on personalized risk

control than on potential upside profits. As it has been pointed out in the recent literature, the

latter aspect cannot be neglected by ample groups of investors (see Biglova et al., 2004, and

recently Neave et al., 2008, and Farinelli et al., 2009). The challenge is not only to match the

expected return with the minimum risk, but also to make strategical allocation customized to

the investor risk aversion and gain propension.

The aim may be achieved through two different optimizations. The former is based on se-

lecting the classical MEG-risk efficient frontiers, the latter on selecting the so called MEG-gain

efficient frontiers where the favorable data dispersion on the right tails of the distributions are

maximized.

We show that the optimal investment crucially depends on the investor risk-gain profile,

modelled by the orders of the Extended Gini (EG) index used, and the asymmetry of the

portfolio distributions. Specifically, if the investor has a "moderate" risk-gain profile using the

standard Gini index or the distributions are symmetric and investors have the same level of

risk-aversion and gain-propension, then the efficient MEG-risk frontier will coincide with an

inefficient MEG-gain one. However, as we skip from this framework and deal with more realistic

scenarios, the desirable circumstance that the optimum MEG-risk and MEG-gain portfolios

coincide, may occur. A sufficient condition based on a restricted class of feasible portfolios is

stated.

The remainder of this paper is organized as follows. Section 2 introduces the definitions of

EG-risk and EG-gain measures. In Section 3 we discuss MEG allocation oriented to risk-control

and/or profit-gain. Section 4 concludes the paper. An Appendix collects a proof.

2 EG-Risk and EG-Gain measures

Mean-Gini theory was originally developed by Yitzhaki (1982) and afterwards applied to finance

by Shalit and Yitzhaki (1984) as an alternative model to MV for evaluating systematic risk and
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constructing optimal portfolios consistent with expected utility maximization and stochastic

dominance. Mean-Gini presents robust results when MV is bound to fail. In particular, this

occurs when assets do not have normal distributions or when the regression used to estimate

betas by ordinary least-squares provides biased estimators (Shalit and Yitzhaki, 2002).

In the context of measuring social inequality the extension of the Gini coefficient was pro-

posed by Donaldson and Weymark (1980) and Yitzhaki (1983), but only in the pioneering paper

of Shalit and Yitzhaki (1984) was the Mean-Extended Gini (MEG) applied to finance. In Shalit

and Yitzhaki (2005) the authors go on in this research direction.

Although the different definitions of EG given in the literature coincide in the continuous

case, they may differ in the discontinuous one (see Yitzhaki and Schechtman 2005 for details for

adjusting discrete variables vs continuous ones). In the following we will use one that fits well

with the context and permits the use of results of the theory of extreme value distributions.

Definition 2.1 Let X be a random variable with cumulative distribution function F . The Ex-

tended Gini of X of order k is given by

EGk (X) = E (X)−E {min (X1, ...,Xk)} with k a positive integer (2.1)

where X,X1, ...,Xk are i.i.d. random variables.

In the literature EGk (X) is used as a personalized risk measure according to the intensity

k. The higher1 k, the more EGk (X) weights the left tail of X, and the more the investor is

risk-averse. Starting from the evidence that the right-tail of X coincides with the left-tail of

−X, we define the Extended Gini of −X as

EGk (−X) = −E (X)−E {min (−X1, ...,−Xk)} = E {max (X1, ..., Xk)} −E (X) (2.2)

with k a positive integer (see Cardin et al. 2011) so the higher k, the more EGk (−X) weights

the right tail of X and the more the investor is gain prone. From (2.1) and (2.2), it is easy

to check that EGk (X) and EGk (−X) assume non-negative values and EGk can be used to

measure the risk and the gain of X.

Definition 2.2 We call EGk (X) the EG risk-measure and EGk (−X) the EG gain-measure of

X of order k.

1The fact that EG weights more data on the left-tail of X is clear as soon as we think of the original use of EG

as a measure of income inequality. Discrepancies in incomes among the poorest part of the population is weighted

more than the discrepancies among the richest part.
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Distribution EGk (X) EGk (−X) E (X)

Uniform(θ) θ > 0 θ(k−1)
2(k+1)

θ(k−1)
2(k+1)

θ
2

Normal(µ,σ2) k = 2 σ√
π

σ√
π

µ

Skew-Normal
�
ξ, ω2, α

�
k = 2 ω√

π(1+α2)

ω√
π(1+α2)

ξ +
�

2
π(1+α2)

α

Pareto(α,c = 1) α
α−1 − αk

αk−1
αkk!

(αk−1)···(α−1) − α
α−1

α
α−1

Weibull (m = 2, λ = 2/
√
π) 1− 1√

k

�k
j=1(−1)j+1

�
k
j

�
1√
j
− 1 1

Exponential (λ) 1
λ

�
k−1
k

�
1
λ

�k
j=1

1
j
− 1

λ
1
λ

Table 1. EG-risk and EG-gain for common distributions

In practice, the order k of the investor’s risk-aversion may differ from that of her gain-

propension. In this case the notation krisk and kgain is to be preferred. In Actuarial Science the

index EGkrisk is called the risk-premium and in analogy with this terminology we call EGkgain
the gain-premium.

For the most common distributions used in finance such as the uniform, normal, skew-normal,

Pareto, Weibull, exponential these premia can be easily computed (see Cardin et al., 2011). The

closed-end formulae are summarized in Table 1.

2.1 A way to measure the customized risk-aversion and gain-propension or-

ders

To associate to an investor her personalized (krisk, kgain), it is sufficient to implement a simple

test. Let X be a risky asset with a given distribution. The mean E (X) corresponds to the

certainty equivalent of X for a risk and gain neutral investor (i.e. krisk = kgain = 1), but it can

be also interpreted as the value of a safe assetX assuming the single value E (X) with probability

1. A natural way to price the risk-premium EGkrisk (X) and gain-premium EGkgain (−X) is to

declare these amounts as proportions or percentages of E (X). Denote these proportions by δrisk

and δgain. Note that because X is non-negative, δrisk ≤ 1, but if X is unbounded, then δgain is

also unbounded2.
2For pricing a positive asset X it is reasonable that 0 ≤ δrisk ≤ 1 and δgain ≥ 0. The former condition

guarantees the positiveness of the bid-price ofX given by Pbid = E (X)−EGrisk (X) = (1− δrisk)E (X) .Whereas
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EGkrisk (X) = δriskE (X) and EGkgain (−X) = δgainE (X)

If δrisk and δgain are declared, the corresponding krisk and kgain orders come out.

Just for explanatory purposes, let us compute these values for two special distributions.

Let X be uniform on [0,θ] with E(X) = θ
2 . Since the distribution is symmetric, the analytical

relation between the percentage δ and the order k is the same for EGk (X) and EGk (−X).

δ = k−1
k+1 or equivalently k = 1+δ

1−δ

Not every value of δ.corresponds to an integer. In such a case, we would describe the risk

or gain parameter by the closest such integer k. However, if we start with any value of k, we

can find the corresponding δ. We see immediately that if k = 1, the risk neutral agent evaluates

δ = 0 and EGk (X) = 0; if krisk = 2 then δrisk = .3 and the risk-premium is the 33% of the

mean; if krisk = 6 then δrisk = .71 and so on (see Table 2.)

Uniform Distribution δrisk δgain

k = 1 0 0

k = 2 .33 .33

k = 3 .50 .50

k = 4 .60 .60

k = 6 .71 .71

k = 9 .80 .80

k = +∞ 1 1

Table 2. The values of krisk and kgain for the Uniform distribution

Let X be exponential with parameter λ > 0 and E(X) = 1
λ
. It follows that δrisk =

krisk−1
krisk

and δgain =
�kgain
j=1

1
j
− 1. Note3 that if δgain < 1, then kgain ≤ 3.

to guarantees the positiveness the ask-price Pask = E (X) + EGgain (−X) = (1 + δgain)E (X) is sufficient the

latter condition (for the definitions of bid and ask price according to the EG certainty equivalent criterium, see

Cardin et al., 2011).
3 If δgain > 1 it means that the aggressive investor (with kgain ≥ 4) declares as ask price of X the amount

Pask = (1 + δgain)E (X), i.e. she is willing to pay more than the double of E (X).
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Exponential Distribution δrisk δgain

k = 1 0 0

k = 2 .50 .50

k = 3 .67 .83

k = 4 .75 1.08

k = 6 .83 1.45

k = 9 .89 1.83

k = +∞ 1 ∞

Table 3. The values of krisk and kgain for the exponential distribution

We can also compare the risk aversion and gain propension as the asset changes. Consider two

assets with the same mean but distributed as a uniform and an exponential variable, respectively;

at any level of krisk the exponential asset induces a greater risk premium EGkrisk than that of

the uniform asset. That means that the short fat left-tail of the exponential is perceived riskier

than the flat left-tail of the uniform variable. At the same time, the exponential long right-tail

promises greater gains than the flat right-tail of the uniform variable. In fact its gain premium

EGkgain is greater than the corresponding gain premium achieved with the uniform distribution.

In conclusion, the above examples bring to light the critical "gears" that move the krisk and

kgain values: (1) the personal investor’s risk/gain attitudes (2) and the distribution of the risky

asset under exam.

This latter aspect must be taken under consideration when we aim at categorizing investors

in different risk/gain profiles. Firms performing investment services subjected to the Markets

in Financial Instruments Directive (MiFID) adopted by the European Commission usually im-

plement a mechanism of categorization of its clients. This transparency directive imposes that

any client be classified with a suitable risk/gain profile and consequently any investment advice

or suggested financial transaction be preventively checked to be appropriate to the client pro-

file. The standard profiles used are five: (1) very conservative (2) conservative (3) moderate (4)

aggressive (5) very aggressive. Using the common loose terminology, a conservative (or a very

conservative) profile is characterized by "high" krisk and "low" kgain. Vice versa an aggressive

(or a very aggressive) profile by "low" (even close to 1) krisk and "high" kgain. A moderate

profile should be characterized by "moderate" krisk and kgain and reasonably around 2. Clearly,

the bounds for krisk and kgain in each profile cannot be given in a strict way, because the bounds

may change as the distribution used in the test changes. As a first step, we suggest using a test

involving a uniform asset representing the case where little information is available.
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3 MEG-Risk and MEG-Gain efficient frontiers

Let Ri be the rate of return on asset i (i = 1, ..., N) and xi the share of investor wealth invested

in asset Ri. Let X =
�N
i=1 xiRi+

�
1−�N

i=1 xi

�
rf , the return of the portfolio with distribution

function F , where rf is the rate of return on the risk-free asset.

Following the MEG optimal asset allocation introduced by Shalit and Yitzhaki (1984, 2005),

we set up the two following optimization problems:

• As the mean return of the portfolio is given, optimize the MEG-risk portfolio, i.e. minimize

EGkrisk (X) or equivalently:

Max E
�
min

�
X1, ...,Xkrisk

��
where X,X1, ..., Xkrisk

are i.i.d. random portfolios. (3.3)

• As the mean return of the portfolio is given, optimize the MEG-gain portfolio, i.e. maximize

EGkgain (−X) :

Max E
�
max

�
X1, ...,Xkgain

��
where X,X1, ..., Xkgain are i.i.d. random portfolios.

(3.4)

such that E (X) =
�N
i=1 xiE (Ri) +

�
1−�N

i=1 xi

�
rf is fixed and

�N
i=1 xi = 1 and xi ≥ 0.

First optimization was originally proposed by Shalit and Yitzhaki (2005). We suggest to add

a further optimization aimed at selecting the optimal mean-gain portfolios.

Definition 3.1 As the mean return of the portfolio varies, the optimal solutions of MEG-risk

portfolio and MEG-gain portfolio vary, as well. We call MEG-risk efficient frontiers and MEG-

gain efficient frontiers such optimal solutions.

Clearly, there exist some special cases where MEG-risk efficient frontiers and MEG-gain

efficient frontiers coincide. For example, that happens when gain-indifference (e.g. kgain = 1) or

risk-indifference (e.g. krisk = 1) hold, more precisely:

(i) If kgain = 1, then the MEG-gain efficient frontier collapses into the MEG-risk efficient

frontier.
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(ii) If krisk = 1, then the MEG-risk efficient frontier collapses into the MEG-gain efficient

frontier

The result is very intuitive. In the former case the agent is "very conservative" and indifferent

to potential gains, so her efficient frontier coincides with that which minimizes the risk. In the

latter case the agent is "very aggressive" and does not care the potential losses, so her efficient

frontier coincides with that which maximizes the potential gains.

But in the most common situations the efficient frontiers of MEG-risk and MEG-gain do not

coincide. A spontaneous question that arises is whether at least for special values of the portfolio

mean return it may happen.

The problem is faced in two steps. First, in Sec. 3.1 we state a number of sufficient conditions

under which the efficient MEG-risk frontier coincides with the least efficient MEG-gain frontier.

Clearly in such a case, the question is negatively answered. Second, in Sec. 3.2 we state a sufficient

condition on investor’s attitudes krisk and kgain which guarantee the existence of an portfolio

which is optimum according to the both criteria.

3.1 The MEG-risk efficient frontier coincides with the most inefficient MEG-

gain frontier and vice versa

We concern the case krisk = kgain = k .

Proposition 3.2 If krisk = kgain = k and

(i) all portfolios are symmetrically distributed; or

(ii) k = 2,

then the MEG-risk efficient frontier coincides with an inefficient MEG-gain frontier and vice

versa.

Proof. Assume krisk = kgain = k. If the portfolio distributions are symmetrical or

k = 2, then for all X, EGk (X) = EGk (−X) (see for example Yitzhaki and Schechtman, 2005).

This equality implies that as the mean is fixed, the portfolio with the minimum risk is that with

the minimum gain, and vice versa.�

Note that the symmetry of the rate of return Ri of each asset in the portfolio is not a sufficient

condition for the symmetry of the portfolio X =
�N
i=1 xiRi +

�
1−�N

i=1 xi
�
rf . For example,

assume R1 takes the values 0 or 2 with probability 1/2. If R1 = 0 assume that R2 takes the

values 0 or 2 with probability 1/2 and if R1 = 2, then R2 = 1 with probability 1. Then R1 and

R2 are symmetric, but X = .5R1+ .5R2 is not symmetric. That is, P (X = 0) = P (X = 1) = 1/4

and P (X = 1.5) = .5.
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On the other hand, a number of special distributions of Ri guarantee the symmetry of

the portfolios. In general, the symmetry of the portfolio X is guaranteed by a "balance" of

conditions on the distribution and on the dependence structure among the assets, the stronger

are the former, the looser are the latter, and vice versa. Under the strong assumption of normally

distributed asset Ri the portfolios X are guaranteed to be normal and thus symmetric. In this

case, if krisk = kgain = k, the efficient MEG-risk frontier coincides with the most inefficient

MEG-gain frontier. On the other hand, if no conditions are imposed to the distributions of Ri but

we assume the severe assumption that Z1, . . . , Zm are independent, symmetric random variables,

not necessarily identically distributed, then
�m
i=1 ciZi is also symmetric for any ci, i = 1 to m

(see the Appendix for a proof). Now suppose that the returns Ri can be modelled as linear

combinations of such independent symmetric random variables. This is the case, for example,

if the returns are jointly normally distributed, but we could also imagine the case where the

returns are linear combinations of independent uniformly distributed assets. We then have that

X =
N	

i=1

xiRi =
m	

i=1

ciZi,

for some ci, i = 1 to m determined from the xi, i = 1 to N. Hence all such X will be symmetric.

In such a case we conclude that the efficient MEG-risk frontier coincides with the most inefficient

MEG-gain frontier.

3.2 A sufficient condition under which a portfolio is optimal according to

both the MEG-risk and MEG-gain criteria.

In this Section we focus on a sufficient condition such that for a given portfolio mean return,

the optimal mean-risk portfolio coincides with the optimal mean-gain portfolio.

Proposition 3.3 Suppose that X and Y have the same mean µ while X is distributed in [a,c]

and Y is distributed on [b,d], where a < b < c < d. In the continuous case this means that

X and Y have positive densities on (a,c) and (b,d), respectively, and in the discrete case that

P (X = a), P (X = c), P (Y = b) and P (Y = d) are all positive. Then

(1) For large enough krisk, Y is the better MEG-risk portfolio.

(2) For large enough kgain, Y is the better MEG-gain portfolio.

Proof: First note that under the conditions of the proposition, we must have b < µ < c. It

also follows that min(X1, . . . , Xk) → a and min(Y1, . . . , Yk) → b as k approaches infinity. Thus

as k approaches infinity, EGk(X)→ µ− a and EGk(Y )→ µ− b. Since µ− b < µ− a, we have

that for large enough k, Y is the better MEG-risk portfolio. This proves (1).
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Also EGk(−X)→ c−µ and EGk(−Y )→ d−µ. Since c−µ < d−µ, we have that for large

enough k, Y is also the better MEG-gain portfolio. This proves (2). �

Proposition 3.3 concerns assumptions of a double nature: (1) on the investor’s attitude to

risk and gains, i.e. the investor must be strongly enough risk-averse (i.e. krisk is large enough)

and strongly enough gain-prone (i.e. kgain is large enough), (2) on the domains of the feasible

portfolios.

The result has an intuitive interpretation. The investor with above mentioned attitudes will

always choose the optimal portfolio on the basis of the lowest and the greatest bounds of the

supports of the distributions of the feasible portfolios and not the actual distributions themselves.

In conclusion, if there exist a portfolio which has the shortest left-tail and the longest right-tail,

that is just the optimal portfolio according to the both criteria.

Note that this selection rule based only on the bounds of the domains may be no longer hold

if krisk and kgain assume smaller values, as shown in the following.

Example 3.4 The optimal MEG-risk portfolio coincides with the optimal MEG-gain portfolio:

an unstable preference order.

Suppose you have two alternative portfolios X and Y with

P (X = 47) = 0.1 and P (X = 117) = 0.9.

while

P (Y = 100) = 0.9 and P (Y = 200) = 0.1,

An easy calculation shows thatE(X) = E(Y ) = 110. For simplicity assume krisk = kgain = k.

Simple calculations give the following tables of values:

k EGk(X) EGk(Y ) EGk(−X) EGk(−Y )
1 0 0 0 0

2 6.3 9 6.3 9

3 11.97 9.9 6.93 17.1

Table 2. EG-risk and EG-gain

Recall that an investor wants to minimize EGk(X) and maximize EGk(−X). It follows that

if krisk = 1 or kgain = 1, then X and Y are equivalent investments in the MEG-risk sense. This

corresponds to an investor who is indifferent to gains or losses. If krisk = 2, then X is better
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than Y in the sense of MEG-risk. If krisk = 3, then this is reversed and Y is better than X. If

kgain = 2 or 3, then Y is better than X in the MEG-gain sense.

In particular, we see that if krisk = 3, then Y would be the better investment for this investor

in the MEG-risk sense as well as the MEG-gain sense for kgain = 1, 2, or 3. On the other hand,

if krisk = 2 and kgain = 2 or 3, then X is the better MEG-risk investment, while Y is the better

MEG-gain investment. For large enough krisk and kgain we get a confirmation of the correctness

of Proposition 3.3. As [a, c] = [47, 117] and [b, d] = [100, 200]. We have 47 < 100 < 117 < 200,

so the conditions are met. Also E(X) = E(Y ). It follows that for large enough krisk and kgain

that Y is the better MEG-risk and MEG-gain investments. We see that this is in fact true when

krisk = kgain = 3. Note that EGk(X) → 110− 47 = 63, while EGk(Y ) → 110− 100 = 10 as k

approaches infinity. Note also that EGk(−X)→ 117− 110 = 7, while EGk(−Y )→ 200− 100 =
100 as k approaches infinity.

A spontaneous question that arises is which would be the preference guideline suggested

by the MV criterion. Since Var(X) = 441 < Var (Y ) = 900, it follows that according to the

MV criterion the portfolio X should be always preferred to Y . It is worthwhile noting that it

reaches the same conclusion as the MEG conclusion in the case where krisk = 2 and kgain = 1.

If krisk = kgain = 2, then neither X nor Y is dominant in the MEG risk and gain sense. X has

the smaller risk premium, while Y has the greater gain premium. The MEG risk-gain approach

would correctly switch the preference order so preferring Y to X if krisk = kgain = 3.

These conclusions fit perfectly with the picture of a conservative/moderate investor who

prefers a smaller risk in return and chooses an investment with smaller variance compared to an

aggressive investor, who might accept greater risk for a greater possible return and chooses an

investment with a larger variance.

Example 3.5 Optimal MEG-risk coincides with Optimal MEG-gain and MV indif-

ference.

It is possible to construct a whole class of investments X and Y such that E(X) = E(Y )

and V ar(X) = V ar(Y ), so that the investments are indifferent under the MV criterion, but

where one is dominant over the other with respect to MEG-gain and MEG-risk as krisk and

kgain approach infinity.

Assume that E(X) = µ and X has positive density over (0, c) with µ < c < 2µ. Let Y be

distributed as 2µ−X. Then Y has a positive density over (2µ− c, 2µ), E(Y ) = µ and Var(Y ) =

Var(X) Then X and Y meet the assumptions of Proposition 3.3. where a = 0, b = 2µ− c, c = c,

and d = 2µ. It follows that X and Y are MV indifferent, but for large enough krisk and kgain,

Y dominates X in the MEG-risk and MEG-gain senses.

A further symmetry argument shows that in this case EGk(Y ) = EGk(−X) and EGk(−Y ) =
EGk(X), which is an interesting relation. That is, the MEG-risk of Y is the MEG-gain of X and

12



vice-versa. This follows since min(Y1, . . . , Yn) is equal in distribution to 2µ −max(X1, . . . , Xn)

and vice-versa.

Example 3.6 Let X have density f(x) = 2x/9 for 0 ≤ x ≤ 3. Then E(X) = 2. Let Y = 4−X.

Then Y has density g(y) = 2(4− y)/9 for 1 ≤ y ≤ 4. X and Y have equal means and variances,

so they are indifferent according to the MV approach. We know that for large enough krisk and

kgain that Y dominates X in the MEG approach. In fact, if k = 3, simple calculation shows that

EG3(X) ≈ 0.63 and EG3(−X) ≈ 0.57. Thus EG3(Y ) ≈ 0.57 and EG3(−Y ) ≈ 0.63. Then, Y

dominates X according to both MEG-risk and MEG-gain criteria for krisk = kgain = 3. Again

the MV-criterion fails to spotlight the superiority of Y to X for a gain-prone investor interested

in the upper bound of the domain.

4 Conclusion

A generalization of the MEG approach for making customized optimal asset allocation to con-

trol both down-performance and/or up-performance is proposed. The investor risk-aversion and

gain-propension are captured by personalized parameters of the EG indices. Sufficient conditions

such that the efficient MEG-risk frontier coincides with the most inefficient MEG-gain frontier,

are stated. On the other hand, if portfolios have asymmetrical distributions and/or the investor

profile is aggressive or conservative, the desirable occurrence that a portfolio be optimal under

the both criteria may occur. A sufficient condition for that is also stated. A warning is pin-

pointed: optimal allocation may be not preserved if the investor’s risk-gain profile changes. So,

the statement “optimal allocation" should be reworded as “optimal tailor-made allocation" to

the investor risk-aversion and gain-propensity.

Acknowledgments

The Authors are very grateful to Paola Modesti and Haim Shalit for stimulating and fruitful

discussions. The usual caveat applies.

5 Appendix

Proof of remark in Sec. 3.1 Without loss of generality, we may assume that Z1, . . . , Zm

all have mean 0. Otherwise, we can just subtract their means and add a constant at the end.

Denote the characteristic function of Zj by φj(t) = E(exp(itZj)) for each j. Then since Zj is

equal in distribution to −Zj it follows that φj(t) = φj(−t) for each j. Now if X =
�m
j=1 cjZj,

then X has characteristic function φX(t) =

m
j=1 φj(cjt). Thus −X =

�m
j=1(−cjZj). We have

φ−X(t) =

m
j=1 φj(−cjt) =


m
j=1 φj(cjt) = φX(t). It follows from the uniqueness theorem for

13



characteristic functions that X and −X have the same distribution. That is, X is a symmetric

random variable.�
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