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Abstract

The structural, vibrational and response properties of the (n,0) and (m,m) MgO nanotubes are

computed by using a gaussian type basis set, a hybrid functional (B3LYP) and the CRYSTAL09

code. Tubes in the range 6 ≤ n ≤ 140 and 3 ≤ m ≤ 70 have been considered, being n = 2 ∗ m

the number of MgO units in the unit cell (so, the maximum number of atoms is 280). Tubes are

built by rolling up the fully relaxed 2-dimensional conventional cell (2 MgO units, with oxygen

atoms protruding from the Mg plane alternately up and down by 0.38 Å). The relative stability of

the (n,0) with respect to the (m,m) family, the relaxation energy and equilibrium geometry, the

band gap, the IR vibrational frequencies and intensities, and the electronic and ionic contributions

to the polarizability are reported. All these properties are shown to converge smoothly to the

monolayer values. Absence of negative vibrational frequencies confirms that the tubes have a

stable structure. The parallel component of the polarizability α∥ converges very rapidly to the

monolayer value, whereas α⊥ is still changing at n=140; however, when extrapolated to very large

n values, it coincides with the monolayer value to within 1%. The electronic contribution to α is

in all cases (α∥ and α⊥; 6 ≤ n ≤ 140) smaller than the vibrational contribution by about a factor

of three, at variance with respect to more covalent tubes such as the BN ones, for which the ratio

between the two contributions is reversed.

Keywords: Nanotubes, MgO, polarizability components, electronic and ionic contributions, B3LYP hybrid

functional, gaussian basis sets, CRYSTAL code
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I. INTRODUCTION

Since their discovery,1 carbon nanotubes (CNT) have attracted the attention of the sci-

entific community for their unique electrical, mechanical and thermal properties.2 Search for

noncarbon nanotubes started very soon, at first in the domain of layered highly anisotropic

phases such as hexagonal boron nitride and transition metal disulfides compounds that can

also adopt cage-like structures such as fullerenes,3–5 and then exploring isotropic inorganic

compounds that can be “precursors” of nanomaterials in a large variety of morphological

forms. Nowadays, big attention is paid to preparation of nanomaterials based on NaCl-like

compounds, such as MgO. Solid MgO is known to be an inert material with a high melting

point, consistent with strong ionic bonding, and a wide band gap of 7.8 eV.6 Its substrate

has been used for high-temperature superconductor (HTSC) thin-film coating applications

worldwide. Properties of materials at a finite scale of length are often different from the

corresponding bulk properties. For example, a pronounced covalent contribution to the ionic

bonding exists in small MgO nanoparticles, whereas almost pure ionic bonds are typical for

the bulk of this compound.7–17 The atomic structures of small-sized MgO clusters have been

investigated experimentally7,18 and theoretically.7–17 Mass spectroscopy experiments18,19 in-

dicate that small (MgO)3 subunits are relatively stable. “ Magic (MgO)i clusters” for i = 2,

4, 6, 9, 12, and 15 have been discovered by Ziemann and Castleman using laser-ionization

time-of-flight mass spectrometry.7

In the present paper we investigate the properties of two families of MgO tubes, namely

(n,0) and (n,n). In both cases the coordination of cations and anions is 4, as in the monolayer,

whereas it is 6 in the bulk. In the (n,n) case however cation rings alternate with anion rings,

whereas in (n,0) tubes oxygen and magnesium atoms are present in the same ring (see figure

1). The same scheme has been previously used for investigating (CNT)20,21 imogolite22,

chrysotile23, BNNT24. Recent improvements in the CRYSTAL09 code permit full use of

symmetry (the point group contains 140 ∗ 4 = 560 symmetry operators for the (140, 0)

tube) so as to drastically reduce the computational cost. The total energy and its difference

with respect to the MgO monolayer (l-MgO), the relaxation geometry and energy, the IR

vibrational frequencies and intensities are investigated as a function of n. The polarizability

of the tube (both parallel and perpendicular components, electronic and ionic contribution)

is also explored, and it is shown to tend to the monolayer values as n → ∞.
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The structure of the paper is as follows: section II is devoted to the description of the

method, section III presents the results whereas a few conclusions are drawn in section IV.

II. COMPUTATIONAL METHOD AND DETAILS

Calculations were performed by using the periodic ab initio CRYSTAL09 code25, the hy-

brid B3LYP functional of the density functional theory (DFT)26 and a Gaussian type basis

set (a 8-511G* contraction for Mg,27 and a 8-411G* set for O28, where the exponents of the

most diffuse valence shells were optimized). The DFT exchange-correlation contribution is

evaluated by numerical integration over the unit cell volume. Radial and angular points of

the integration grid are generated through Gauss-Legendre radial quadrature and Lebedev

two-dimensional angular point distributions. A (99,1454) pruned grid (XXLGRID keyword

in the CRYSTAL09 manual),29 corresponding to 99 radial and 1454 angular points, was em-

ployed. The integration accuracy can be estimated by the error in the electronic charge per

unit cell, ∆e = 1.0×10−3|e| (out of a total of 2800 electrons for the (140,0) MgO nanotube).

Other details on the grid generation and its influence on the accuracy and cost can be found

in Ref. 30. Evaluation of the Coulomb and exact exchange infinite series is controlled by five

parameters29 (T1, T2, T3, T4, T5), whose values are set to T1 = T2 = T3 = T4 =
1
2
T5 = TI . In

this work we used TI = 10 and a shrinking factor (the number of points along each reciprocal

lattice vector at which the Fock matrix is diagonalized) IS = 8. The electronic polarizability

is evaluated through the Coupled Perturbed Kohn-Sham (CPKS) scheme.31,32 Convergence

of the SCF zeroth-order energy and CPHF/CPKS iterations is controlled by the TE and TCP

parameters, respectively. The SCF cycles are terminated when the difference between the

values of the total energy (E) or polarizability (α) for two successive cycles is less than 10−TE

Hartree or 10−TCP Bohr3, respectively: here TE = 11 and TCP = 4 are used. Sometimes

iterations produce large oscillations in the Fock/KS matrix, in which case these matrices

were damped by mixing at the m and m− 1 cycles with the FMIXING parameter29 of 60%.

Symmetry of the tubes (rototranslational and planes, both vertical and horizontal) is fully

exploited in the calculation, so that, in spite of a high number of atoms in the tube unit cell

(up to 280) and the use of an all-electrons basis set and a hybrid functional, the computa-

tional cost is low. For example, a full structure optimization (18 steps) on a local computing

cluster with 12 cores (Intel Xeon X5660 2.8 GHZ) costs about two hours of elapsed time for
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the n = 100 tube.

A. Geometry optimization

Fractional atomic coordinates and unit-cell parameters were optimized within a quasi-

Newton scheme using analytic energy gradients combined with the BFGS algorithm for

Hessian updating.33–36 The two kinds of tubes have been rolled up (see the “NANOTUBE”

keyword in the Nanotubes’ tutorial at www.crystal.unito.it) starting from the primitive

2D cell (1 MgO units), and imposing the full rototranslational symmetry (560 operators

for the (140,0) tube). After geometry optimization, the vibrational spectrum has been

computed. The presence of imaginary frequencies in the spectrum indicates that the

optimized structure is not a true global minimum. Symmetry has then been reduced in

order to eliminate constraints and locate the correct equilibrium geometry. To this aim the

normal coordinates corresponding to the imaginary frequencies have been explored looking

for a new energy minimum. The vibrational frequencies obtained on the resulting structure

are all positive. The very large relaxation taking place in the nanotubes is due to the fact

that the 2D cell containing 1 MgO unit is not the most stable structure for the monolayer.

A much more physical model for the MgO slab is obtained by considering a supercell of the

2D lattice containing 2 MgO units, as shown in figure 1. If this double 2D cell is optimized,

the same kind of buckling observed in the nanotubes is reproduced in the monolayer.

When the tubes are rolled up starting from this larger non planar 2D cell, the number of

symmetry operators is half than starting from the planar layer (280 for the (140,0) tube, as

only half of the cations and of the anions are symmetry related). All the frequencies are in

this case positive, confirming that the equilibrium position is a real minimum. The effect of

such relaxation is illustrated in figure 2. Open circles give the trend of the energy difference

between the unbuckled nanotubes and the unbuckled planar slab. The full circles provide

the same energy difference when the buckled structures are considered.
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B. Frequencies and polarizability

The total static polarizability is determined as follows:

α0 = αe +
∑
j

Z
2

j

ν2
j

(1)

where αe is the electronic (clamped ion) contribution. The vibrational (ionic) contribution

is given, in the double harmonic approximation, by the second term on the right hand

side. Frequencies were obtained by diagonalizing the dynamical matrix, found by numerical

differentiation of the analytical energy gradients (see Ref. 37 for details). Z
2

j is a mass

weighted effective mode Born charge and νj is the vibrational frequency of the mode j.

Born charges were calculated using a Berry phase-like scheme38,39. For the largest tube

(n = 140) there are more than 20 modes at less than 10 cm−1; the Eckart conditions40

are imposed in order to eliminate translational and rotational spurious contributions to the

dynamic matrix.

III. RESULTS AND DISCUSSION

A. Bulk and monolayer

For comparison we report here bulk MgO and (001) monolayer properties. If planarity

is imposed to the layer, the surface formation energy is 0.974 eV and the lattice parameter

of the primitive cell (containing one Mg and one O atom/cell) shrinks from a = 4.23 Å (the

bulk value; the experiment41 is at 4.19 Å) to 2.80 Å (corresponding to 3.96 Å in a double

cell). However this geometry is a saddle point rather than a minimum, as the negative value

of one border-zone (k⃗ = (0.5, 0.5)) frequency confirms (-129 cm−1). This mode corresponds

to the displacement of the two oxygen atoms in opposite directions along z. When a double

cell is optimized the oxygen atoms move vertically by ±0.38 Å, the lattice parameter further

reduces to 3.89 Å and the energy lowers by 0.035 eV/MgO. The bulk band gap (BG) is 7.4

eV ( 7.8 eV from experiment42); it increases to 9.65 eV in the relaxed monolayer. The triple-

degenerate F1ν transverse optical (TO) and longitudinal optical (LO) vibrational modes are

at 384 cm−1 and 759 cm−1 (exp = 394 cm−1 and 724 cm−1, respectively41); they split into

two modes (A and E) with ν = 577 cm−1 and 609 cm−1 for the planar slab and 572 cm−1
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and 621 cm−1 for the non planar one.

The calculated value of the bulk dielectric constant ϵe (electronic) is 2.48 to be compared to

2.38 from experiment43. The value of the static α0 constant is 9.69 (9.83 from experiment44).

The fully relaxed α∥ and α⊥ slab values are 2.258 and 0.811 for αe and 7.082 and 1.761 Å3

for α0 (the corresponding numbers for the planar slab are 2.241, 0.756, 7.091 and 1.832 Å3).

Mulliken net charges in the bulk are ±1.81 |e| and the bond population is as small as

+0.004 |e|, confirming the fully ionic nature of the Mg-O bond. In the slab the Mulliken

net charges are slightly smaller (±1.72 |e|) and the bond population slightly larger (+0.027

|e|), indicating the appearance of some degree of covalent character. The nanotube charge

and bond population are very close to the values in the slab even at low n values (±1.72 |e|

and +0.026 |e|, respectively, at n=12) and converge very rapidly to the slab limiting value.

Born charges provide a measure of the polarizability of the system, and represent a more

physical measure of the behaviour of the charge distribution. Their value (we report one

third of the trace of the tensor) is 1.98 for the bulk, 1.66 for the monolayer and 1.51 for

the (12,0) MgO nanotube, with a variation from the bulk to the (12,0) nanotube nearly five

times larger than for the Mulliken charges.

B. Nanotubes: geometry and energy

Table I, first column, shows (∆̄E), the energy difference between the (n,0) and the

(n/2,n/2) tubes (see also figure 4, top). ∆̄E is as large as 16 mHa (0.435 eV) per MgO

at n=12 (24 atoms) and decreases by two orders of magnitude to 0.158 mHa (0.0043 eV)

per MgO at n=140 (280 atoms). There are two possible reasons for the larger stability of the

(n,0) tubes with respect to the (n/2,n/2) ones: a) a different pattern of the fourfold coordi-

nation of both cations and anions (for the (n/2,n/2) tubes the four neighbors of Mg belong

to different rings, whereas for (n,0) two of the neighbors are on the same ring, as shown

in figure 1, b) the lower radius (and the higher strain) of (n/2,n/2) tubes with respect to

(n,0), as shown in figure 3. In order to separate these two effects, ∆̄E has also been reported

as a function of the tube radius (we used RMg for the comparison); the results are shown

in figure 4, bottom. It turns out that the separation of the two curves reduces drastically;

(n,0) tubes are, however, more stable than the (m,m) tubes, the difference tending to zero

for very large tubes.
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The second column in table I provides the relaxation energy δE of the (n,0) tubes, i.e. the

energy difference between the equilibrium structure of the tube and the value obtained by

rigidly rolling up the equilibrium monolayer. For the smallest tube it is as large as 33.6

mHa (0.914 eV) per MgO unit, then it decreases rapidly (see figure 5). At n = 100 δE is

negligible (4 µHa or 0.0001 eV, about four orders of magnitude smaller than for n = 6).

The third column provides ∆E, the energy difference between the tube and the monolayer.

Also ∆E becomes negligible (35 µHa or 0.00095 eV) at n larger than 100. It should be

noticed that the very regular behaviour of both curves, shown in figure 5, documents the

high numerical accuracy of the code; the ∆E trend also implies that the same accuracy

is obtained when treating systems of different dimensionality (1D and 2D). Columns Ru,

RMg and RO provide a measure of geometrical relaxation, that for the smallest tubes is very

important, as shown by figure 3. There are two types of O atoms, “inside” and “outside”

the Mg ring (as was for the slab, with one oxygen above and one below the Mg plane). For

small radii all atoms tend to move outwards, in order to reduce the strain; in (12,0), the Mg

radius increases by 0.11 Å whereas one anion (O outside) moves farther away by as much

as 0.53 Å, in order to reduce short range repulsion, which is no more compensated by the

strong electrostatic field as in the bulk. The oxygen moving “inside” reduces its radius by

0.23 Å. At larger radii (the figure reports data for (24,0) and (12,12)) relaxation is nearly

negligible, and the two oxygen radii are already at ±0.38 Å with respect to the Mg radius,

as in the slab they are at ±0.38 Å from the Mg monolayer.

C. Nanotubes: band gap and polarizability

The bandgap (BG) shows good convergence to the slab indirect gap value of 9.65 eV:

it is 9.02 eV at n = 6 (this tube is very strained), increases to 9.55 eV at n = 12 and

reaches 9.60 eV at n = 48. The last six columns in table I report the values of the parallel

and perpendicular polarizability of the (n,0) tubes as a function of n (see also figure 6).

The electronic uncoupled contribution (often indicated as Sum Over States - SOS -) is first

reported; it corresponds to the situation in which the effect of the applied field on the charge

distribution is not taken into account (in other words the unperturbed charge distribution

interacts with the field). Then, the fully coupled polarizability is given, as resulting from

the CPKS-SCF scheme.45 It is interesting to note that the coupling (resulting from the dif-
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ference between αe and αSOS) increases by about 7% the parallel value, and decreases by

more than 31% the perpendicular value at n = 6. At the other extreme (n = 140) the

correction remains essentially the same for α∥ (7%), and reduces to about 15% for α⊥. The

two components (α∥ and α⊥) have about the same value at the SOS level, whereas for the

fully coupled case α∥ is about two times larger than α⊥ at n = 6; this ratio decreases to

1.5 at n = 140. In the last line of the table the values for the monolayer are shown: the

asymptotic value for the tubes, obtained by fitting the data from n = 24 to n = 140 are also

reported. The asymptotic (∞) and the monolayer values differ by less than 1% in all cases.

Finally, the vibrational contribution to the polarizability (αvib) is also shown, as obtained

from a frequency calculation (αvib = α0 - αe, table I). The vibrational contribution is larger

by a factor 1.4 than the electronic one for α⊥ at n = 6, but increases much faster than

the latter along the series: at n = 140 the electronic contribution is only 37% of the total.

For the parallel contribution the situation is slightly different: the vibrational contribution

is about two times the electronic one at n=6, and this ratio remains about constant up to

n = 140. The parallel component of α0 increases along the series by about 0.8 Å3, to be

compared to 1.5 Å3 for the perpendicular component. Also for the vibrational contribution

the extrapolated value α(n → ∞) is extremely close to the monolayer limit.

It is interesting to analyze where the vibrational contribution comes from. For all tubes

there are only four IR active modes (whose symmetry is A, E1, E2, and E3). They are

obviously the only ones that contribute to the polarizability. The A mode describes a mo-

tion that contributes to polarization along the tube axis (direction x in our orientation),

whereas the twofold degenerate modes E contribute to the polarization in the other two di-

rections (y and z, equivalent by symmetry). The wavenumbers and intensities are reported

in table II and shown in figure 7 (in the latter only the results from n=24 are shown, to

better identify the limiting values). In order to be able to extrapolate also the individ-

ual contributions to polarizability to the infinite radius limit, we performed two additional

calculations for the (160,0) and (180,0) tubes (the latter contains 360 atoms). Graphical an-

imation of the vibrational modes is provided as supplementary information on CRYSTAL’s

website (http://www.crystal.unito.it/prtfreq/jmol.html). The A mode corresponds to the

opposite displacements of Mg and O atoms along the x-direction (the periodic direction).

The corresponding vibrational frequency tends, in the infinite radius limit, to the one of the

degenerate E modes of the monolayer. This mode contributes to the parallel polarizability
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αxx of the tube which, in turn, corresponds in the n → ∞ limit to the parallel component

of the monolayer αXX . Table II shows that for the largest tubes the frequency and inten-

sity coincide with the monolayer values. The twofold degenerate E1 mode is similar to the

A mode since Mg and O atoms move in opposite directions. Whereas in the A mode the

displacement takes place along the periodic x-direction, in the E1 mode the displacement is

parallel to the circumference of the tube. This mode corresponds to the other component

of the degenerate mode E of the monolayer, as confirmed by the trends of frequencies and

intensities provided in table II. This mode contributes to the transverse polarizability of

the nanotubes αyy = αzz, which in the n → ∞ limit corresponds to half of the parallel

polarizability of the slab αY Y /2. The E2 mode involves opposite displacements of Mg and

O atoms along the direction which is perpendicular to the circumference of the tube. This

mode is equivalent to the out of plane non degenerate mode of the monolayer. At the n → ∞

limit the contribution of the E2 mode to the transverse αzz (αyy) polarizability of the tube

tends to half the perpendicular component αZZ of the slab (αzz = αyy = 0.53 Å3 for n=180,

while αZZ/2 = (1.761 - 0.811)/2 = 0.48 Å3). The E3 mode is similar to the E1 mode since

the displacements of Mg and O atoms are opposite and parallel to the circumference of the

tube. The only difference is that neighboring rows (rings) of atoms are moving in phase in

E1 while in E3 they are moving in antiphase. In the slab this mode corresponds to a phonon

in a point of the First Brillouin Zone different from Γ. For this reason in the n → ∞ limit

the contribution of this mode to the polarizability is vanishing. In all cases, as shown in

table II and figure 7, the asymptotic values for frequencies, intensities and contribution to

the polarizability coincide with high accuracy with the monolayer values.

It is interesting to compare the total polarizability of the MgO tube with the one of the more

covalent BN case, for tubes of about the same radius. At n=60, the numbers to be compared

with the 60 entry of our table I are 4.59 Å3 (electronic contribution) and 7.15 Å3 (total)

for α∥ of BN, and 2.32 Å3 and 3.17 Å3 for α⊥ of BN24. The electronic contribution is then

about twice larger for BN than for MgO, whereas the total α0 of BN is about the same as in

MgO, indicating that the vibrational contribution is much larger for MgO that for BN. The

reason is simple: looking just at the largest contribution to polarizability and considering

the limiting case of the slab, the BN frequency is larger than the MgO one (836 and 621

cm−1, respectively; remember that the frequency appears squared to the denominator in the

formula defining the polarizability) and the intensity (that appears in the numerator) much
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smaller (13.06 km/mol for BN and 91 for MgO).

IV. CONCLUSIONS

In the present study the structural, vibrational and response properties of the MgO

(n,0) and (m,m) nanotube families have been investigated. The (n,0) tubes have been

shown to be more stable than the (m,m) ones; the energy difference decreases when the

radius increases and both families tend to the monolayer case (described by a cell containing

two MgO units, the two oxygen atoms being displaced above and below the Mg plane)

regularly. Tubes are shown to be stable structure (all vibrational frequencies are positive).

Both the electronic and the ionic (vibrational) contributions to the polarizability have been

evaluated and compared to the ones of the monolayer. The components parallel to the tube

axis converge very rapidly to the monolayer asymptotic value, whereas convergence of the

perpendicular component is much slower. The electronic contribution to the polarizability is

smaller than the vibrational one, indicating that these tubes are characterized by IR active

modes with very low frequencies. Overall, this study shows that the properties of tubes as

large as (140,0), that contains 280 atoms in the unit cell and has a radius not too far from

the ones of technological interest (30 - 100 nm),46 can be accurately simulated with a rich

all electron basis set and adopting a sophisticated functional, such as the hybrid B3LYP.
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Figures
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FIG. 1: The optimized geometry of MgO systems of different dimensionality: bulk ((a), 3D);

primitive planar (unbuckled) and conventional non planar (buckled) cell of the monolayer ((b) and

(c), 2D); (12,0) and (12,12) nanotubes, ((d) and (e), 1D).
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FIG. 2: Energy difference ∆E in mHa (10−3 Hartree) between the (n,0) nanotubes and the planar

(unbuckled, open circle) and non planar (buckled, filled circles) monolayer of MgO. The zero of

the energy corresponds to the non planar (conventional, double) cell. The energy of the primitive

planar cell, containing 1 MgO units is 1.302 mHa (0.035 eV) higher. When all the oxygens are

forced to be symmetry related (and then to have the same radial distance from the tube axis) the

large radius limit is the planar slab. When oxygens are allowed to relax in opposite directions the

tube energy tends to the relaxed monolayer, in which the oxygen atoms are protruding by ± 0.38

Å.
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FIG. 3: The unrelaxed and relaxed distances (in Å) of Mg and O atoms from the tube axis for

(12, 0), (6, 6), (24, 0) and (12, 12) tubes.
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FIG. 4: Energy difference ∆E in mHa per MgO units with respect to the slab for the (n, 0) (open

circles) and (n/2, n/2) (filled circles) tubes as a function of n (top). In the bottom figure the same

energy difference is plotted as a function of the tube radius.
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FIG. 5: Relaxation energy δE and energy difference ∆E between the relaxed (n, 0) nanotube and

the relaxed monolayer as a function of n. Energies are in mHa per MgO unit.
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FIG. 6: The longitudinal α∥ and transverse α⊥ polarizability of (n,0) MgO nanotubes as a function

of the nanotube size n. The electronic Uncoupled (or SOS: Sum Over States) αSOS , the electronic

Coupled αe and the vibrational αvib contributions are reported. Values are in Å3 per MgO unit.

The fitting function α = a+ b
n + c

n2 + d
n3 has been used.
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FIG. 7: Frequencies (ν) and intensities (I) for the IR active modes of the (n,0) nanotubes as a

function of n. The mode symmetry is indicated. The right scale in the frequency and intensity

figures represents the data of the E3 mode, and the left scale corresponds to the data for the other

three modes A, E1, E2. Values are in cm−1 for frequency ν and km/mol for the intensity (I).
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α∥ α⊥

n ∆̄E δE ∆E Ru RMg RO BG αe
SOS αe α0 αe

SOS αe α0

6 33601 4568 1.86 1.98 2.06 9.02 2.134 2.300 6.239 1.803 1.236 2.951

12 15664 4489 1646 3.71 3.82 3.86 9.55 2.088 2.259 6.873 1.746 1.272 2.905

24 3801 437 881 7.42 7.41 7.18 9.56 2.099 2.261 6.865 1.748 1.356 3.287

30 205 622 9.28 9.26 8.99 9.58 2.101 2.261 6.900 1.754 1.383 3.402

36 1684 109 459 11.13 11.11 10.81 9.59 2.102 2.261 6.940 1.758 1.403 3.493

40 1364 75 383 12.37 12.35 12.04 9.59 2.102 2.260 6.953 1.760 1.413 3.544

48 956 40 276 14.84 14.82 14.49 9.60 2.102 2.260 6.990 1.762 1.430 3.632

60 619 19 183 18.56 18.54 18.19 9.61 2.102 2.259 7.009 1.764 1.448 3.733

80 372 6 106 24.74 24.73 24.37 9.62 2.102 2.259 7.043 1.765 1.468 3.853

100 257 4 68 30.93 30.91 30.55 9.62 2.102 2.259 7.056 1.766 1.480 3.939

140 158 1 35 43.29 43.28 42.91 9.63 2.102 2.258 7.066 1.767 1.495 4.049

∞ 0 0 9.66 2.102 2.258 7.084 1.767 1.536 4.376

Layer∗ 1.767 1.535 4.422

Layer 0 0 9.65 2.101 2.258 7.082 1.432 0.811 1.761

TABLE I: Calculated properties of the (n,0) series of MgO nanotubes and of the monolayer (l-MgO).

∆̄E, δE and ∆E are the energy difference between the (n,0) tube and the corresponding (n/2,n/2)

one (they have the same number of atoms), the relaxation energy for the rolled configuration and

the energy difference between the relaxed tube and l-MgO, respectively. Values reported are in µHa

per MgO unit. Ru is the unrelaxed radius (in Å) of the Mg cations (the anions O are at Ru±0.38);

RMg and RO are the same distances after relaxation (RO refers to the “inner” oxygen, see text

and figure 3). The radius of the oxygen atom “outside” the tube (at Ru + 0.38 before relaxation)

remains essentially unaltered. BG is the band gap in eV. α∥ and α⊥ are the longitudinal and

transverse components of the electronic αe, and static α0 polarizabilities per MgO unit (in Å3).

The unrelaxed (sum over states) αSOS values are also reported. The Layer∗ row gives the average

of the monolayer perpendicular polarizabilities per MgO unit using the relation α⊥
n = 1

2(α
⊥
l + α

∥
l )

(l stands for layer, n is the label of the tube) which should be equal to the large radius limit (∞

row) of the transverse nanotube polarizability.
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Frequency(ν) Intensity(I)

n A E1 E2 E3 A E1 E2 E3

6 637 636 420 716 397 256 31 0

12 591 684 520 685 401 260 70 0

24 589 572 591 707 397 2 220 150

30 586 580 594 699 396 10 233 142

36 582 585 598 690 395 39 224 133

40 581 587 600 686 395 61 215 126

48 579 591 604 679 394 106 195 112

60 577 593 607 672 394 165 168 91

80 575 594 611 666 393 236 138 63

100 574 593 613 661 393 282 121 42

140 573 591 616 658 393 327 107 21

160 573 590 616 657 393 340 103 16

180 573 588 617 657 393 348 100 12

∞ 572 574 621 656 393 401 90 0

Layer 572 621 654 786 91 0

E A E´ E A E´

TABLE II: The IR active vibrational frequencies and intensities for the (n,0) series of MgO nan-

otubes and double cell monolayer (l-MgO). The extrapolated values are obtained by fitting the

data from n=80 to n=180 with the function f(n) = a + b
n + c

n2 . The last line reports the double

cell monolayer values. The tube modes A and E1 modes of the tube correspond to the two com-

ponents of the degenerated mode E of the slab. Whereas the degenerate E2 and E3 modes tend to

the nondegenerate A and the degenerate E´ modes of the monolayer, respectively. The intensity

of the A and E1 modes of the tube tends to Eslab
2 = 786

2 = 393. Values reported are in cm−1 for

the frequency and km.mol−1 for the intensity.
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