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ABSTRACT
Secreted class 3 semaphorins (Sema3), which signal through holoreceptor complexes that are
formed by different subunits, such as neuropilins (Nrps), proteoglycans, and plexins, were initially
characterized as fundamental regulators of axon guidance during embryogenesis. Subsequently,
Sema3A, Sema3C, Sema3D, and Sema3E were discovered to play crucial roles in cardiovascular
development, mainly acting through Nrp1 and Plexin D1, which funnels the signal of multiple
Sema3 in vascular endothelial cells. Mechanistically, Sema3 proteins control cardiovascular
patterning through the enzymatic GTPase-activating-protein activity of the cytodomain of Plexin
D1, which negatively regulates the function of Rap1, a small GTPase that is well-known for its ability
to drive vascular morphogenesis and to elicit the conformational activation of integrin adhesion
receptors.Q2

The complex morphogenetic events that lead to the
development of cardiovascular system, which have been

15 extensively described1 and/or reviewed2,3 elsewhere, rely
on the property of cells to differentiate, adhere to each
other as well as to the surrounding extracellular matrix
and migrate in response to guidance cues.2,3 Among the
different molecules capable of regulating the directional-

20 ity of cell motility, semaphorins (Semas) represent a large
family of secreted or membrane-associated glycopro-
teins, conserved both structurally and functionally from
viruses to mammalians and able to provide repulsive or
attractive signals to migrating cells.

25 Sema were originally identified as axon guidance mol-
ecules in the developing nervous system.4,5 Afterward,
these molecules have been shown to regulate other physi-
ological and pathological processes outside of the ner-
vous system, such as vascular endothelial cell motility,

30 cardiovascular development, lymphocyte activation,
bone and lung morphogenesis, cancer angiogenesis and
metastatic dissemination.3,6,7,8 The Sema family is
divided into 8 classes accordingly to structural character-
istics and organisms of origin: class 1 and 2 are encoded

35 by invertebrates, classes 3–7 are from vertebrates, and
class V Sema are found in viruses. The overall molecular
architecture is quite different for the various Sema, being

characterized by class-specific structural domains. The
only exception is the conserved 500 amino acid-long 7-

40blade b-propeller folded “sema” domain, located close to
the N-terminus of the proteins and present in all family
members.9 In vertebrates, class 3 Sema (Sema3) consists
of 7 soluble molecules of»100 kDa (designated by letters
from A to G), which are produced as secreted proteins by

45cells of multiple lineages, including endothelial and epi-
thelial cells, neurons, and specific tumor cells. In Sema3,
the N-terminal sema domain is followed by a plexin-
semaphorin-integrin (PSI) domain, an immunoglobulin
(Ig)-like domain, and a C-terminal basic domain (Fig. 1).

50The core components of the Sema3 holoreceptor
complexes (Fig. 1) belong to the families of plexins and
neuropilins (Nrps) (Table 1). Plexins are a wide family
of transmembrane proteins categorized into 4 (A to D)
classes on the basis of structural similarities. The extra-

55cellular portion of plexins consists of several different
moieties, among which a central role is played by a
divergent sema domain; their intracellular region con-
tains instead a functionally crucial guanosine triphos-
phatase (GTPase)–activating protein (GAP) domain10-13

60(Fig. 1). Different Sema crystals have been analyzed so
far,14-18 indicating how all Semas are homodimers, in
which, differently from sema domain containing plexins,
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a ‘face-to-face’ interaction between the top surfaces of
the sema domains occurs.9 If compared to membrane

65 associated Semas, secreted Sema3 proteins display a less
hydrophobic dimer interface that crucially need to be
stabilized by disulphide bonds between Ig domains,
which are negatively regulated by the proteolytic activity
of furins.19,20 Crystal structures of several membrane

70 associated Semas in complex with their cognate plexin
receptors unveiled that electrostatic interactions mediate
an head-to-head interaction between each sema domain
of a Sema dimer and the sema domain of a monomeric
plexin, giving rise to a 2:2 Sema-plexin heterote-

75 tramer.9,15-17 Functional studies provided evidence that
the same head-to-head interface is likely employed by

Sema3A to bind to and signal through plexin recep-
tors,17 nevertheless, since so far no physiological high
affinity binding has been revealed between the sema

80domains of Sema3A and plexins,18 such a canonical
binding between Sema3A and plexins must be extremely
weak and need the essential involvement of co-receptors
such as Nrp118 or proteoglycans.21,22

In vertebrates 2 Nrps are present (Nrp1 and Nrp2)
85that act as Sema3 co-receptors.23 The extracellular

domains of both Nrps contain 2 complement binding
domains (a1/a2), 2 coagulation factor V/VIII homology
domains (b1/b2), and a MAM domain (c), while the short
cytoplasmic domain is about 40 amino acids long, and

90contains a C-terminal 3 amino acid-long (S-E-A)
sequence that represents a PDZ-binding motif. In addi-
tion to Sema3, Nrp1 and Nrp2 also bind to vascular endo-
thelial growth factor-A (VEGF-A) and -C (VEGF-C)
family members respectively and function as their co-

95receptors.23-25 The b1 domain mediates the high affinity
binding of Nrp1 to the basic domain of Sema3 proteins
and VEGF-A.26-31 While VEGF-A naturally displays a C-
terminal arginine, a furin-dependent proteolytic process-
ing of Sema3 must occur to allow the exposure of the

100Nrp1-binding C-terminal basic sequence.19,23,30-33

Accordingly, the C-terminal basic stretch peptides of
furin-processed Sema3A or Sema3F inhibit effectively
and dose-dependently the binding of VEGF-A to the b1

Figure 1. Sema3A signaling via the Nrp1-Plexin A/D1 holoreceptor. From the N- to the C-terminus Sema3A displays a sema domain, a
PSI domain, an Ig-like domain, and a basic domain. Nrp1 and type A or D plexins constitute the main components of the Sema3A holor-
eceptor. The extracellular domains of Nrp1 contain 2 complement binding domains (a1/a2), 2 coagulation factor V/VIII homology
domains (b1/b2), and a MAM domain (c). The b1 domain of Nrp1 mediates its high affinity (black double arrow) binding of Nrps to the
basic domain of Sema3A. The extracellular portion of plexins consists of a sema domain and a series of 3 PSI and 4 integrin-transcription
factor-plexin (IPT) domains. The intracellular segment of plexins primarily comprises a GAP domain that exerts its enzymatic activity on
Rap1, a small GTPase that, via effector proteins such as RIAM1, promotes the conformational activation of integrins through talin. The
dimeric sema domains of Sema3A would interact at very low affinity (gray double arrow) with the sema domains of 2 monomeric type
A/D plexins, thus promoting their dimerization (not shown) and the activation of their cytosolic Rap1 GAP enzymatic activity, finally
resulting in integrin inactivation.

Table 1. Sema3 holoreceptor core components. Nrp co-receptors
and plexin receptor that are crucial for transduction of signals eli-
cited by the different Sema3 proteins either in vivo or in vitro are
highlighted in bold.

Semaphorin Neuropilin References Plexin References

Sema3A Nrp1 90,92,93 Plexin A1, A2,
A3, A4, D1

58-63,94,95

Sema3B Nrp1, Nrp2 79,96 ?
Sema3C Nrp1, Nrp2 90,96,97 Plexin A2, D1 59,63,81,97-99

Sema3D Nrp1 100,101 ?
Sema3E Nrp1 99,102 Plexin D1 64,99,103

Sema3F Nrp1, Nrp2 26,90 Plexin A1, A2, A3 58-60,95

Sema3G Nrp1, Nrp2 91,104 ?
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domain of Nrp1.30,33 Furthermore, 3 independent studies
105 proved that VEGF-A and Sema3A compete for binding

Nrp1 on the cell surface and how this competition
encompasses a binding site within Nrp1 b1 domain.34-36

A surface plasmon resonance-based study did not detect
any competition between Sema3A and VEGF-A for bind-

110 ing to immobilized Nrp1-Fc 37; the reason(s) for discrep-
ancies among the work by Appleton et al.37 and the other
3 studies34-36 are presently unclear, but they could be due,
for example, to differences in furin-cleavage patterning of
Sema3A C-terminal basic stretch.19,33 Indeed, an-N-

115 terminal disulphide-bonded helical region precedes the
C-terminal basic stretch of Sema3 proteins33 and, while
the C-terminal basic stretch of Sema3F has only one furin
consensus site, Sema3A displays instead 3 furin cleavage
sites whose processing is central for Sema3A regula-

120 tion.19,33 In particular, shortening the distance between
the helical region and the C-terminal motif results in a
concomitant reduction of Sema3A affinity for Nrp1 b1
domain33 and biological activity.19 The recent finding
that proteolytic processing is needed to expose the C-

125 terminal arginine of VEGF-C that directly binds the
Nrp2 b1 domain25 suggests how the binding of Nrp
ligands other than Sema3 proteins might also be regulated
by the protease-driven strategy. The a1 domain of Nrp1
does not directly bind with high affinity the sema domain

130 of Sema3A,18 but rather favors the coordination of the lat-
ter with the sema domain of type A plexins, such as
Plexin A2.9,18 All together, these data suggest a model in
which, while the b1 domain of Nrp1 binds with high
affinity to the basic domain of Sema3A, the a1 domain of

135 Nrp1 help the sema domain of Sema3A to coordinate
with sema domain of type A plexins and likely activate
the signaling of the latter.9,18,38

In this review, we summarize the current advances on
the involvement of Sema3 in cardiovascular development

140 (Table 2).

Sema3A

In the developing zebrafish embryo, Sema3A is required
for the proper patterning of trunk intersegmental blood
vessels.39,40 Gene and/or genome duplication are mecha-

145 nisms for functional improvement during evolution.41

Compared to other vertebrate species, the zebrafish tele-
ost ancestor underwent an additional round of whole-
genome duplication.41 As a consequence, the zebrafish
displays 2 Sema3a ortholog genes, sema3a1 and sema3a2

150 that are expressed in the developing somites.39 Somite-
derived Sema3A1 and Sema3A2 proteins restrain within
the intersomitic boundaries the vascular sprouts that
bud from trunk large blood vessels. Indeed, sema3a1/
sema3a2 and plxnd1 morphants, as well as the genetic

155plxnd1 mutant out-of-bounds (obd) display inter-seg-
mental blood vessel patterning defects characterized by
angiogenic sprouts invading the central region of
somites. In addition, Sema3A/PlexinD1 signaling in qui-
escent aortic ECs adjacent to somites was found to pro-

160mote the autocrine secretion of a soluble VEGFR1 splice
variant capable of sequestering VEGF and restricting
blood vessel sprouting to somite boundaries.40

Immunohistochemical analysis of the spatial distribu-
tion of Sema3A protein in the developing quail embryo

165was consistent with a negative regulation of vascular pat-
terning.42 Fittingly, implantation of Sema3A antibody-
soaked beads in the developing forelimb of chick
embryos caused substantial alterations in the developing
vascular pattern; capillaries surrounding the Sema3A

170antibody-soaked bead were dilated, disorganized, and
converged toward the bead.42 Similarly, retrovirus-medi-
ated delivery of dominant negative constructs of Sema3A
holoreceptor components in vascular ECs of the develop-
ing chick embryo impaired blood vessel remodeling.43

175The very few Sema3a null mice that survive and go
beyond weaning, live longer, and display an altered
sympathetic cardiac innervation pattern that results in
sinus bradycardia.44 Cardiac-specific overexpression of
Sema3a induces a reduction of sympathetic innervation

180and transgenic animals display susceptibility to ventric-
ular tachycardia.44 Accordingly, it has been reported
that myocardial overexpression of Sema3a45 or intrave-
nous administration of recombinant Sema3A protein46

after infarction in rats can reduce the probability of
185ventricular tachycardia that frequently is an associated

response to injury, as a result of attenuated sympathetic
reinnervation. Moreover, a nonsynonymous polymor-
phism (I334V, rs138694505A>G) in exon 10 of the
human SEMA3A gene was associated with unexplained

190cardiac arrest and ventricular fibrillation; the axon
repelling activity SEMA3AI334V appears significantly
weaker of that of its wild type counterpart and in the
hearts of patients sympathetic nerves invade the suben-
docardial layer.47

195The angiogenic remodeling of both cephalic plexus
and dorsal longitudinal anastomotical vessel into mature
hierarchically organized vascular trees is severely defec-
tive in Sema3a knockout embryos.43 In addition, Sem-
a3a¡/¡ pups that survive until the adulthood present an

200excessive number of glomerular ECs associated with
renal vascular defects.48 The reported lack of vascular
abnormalities in one study on Sema3a null mice49 could
be due to the use of an age-and-stage matching strategy
to compare wild type and Sema3a null embryos; indeed,

205age-and-stage matching inherently overlooks the growth
retardation phenotype that, as previously described,50

usually characterize knockout embryos that display

CELL ADHESION & MIGRATION 3



vascular remodeling defects, such as Sema3a null mice.43

Of note, endothelial tip cells of murine retinal vascular
210 spouts were found to express much more Sema3a

mRNA than stalk ECs,51 and EC-specific Sema3a knock-
out mice were recently described to exhibit a significantly
increased number and length of endothelial tip cell filo-
podia in retinal vascular sprouts.52 The latter finding

215 emphasize how paracrine Sema3A secreted by non-
vascular cells of adjacent tissues does not rescue the spe-
cific function(s) that autocrine EC-derived Sema3A exerts
during sprouting angiogenesis.

The role of Nrp1 in Sema3A signaling in ECs appears to
220 be controversial. A Nrp1Sema¡ mouse strain harboring

mutations in a1 domain of Nrp1 that finally impair Sema3
protein signaling, at least in neurons, was previously gener-
ated.53 Differently from Nrp1 null mice, which die by E12.5,
60% of Nrp1Sema¡mouse was originally reported to survive

225 until P7 and to exhibit cardiac, but not vascular abnormali-
ties.53 However, more recently 2 independent studies54,55

reported how only 18% ofNrp1Sema¡mouse survive until P4
and present lung vascular abnormalities phenocopying the
so-called alveolar capillary dysplasia, i.e. severely reduced

230capillary density, centrally located and dilated alveolar
capillaries, hypertensive changes in arteriolar walls, anoma-
lous and misaligned pulmonary veins. However, the lack
angiogenic remodeling defects of major head and trunk
blood vessels in Nrp1Sema¡ mice53 and the fact that the vas-

235cular phenotype in both Sema3A43 and Nrp156 knockout
mice is, on the contrary, highly severe raises the possibility
that in mutant Nrp1Sema¡ the responsivity of ECs to
Sema3A, albeit reduced, could be, at least in part, main-
tained due to the existence of additional Sema3A co-recep-

240tors other than Nrp1, such as proteoglycans.21,22 Along this
line, it is remarkable that some misprojected axon bundles
are present in Plxna4 null, but neither in Nrp157 or in
Nrp1Sema-53 mutant mice, implying that Plexin A4 may
deliver Nrp1-independent Sema3A signals in some neuro-

245nal populations.58 Such a scenario would also be compatible

Table 2. Sema3 and Sema3 receptor mutants with cardiovascular phenotype.

Protein
Animal
model

Cardiovascular
phenotype References

Sema3A Mouse General ko Atrial defects, sinus bradycardia, angiogenic remodelling defect
of cephalic and dorsal longitudinal vessels, excessive number
of glomerular ECs.

43,44,48

No obvious cardiovascular phenotype 49

EC specific ko Increased number and length of filopodia in retinal tip
endothelial cells

52

Zebrafish Morphants Inter-segmental blood vessel patterning defects 39,40

Chicken Blocking antibodies,
dominant-negative
receptor constructs

Vascular patterning alterations, vascular remodelling impairment. 42,43

Sema3B Mouse General ko Cardiovascular phenotype not analyzed 79

Sema3C Mouse General ko Improper septation of the cardiac outflow tract, ventricular septal
defects, aortic arch defects

82

Sema3D Mouse General ko Anomalous pulmonary venous connection, atrial septal defects,
improper patterning of the coronary veins

88,89

Sema3E Mouse General ko Initially severe vascular defects (e.g., in dorsal aortae patterning)
that normalize during development

64,65,68

Sema3F Mouse General ko Cardiovascular phenotype not analyzed 105

Sema3G Mouse General ko No obvious cardiovascular phenotype 91

Nrp1 Mouse General ko Angiogenic remodelling defects of major head and trunk blood
vessels, improper septation of the cardiac outflow tract

56

Nrp1Sema¡ Cardiac defects, lung vascular abnormalities 53-55

EC specific ko Brain vasculature abnormalities, reduced branching and vessels
interconnections

106

Nrp2 Mouse General ko No obvious cardiovascular phenotype 107,108

Nrp1 and Nrp2 Mouse General ko Vascular anomalies in embryos and
placenta. 109

Nrp1Sema¡; Nrp2¡/¡ Bilateral atrial enlargement, anomalous origin of the coronary
arteries, ventricular septal defect, improper septation of the
cardiac outflow tract, no obvious vascular defects

53

Plexin A1 Mouse General ko No obvious cardiovascular phenotype 110,111

Plexin A2 Mouse General ko Persistent truncus arteriosus and lack of aortic and pulmonary
channel septation

with incomplete
penetrance. 112,113

Plexin A2andPlexin A4 Mouse General ko Cardiovascular defects with
high penetrance. 113

Plexin D1 Zebrafish Morphants and obd
genetic mutant

Inter-segmental blood vessel patterning defects 39

Mouse General ko Cyanotic after birth, vascular invasion in somite 63

EC specific ko Myocardial defects, reduction of bone microvasculature 62

4 D. VALDEMBRI ET AL.
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with the hypothesis that, similarly to membrane associated
Semas, Sema3A would directly bind, albeit at very low affin-
ity, and signal via plexins.17 Sema3A has been reported to
signal through Plexin A1,59 Plexin A2,18,60 Plexin A4,58,61

250 and Plexin D162 (Table 1). In turn, Plexin D1 was shown to
be significantly more efficient that type A plexins in forming
high affinity Nrp-dependent holoreceptor complexes for
Sema3A and Sema3C.63 Both Plexin A1 and Plexin A4 were
found to be required for Sema3A-elicited collapse of cul-

255 tured ECs.61 In addition, aortic ring sprouting assays and
Boyden chamber assays revealed how Sema3A inhibits less
efficiently the sprouting of aortic blood vessels or the migra-
tion of primary ECs isolated from Plxnd1¡/¡ than from
wild type animals.62 Therefore, Sema3Amay control in vivo

260 vascular morphogenesis by binding with high affinity to co-
receptors, such as Nrp1 or proteoglycans, and signal
through manifold low-affinity receptors, e.g. Plexin A1,
Plexin A2, Plexin A4 and Plexin D1 (Table 1).

Sema3E

265 Sema3E binds to high affinity Plexin D1 in a Nrp1-inde-
pendent manner64 (Table 1). Both in Sema3e and Plxnd1
knockout embryos blood vessels expand ectopically
throughout somites causing the loss of the typical stereo-
typed intersomitic vascular pattern.64 However, while

270 Plxnd1 knockout pups become cyanotic sudden after
birth and succumb within 24 hours,63 Sema3e¡/¡ mice
are viable, fertile and survive throughout adulthood
although displaying initially severe vascular defects,64,65

thus implying that in the developing embryo Plexin D1
275 transduces not only the signals of Sema3E, but also those

elicited by other Sema3 proteins, such as Sema3A62 and
Sema3C.63 Interestingly, both Sema3A66 and Plexin-
D167 null mice share common axial skeletal defects, such
as rib fusion and vertebral split. Moreover, selective

280 endothelial Tie2-cre-mediated gene inactivation of
Plxnd1 gene in mice induced myocardial defects and
skeletal malformations, associated to a strong reduction
of the bone microvasculature.62 Since Plexin D1 is
required for proper blood vessel invasion into the bone,

285 the skeletal defects of Plxnd1 null mice are most likely
secondary to vascular abnormalities.

Sema3E protein produced by the lateral plate meso-
derm is required for dorsal aortae patterning and for
generating the avascular zones that are located laterally

290 to the dorsal aortae and along the midline.65,68 During
the vasculogenic phase, instead of smooth paired dorsal
aortae, Sema3e¡/¡ embryos develop highly branched
plexiform vessels that, due to unidentified repulsive sig-
nal(s) originating from the lateral plate mesoderm con-

295 vert into single, unbranched dorsal aortae between E8.25
and E8.75.68 It is anticipated that intersegmental blood

vessel patterning defects originally characterized in Sem-
a3e¡/¡ embryos64 are similarly rescued over time by
other repulsive guidance cues. Furthermore, differently

300from zebrafish sema3a1/sema3a2 and plexind1 mor-
phants as well as obd mutants,39 the intersomitic blood
vessels of sema3e zebrafish morphants do not display
any angiogenic sprout overshooting phenotype.69

Recent studies contributed to shed light on the main
305pathways that characterize Sema signaling through plex-

ins. The intracellular region of plexins is highly con-
served and contains 2 large portions that are highly
homologous to Ras GAP domains.70,71 It has been
reported that the Ras GAP-like domain of plexin exert

310its enzymatic activity on 2 Ras-related small GTPase pro-
teins: R-Ras72 and M-Ras.73 However, 2 subsequent stud-
ies, albeit reporting a binding between Plexin-D1 or
Plexin-B1 and R-Ras, failed to detect any GAP activity
toward this small GTPase.74,75 More recently, Wang and

315colleagues further confirmed that the purified cytodo-
mains different plexins do not display any GAP activity
on R-Ras or M-Ras.12 Similarly, a recent study on
knock-in mice carrying inactivating mutations in the
GAP domains of genes encoding for Plexin D1 and

320Plexin B2 unveiled a crucial R-Ras and M-Ras indepen-
dent function for the GAP domain of these 2 plexins in
the control of the development of nervous, vascular, and
skeletal systems.10 Wang and colleagues provided instead
evidence that purified cytoplasmic regions of different

325plexins exert their GAP activity on the small GTPase
Rap1 and that this function was required for plexin-
mediated neuronal growth cone collapse12 (Fig. 1). Sub-
sequently, Wang and colleagues described the crystal
structures of zebrafish Plexin C1 cytoplasmic region in

330complex with Rap1, thus unveiling the conformational
changes and molecular details that allow Rap1-binding
by plexins.13 It is well known that Rap1-GTP effectively
controls vascular morphogenesis76 and promotes, via
talin, the conformational activation of integrins and the

335ensuing adhesion of different cell types to the extracellu-
lar matrix76,77 (Fig. 1). It is conceivable that both
Sema3A and Sema3E inhibit integrin mediatedEC adhe-
sion and promote vascular remodeling43 by inhibiting
Rap1 GTP loading and integrin activation through the

340GAP activity of plexins.12,13

Other Sema3 proteins

Sema3B is as an angiogenesis inhibitor and exerts its
effect through the binding to Nrp178 (Table 1). Sema3B
knockout mice are viable and fertile.79 An unbiased tran-

345scriptomic analysis revealed that in severe forms of
human preeclampsia SEMA3B is upregulated in and
inhibits the differentiation of placental cytotrophoblasts;
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furthermore, cytotrophoblasts-derived SEMA3B may act
in a paracrine way to impair uterine microvascular ECs

350 functions.80

Sema3C protein binds with high affinity to Nrp1-
Plexin D1 and, albeit with lower affinity, to Nrp2-PlexinD1
complexes63 (Table 1). Accordingly, Sema3C was recently
reported to inhibit angiogenesis by signaling via Nrp1 and

355 Plexin D1.81 Deletion of either Sema3c82 or Nrp156 or
Plxnd163 gene causes postnatal lethality due to cardiovas-
cular defects among which the improper septation of the
cardiac outflow tract (OFT), resembling the persistent
truncus arteriosus observed in humans.83 OFT septation

360 depends on the formation, expansion, and fusion of endo-
cardial cushions, finally resulting into a septal bridge; sub-
sequently second heart field-derived smooth muscle cells
invade to myocardialize the septum.84 A recent study pro-
posed that neural crest cell-derived Sema3C elicits the

365 Nrp1-dependent endothelial-to-mesenchymal transition
that is needed to give rise to the cell population that form
the endocardial cushions; in addition, Sema3C-Nrp1 sig-
naling would also drive septum myocardialization.85

Sema3D inhibitsEC spreading and migration through
370 a Nrp1 and phosphatidylinositol 3 kinase/Akt dependent

pathway86 (Table 1). Fate mapping studies both in mouse
and chick established that Sema3D is expressed in a sub-
population of proepicardial cells that give rise to sinus
venosus, a tissue that, at later stages, contributes to the

375 development of the coronary endothelium.87 Moreover,
Sema3D is expressed in the mesocardial reflections that
are located between the splanchnic mesoderm and the
venous pole of the heart.88 In the developing embryo,
Sema3D would exert a repulsive guidance effect to con-

380 strain and to direct pulmonary venous ECs toward the
left atrium.88 Consistently, Sema3d null mice exhibit
anomalous pulmonary venous connection (APVC) and a
c.1806T>A missense mutation that results in the F602L
substitution was present in a partial APVC patient.88

385 SEMA3D F602L binding to Nrp1 and ability to repel the
migration of cultured ECs is significantly reduced.88

Sema3D was recently reported to be expressed in the left
anterior atrioventricular groove to repel venous ECs
from aberrantly connecting with the left atrium.89 It

390 appears that in venous ECs the inhibitory Sema3D sig-
nals are conveyed through a Nrp1-ErbB2 holoreceptor
complex.89

Sema3F binds with high affinity to Nrp2 and, with
lower affinity, to Nrp190 (Table 1). Although it is well

395 known that Sema3F is an effective inhibitor of cancer
angiogenesis (for review see ref. 5), so far no defects in
cardiovascular development were reported in Sema3f
null mice.

Sema3G binds with high affinity to Nrp2 and, with
400 lower affinity, to Nrp191 (Table 1). Sema3g¡/¡ mice were

reported to be viable and to do not display any obvious
vascular phenotype.91 Sema3G displayed preferential
arterial expression in all organs during embryonic devel-
opment (from E9.5) and postnatally throughout adoles-

405cence, while it was downregulated in the adult. Sema3G
is produced by ECs and acts as a positive regulator of
angiogenic functions both in an autocrine and paracrine
way, by promoting smooth muscle cell migration.91
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