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Abstract

The starting point for a quantum mechanical investigation of disordered systems usually implies

calculations on a limited subset of configurations, generated by defining either the composition of

interest or a set of compositions ranging from one end member to another, within an appropriate

supercell of the primitive cell of the pure compound. The way symmetry can be used in the

identification of symmetry independent configurations (SICs) is here discussed. First, Pólya’s

enumeration theory is adopted to determine the number of SICs, in the case of both varying and

fixed composition, for colors in number of two or higher. Then, De Bruijn’s generalization is

presented, which allows to analyze the case where colors are symmetry related, e.g. spin up and

down in magnetic systems. In spite of their efficiency in counting SICs, neither Pólya’s nor De

Bruijn’s theories do help in solving the difficult problem of identifying the complete list of SICs.

SICs representatives are here obtained by adopting an orderly generation approach, based on

the lexicographic ordering, that offers the advantage of avoiding the (computationally expensive)

analysis and storage of all the possible configurations. When the number of colors increases,

this strategy can be combined with the surjective resolution principle, that permits to efficiently

generate SICs of a problem in |R| colors starting from the ones obtained for the (|R| − 1)-colors

case. The whole scheme is documented by means of three examples: the abstract case of the square

with C4v symmetry and the real cases of garnet and olivine mineral families.

Keywords: solid solution, configuration, symmetry exploitation, group theory, Pólya theory, De Bruijn

theory, lexicographic order, surjective resolution, CRYSTAL code
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I. INTRODUCTION

Quantum mechanical computer simulation of the atomistic behavior of solids is one

of the most successful methodologies employed in materials science. Nowadays this class

of methods is routinely applied to ordered crystalline phases in their equilibrium states.

The total and formation energies, the equilibrium geometry, the vibrational spectrum,

the dielectric and polarizability tensors as well as many other properties can be evaluated

routinely for periodic systems with unit cells containing up to 1000 atoms1,2 and even more3.

However, the availability of the same properties for disordered systems and/or non-equilibrium

states still remains an outstanding challenge. Yet these systems have a major importance

for both Earth and materials science: nearly all rock-forming minerals are solid solutions

(substitutional disorder); many technologically relevant materials are non stoichiometric

(occupational and/or substitutional disorder) or magnetic (possible spin disorder).

In the past, various techniques of increasing complexity have been proposed and imple-

mented for the simulation of disordered solids. The schemes that in the last two decades

were shown to provide the most promising results are based on the description of these

systems as a weighted average of ordered configurations. A further step forwards consists

in using the energies of some of these configurations (obtained from “accurate”, possibly ab

initio, calculations) in a simple model that permits to estimate at very low cost the energies

of many other configurations and to use them in a self-consistent manner to select other

low energy configurations to be investigated quantum-mechanically. In this way, hopefully,

a relatively low number of “accurate” calculations is sufficient for the complete description

of the thermodynamic properties of the disordered system4–10.

If the number of involved positions is |D| (the positions being elements of the set D) and

the number of species is |R| (the species are the elements of the set R) the total number of

configurations over the complete range of compositions is N = |R||D| (see Section II A for

complete notations). This requires a large computer time in generating the set of configu-

rations, and most of all a huge, unsustainable computational cost to treat the whole of this

set at an ab initio level.

In crystalline structures (any dimensionality), the symmetry, whatever it is, induces a parti-

tion of the RD set of configurations in equivalent classes. Then, in order to fully characterize

the configurations, one needs to know the number of equivalence classes and one represen-
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tative per class. The set of these representatives is the smallest possible subset of symmetry

independent configurations (SICs).

The automatic generation of a set of SICs permits on the one hand to avoid the repetition

of quantum mechanical calculations for equivalent configurations, on the other hand to

automatically submit parallel quantum mechanical calculations and collect the related data,

removing errors due to by hand data manipulation.

The simulation schemes mentioned above become reliable when large |D| (that means large

cells) are used. However the enumeration of the SICs becomes rapidly a challenging problem

when |D| increases.

In the past, averaged structures described by small cells (very few atoms) have been con-

sidered, in most of the cases with reference to metallic alloys (see for example the excellent

paper by Ferreira et al.11, references therein and also Refs. 12 and 13). The too small

number of atom(s) in the cell corresponding to the averaged structure calls for the use of

larger derived cells (supercells). Ferreira et al. (1991)11 considered supercells derived from

FCC and BCC Bravais lattice (1 atom per primitive cell). The problem was split in two

steps: 1) identify the independent sublattices corresponding to an index as large as possible,

in order to consider a large number of involved positions; 2) for a given sublattice, enumer-

ate symmetry independent structures corresponding to the complete set of SICs. In this

analysis, the atoms are all equivalent by translation. The translational symmetry plays then

the major role in finding SICs. The sublattices are generated using the geometric “smallest

first” approach and for any generated sublattice the calculation of all the corresponding

SICs is performed through an O(N2) algorithm. For an example of implementation, the

reader is referred to Van de Walle and Ceder14.

Rutherford in a series of papers15–17 evidentiated the role of Pólya’s theory in the counting

of independent coloring patterns of sublattices of a given index by means of the translation

group.

Recently, Hart and Forcade (2008)18 improved dramatically the approach by Ferreira et al.11.

Making a systematic use of the so-called Hermite normal form (HNF) of integer matrices

to identify the independent sublattices and the corresponding diagonal Smith normal form

to determine the independent atomic configurations, they built a very fast algorithm which

scales linearly with the number of unique structures. The rotational lattice symmetry allows

to select inequivalent HNF matrices (or supercells) and the translation symmetry permits
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an easy identification of equivalent labeling for supercell of a given index. In 2009, they19

(HF09) introduced a multilattice model in order to extend the applicability of their method

to cases where the parent lattice is not a Bravais (i.e. simple) lattice. Both rotational

symmetry of the lattice and symmetry of the multilattice are used to enumerate the SIC’s

up to a given index.

An alternative and more natural description of the symmetry acting on periodic structures

uses space groups. For the solid state community (physicists, chemists and mineralogists)

the space group is the standard starting point for describing the high symmetry structure

and its disordered derivatives. Space groups are very useful for complex unit cells in which

disorder (for example substitutional) occurs only at some sites, because they properly ac-

count for the details of the structures and for the neighborhoods of the involved sites. In

other words, they account for positions not involved in the disorder. If one considers only

the sites involved in the disorder (the set denoted D in HF0919) the group of symmetry (S ,

see appendix in Ref. 19) could be higher than the actual one and non genuine equivalences

would appear. On the contrary, if the not involved sites are considered to establish the

group of symmetry, then only the action of S on the involved sites has to be considered.

This point is not discussed in HF0919.

For many crystalline compounds the cell contains a large number of atoms sitting in positions

involved or not in the substitutions (see the garnet example below). For such compounds,

the number of configurations is rapidly prohibitive (see Table V for the conventional cell of

garnet |D|=16) also for supercells of modest index. In these cases, the relative weight of

the two steps proposed by Ferreira et al.11 differs significantly from simple cases, and the

search for independent structures becomes dominant. This point of view was developed by

Grau-Crespo et al.20 and applied in a series of works to large cell minerals21–23. In their

enumeration algorithm, the operations of the space group play a crucial role. The runtime

scales however quadratically, O(N2). These authors emphasize the importance of the mul-

tiplicity of the configurations to compute the average properties at given composition. This

is achieved enumerating the equivalent configurations of any new SICs by applying every

operation of the group to it. A crucial feature of their implementation is the use of two

large tables containing the |R||D| configurations. These authors underline that it is imprac-

tical to properly compute the average properties for a very large configuration space (at a

quantum mechanical level and even with classical potentials). In such cases, they propose
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to use random sampling methods to study the configurations at a given composition21. The

significance of the averaged values were checked with respect to the sample size.

The main goal of this work (whose formalism has been implemented in a development

version of the CRYSTAL code24) is to enumerate the symmetrically independent configu-

rations (SICs) within a given cell containing a set D of sites involved in solid solutions or

disorder without restriction on the number of involved equivalent or independent positions

(|D| = 1, 2, 3, ...) among other non involved positions and for any number of species (colors)

2 ≤ |R| ≤ |D|. With respect to Hart and Forcade’s algorithm18, the present approach scales

linearly with the size of the configuration space. At variance with respect to direct methods,

long lists of configurations are not necessary. We have chosen to describe the symmetry of

the parent structure using space groups (G) acting on D because, as previously explained, it

accounts for positions not belonging to D. Configurations are identified by mappings from

the set D to a set of atoms or colors. In the search of the SICs, a stopping rule provided

by the Pólya – Redfield’s theory is used, that reduces the runtime. Within this theoretical

framework, the tools allowing efficient analysis of the configurations (orbits, stabilizers, cycle

structure of symmetry operations, ...) are easily generated (e.g. the multiplicity of a config-

uration is obtained directly from its stabilizer). The robust theoretical foundations set up at

this stage are necessary to understand the construction behind the “surjective resolution”

principle used here to handle more than 2-colors configurations without exploring the full

set of |R||D| configurations. On this basis, the linear scaling of the present approach will be

proved using Oberschelp’s formula which gives the asymptotic behavior of the number of

SICs for large cells. New developments such as symmetric selection (based on the structure

of the stabilizers) and random sampling of the derivative structures space (not included in

the present paper, but very useful to explore tremendously large configuration spaces25) will

appear as natural extensions of the present formalism.

The method here proposed is described in Section II. The problem of the determination of

the number of SICs is tackled in subsection II A, where Pólya’s theory is shortly summarized,

in the case a range of compositions needs to be analyzed, spanning from one end member to

the other. Subsections II B and II C discuss two special cases, namely the fixed composition

and the one where the two “colors” are symmetry related (De Bruijn’s generalization). The

algorithmic aspects are described in II D . They combine the so-called lexicographic order-

ing, which allows orderly generation, with the surjective resolution principle to produce SICs
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representatives. The scaling behavior of the approach with respect to both the number of

SICs and the size of the symmetry group is discussed in subsection II E. Section III applies

the proposed scheme to two examples that are of great geochemical interest: garnets and

olivines. Finally, the main conclusions are drawn in Section IV.

II. METHOD

In this Section the methodological aspects of group theory and combinatorics that are

used to identify and characterize SICs are presented.

The first target is to evaluate the number of SICs. This problem can be solved by using

Pólya’s enumeration theory26, that is based on the cycle structure of the symmetry operators

acting on a set of objects D and gives a systematic method to count the number of non

equivalent colorings of D.

Note that Pólya’s theory refers to D as a finite set of objects, while crystalline solids are

usually modeled as infinite periodic systems, i.e. they show an infinite set of atomic sites D′.

However, thanks to periodicity, it is always possible to decompose a symmetry operation in

a point symmetry operation plus a translation. Translational symmetry allows to describe

all the point symmetry properties of the crystal by considering a finite, small subset D of

the whole set of sites D′, i.e. a unit cell. The simplest unit cell that can be chosen is the

smallest translational set of sites, which is called primitive cell. Otherwise, a supercell of

the primitive cell can be chosen as a reference.

The two sets of examples used to illustrate definitions and formulas appearing in the proposed

algorithms are shown in Figure 1. Both of them are based on a two-dimensional square lattice

under the action of the 8 symmetry operators of the C4v group. In the case of Figure 1-A

(model A), the unit cell contains 4 symmetry-related sites, lying on the σd reflection planes.

By applying all the 8 symmetry operators to, for example, site “1”, the full set of 4 sites is

obtained. The full set of 24 = 16 configurations that can be obtained for model A by using

2 colors is represented in Figure 2.

Model B (Figure 1-B) represents a more general case of C4v symmetry acting on the square

lattice. The unit cell contains 8 symmetry-related sites, which all lie in a general position,

i.e. not on a symmetry element.
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A. Pólya’s enumeration theory

Let D denote a finite set of objects, for example the 4 sites of model A in Figure 1-A,

D = {1, 2, 3, 4}, with |D| = 4, and let R denote a set of colors, e.g. R={blue,red}={b,r},

|R| = 2 (2-colors case). In what follows, the notion |E| denotes the cardinal of a given set E.

Color is the common terminology in combinatorics for the property that makes the elements

of D distinguishable; in our framework it can be the chemical species or the spin status of

the atoms occupying the lattice sites.

Let S = RD be the set of all mappings s from D to R that associate colors to objects. Each

s is called a coloring of the set of objects, or a configuration. In the case of 2 colors over the

4 sites of model A, the 24 = 16 possible configurations are shown in Figure 2. For r ∈ R we

shall denote s−1(r) = {x ∈ D; s(x) = r} the preimage of r, which associates to r the set of

objects of D colored by this color. We shall refer to the |R|-plet (|s−1(r1)|, .., |s−1(r|R|)|) as

the color-pattern, or composition, of the configuration s. Note that for a given s it comes∑|R|
j=1 |s−1(rj)| = |D|. In the case of model A, for example for the first configuration in the

second row of Figure 2 we have: s−1(b) = {2, 3, 4}, s−1(r) = {1}, the composition being

(3, 1).

Now, let G denote a group of symmetry operations g acting on the set D. In the examples

of Figure 1, this group (C4v) consists of the rotations and reflections which leave the set of

4 (8) sites of model A (B) invariant.

The action of G on D induces an action of G on S (called the Pólya’s action) defined by:

(g · s)(x) = s(g−1x) ; g ∈ G , x ∈ D. (1)

In order to analyze this action, G must be seen as a subgroup of the permutations of D and

the cycle decomposition of the symmetry operations g ∈ G acting on D must be performed.

The cycle decomposition induces a partition of D, that is a division of D into non-overlapping

and non-empty parts, that covers all of D. We identify this partition with the cycle structure

of g acting on D, and denote it CycD(g). The number of cycles describing the action of g

on D is the number of elements of the partition: |CycD(g)|. As an example, we consider the

effect of the C2 operator on model A (third line in Table I). By applying C2 to site “1”, it

goes to “3”; by applying C2 to “3”, it goes to “1”. By applying C2 to “2”, it goes to “4”;

finally, “4” goes to “2” (“Moves” in Table I). We say that the cycle decomposition of C2
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acting on the set D of model A results in 2 cycles (“Cycles” in Table I).

Pólya’s enumeration theory relies on the following general concepts.

a. Orbits The group orbit of an element s ∈ S is the set of configurations obtained by

applying all the elements g ∈ G to s:

Ω(s) = {g · s ∈ S; g ∈ G} (2)

The set of all orbits Ω(s) of S under the action of G forms a partition of S. In the configura-

tional analysis of disordered solids, an orbit is a class of symmetry equivalent configurations.

In Figure 2, all the 16 configurations of model A are shown. Each row represents an orbit

(they are 6 in total). For each orbit, it is convenient to select one of its elements as its

“canonical” representative27; the first found configuration of each orbit is here selected to

play this role.

b. Stabilizers The stabilizer of an element s consists of the set of all the operators

g ∈ G that send s to itself:

Gs = {g ∈ G; g · s = s} (3)

Any stabilizer Gs is a subgroup of G. Note that all elements of a given orbit have conjugated

stabilizers. For the 6 orbits obtained for model A, stabilizers are shown to the right in Figure

2.

c. Fixed points Fixed or invariant configurations of an operation g ∈ G are the elements

of a subset of S:

Sg = {s ∈ S; g · s = s} (4)

The fixed points of g are all the configurations whose stabilizer contains g. For example,

for model A the fixed points of C2 are the configurations belonging to orbits 1,4 and 6 (see

Figure 2).

A general property of an orbit Ω(s) of a configuration s is that it can be mapped to the

set of left cosets of the stabilizer Gs in a bijective way28,29. This permits to easily know the

length of the orbit, once the cardinal of Gs is known:

|Ω(s)| = |G|
|Gs|

(5)

For model A (see Figure 2), the stabilizers of the six orbits contain 8, 2, 2, 4, 2 and 8

elements, respectively. Thus, the corresponding orbit lengths |Ω(s)| are 1, 4, 4, 2, 4 and 1,
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respectively.

Now, assume that a procedure for selecting canonical representatives is available. Let ∆(S)

denote the set of canonical representatives for the orbits Ω(s) of the action of G on S, and

let us introduce W (s), a G-invariant weight defined on S (this means that W is constant on

each orbit). Definitions (3) and (4) imply:

∑
s∈S

∑
g∈Gs

W (s) =
∑
g∈G

∑
s∈Sg

W (s) (6)

Using the fact that the elements of an orbit have stabilizers with the same cardinal and

share the same value for W , we can factorize by orbits (i.e. by canonical representatives).

Exploiting (5), we deduce:

∑
s′∈∆(S)

W (s′) =
1

|G|
∑
g∈G

∑
s∈Sg

W (s) (7)

Note that the l.h.s. of Eq. (7) is a sum of |∆(S)| terms, i.e. it has as many terms as the

number of canonical representatives, thus of orbits, of S. We can obtain |∆(S)| by taking

W (s) = 1,∀ s ∈ S:

|∆(S)| = 1

|G|
∑
g∈G

|Sg|. (8)

This is the Cauchy-Frobenius Lemma often named the Burnside Lemma. In order to evaluate

|Sg| we observe that there is a natural correspondence between the set of fixed points s ∈ Sg
and the set of all mappings from CycD(g) to R. The reason for this correspondence is that,

considering the cycle structure of g, we can state that s is stabilized by g if and only if

every cycle of g has all its elements mapped to one and only one color. This implies that

Sg ∼= RCycD(g), so the cardinal of Sg is:

|Sg| = |R||CycD(g)| (9)

In order to illustrate this result, in our model A we consider the set SC2 of all the con-

figurations unchanged by the operator C2: they are four in orbits 1, 4 and 6 (see Figure

2). The cycle structure of C2 from Table I shows 2 cycles: (13)(24). To build a stabilized

configuration the elements of cycles (13) and (24) must be mapped onto the same color,

i.e. in this 2-colors case: (bb),(bb); (bb),(rr); (rr),(bb); (rr),(rr), that are 4 configurations as

obtained applying Eq. (9).
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Now, substituting Eq. (9) in Eq. (8) we deduce

|∆(S)| = 1

|G|
∑
g∈G

|R||CycD(g)| (10)

which is the Pólya’s counting formula for the SICs. For convenience, in the following appli-

cations we will use N
|D|
|R| for |∆(S)|, in order to make more evident the dependence on |D|

and |R|.

Tables I and II provide the set of |CycD(g)| values in the case of models A and B, respec-

tively, from which the number of configurations can be calculated for any number of colors.

As an example, for model A (4 sites) in the case of 2 and 3 colors we have, respectively :

N4
2 =

1

8
( 24︸︷︷︸

E

+ 2 · 21︸ ︷︷ ︸
C4

+ 22︸︷︷︸
C2

+ 2 · 22︸ ︷︷ ︸
σv

+ 2 · 23︸ ︷︷ ︸
σd

) = 6 (11)

N4
3 =

1

8
( 34︸︷︷︸

E

+ 2 · 31︸ ︷︷ ︸
C4

+ 32︸︷︷︸
C2

+ 2 · 32︸ ︷︷ ︸
σv

+ 2 · 33︸ ︷︷ ︸
σd

) = 21 (12)

Note that |CycD(g)| is the same for all operators belonging to the same conjugacy class.

Moreover, the identity always bears |D| unitary cycles, thus providing the largest contri-

bution to the number of SICs. This observation plays a significant role in the proof of the

Oberschelp’s formula30,31, that states

|∆(S)| = |R|
|D|

|G|
(1 + o(1)), o(1)→ 0 when |D| → ∞ (13)

This formula, obtained for unlabeled graphs, can be extended to the case of large unit cells,

in which |D| >> 1. It will be at the base of the scaling analysis of our approach, presented

in Section II E.

B. Pólya’s theory at fixed composition

Pólya’s theory allows to count SICs for a given composition. This is achieved by viewing

the colors as variables z1, z2, .., z|R| and considering the weight function W (s) defined by

W (s) =
∏

1≤j≤|R|

z
nj

j (14)

where nj = |s−1(zj)| is the number of elements of D mapped on color zj. Note that W is

constant at fixed composition. For example, in model A with 2 colors, all configurations on
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orbits 3 and 4 show 2 b and 2 r sites (see Figure 2), thus share the same W value: b2r2.

Summing on both sides of Eq. (14) over the elements stabilized by a given g, and using the

fact that Sg ∼= RCycD(g), we obtain∑
s∈Sg

W (s) =
∑

t∈RCycD(g)

∏
c∈CycD(g)

t(c)|c| (15)

where t(c) is the variable corresponding to the color taken by t on the cycle c ∈ CycD(g).

Eq. (15) can be rewritten as

∑
s∈Sg

W (s) =
∏

c∈CycD(g)

|R|∑
j=1

z
|c|
j (16)

To establish (16) one observes that expanding the product in the r.h.s. of (16) gives a sum

of terms of the form z
|c1|
i1
z
|c2|
i2
...z
|cN |
iN

(where N = |CycD(g)|) which is precisely the weight of

a mapping t ∈ RCycD(g) that takes the color corresponding to the variable zi1 on the cycle

c1, the color corresponding to the variable zi2 on the cycle c2 and so on. This sum contains

exactly the same number of terms as the sum in the r.h.s. of (15) (i.e. |R|N terms) and

each one of its terms corresponds to a unique term in the r.h.s of (15).

Using Eqs. (7) and (16) one obtains:

∑
s′∈∆(S)

W (s′) =
1

|G|
∑
g∈G

∏
c∈CycD(g)

|R|∑
j=1

z
|c|
j (17)

Let us denote the r.h.s. of this identity as PP
|D|
|R| (z1, .., z|R|). Expanding this polynomial

PP
|D|
|R| (z1, .., z|R|) =

∑
n1+...+n|R|=|D|

k(n1,..,n|R|)z
n1
1 ..z

n|R|
|R| (18)

yields the desired information about the number of the orbits with a given composition.

The k(n1,..,n|R|) coefficient associated with the monomial zn1
1 ..z

n|R|
|R| gives the number of orbits

corresponding to the composition (n1, . . . , n|R|).

In order to compute the number of SICs (orbits) at fixed composition, the “type” of each

g ∈ G is required. It is the |D|-plet TD(g) = (l1, l2, .., l|D|), whose ith value li indicates the

number of cycles of length i (obviously,
∑

i li · i = |D|). Note that the type is the same for

all operators belonging to the same conjugacy class.

In Tables I and II, the type of the operators is given for models A and B, respectively. As

an example of polynomial, for model A (4 sites) and 2 colors we obtain:

PP 4
2 (b, r) = b4 + b3r + 2 · b2r2 + br3 + r4 (19)
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This last equation indicates that each end-member b4 or r4 corresponds to 1 SIC, as well as

compositions b3r, br3, while b2r2 is split on 2 SICs. Analogously, for model A with 3 colors:

PP 4
3 (b, r, g)= b4 + b3r + b3g + 2 · b2r2 + 2 · b2rg + 2 · b2g2 + br3

+ 2 · br2g + 2 · brg2 + bg3 + r4 + r3g + 2 · r2g2 + rg3 + g4 (20)

C. De Bruijn’s generalization: spin counting

Sections II A and II B dealt with a group G acting on a set D, and with the induced

action of this group on the set of configurations S = RD (i.e. the Pólya’s action). A more

general action can be introduced when a second group H acts on the set of colors R. We

shall indicate it as De Bruijn’s action32.

Following De Bruijn we shall say that two configurations s1, s2 ∈ S are equivalent if there

exist elements g ∈ G and h ∈ H such that

s1(g · x) = h · s2(x) ; x ∈ D (21)

This amounts to consider the direct product G ×H, consisting of all products g × h, with

g ∈ G, h ∈ H, and to see it as acting on S via

(g × h) · s(x) = h · s(g−1 · x) ; x ∈ D (22)

The results of Section II A permit to assert in this case

|∆(S)| = 1

|G×H|
∑

g×h∈G×H

|Sg×h| (23)

where ∆(S) denotes, as in Section II A, a set of representatives of the action (22).

Pólya’s formula (10) was derived exploiting the fact that Sg ∼= RCycD(g). What we need here

is to find a similar characterization which permits to find the number of configurations s

that satisfy

s(g · x) = h · s(x) ; x ∈ D (24)

De Bruijn33 succeeded in characterizing these configurations in terms of the cycle structure

of g and h. Let us summarize his argument.

Assume for the types that TD(g) = (l1, l2, .., l|D|) and that TR(h) = (m1,m2, ..,m|R|). Let s
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be a configuration that satisfies (24). Let x denote some element of D. Assume that this

element belongs to a cycle of g of length i. This cycle can be described through the elements

x, g · x, g2 · x, · · · , gi−1 · x (25)

The crucial observation is that (24) implies that s must map the elements (25) on:

s(x), h · s(x), h2 · s(x), · · · , hi−1 · s(x) (26)

and the following condition should be satisfied:

hi · s(x) = s(gi · x) = s(x) (27)

This means that the length of the cycle of h to which s(x) belongs should divide i.

Using this observation, we can easily compute the number of possibilities we have for s ∈

Sh×g (i.e. the analog of the quantity |R||CycD(g)| of Pólya’s formula (10)). For each cycle of

g the number of possibilities for the element of R on which the element x of (25) can be

mapped is ∑
j|i

j ·mj (28)

where i is the length of the cycle (25) and where the mj’s are determined by the type of h;

j|i refers to the j divisors of i.

Since there are li cycles of length i in the decomposition of g we obtain

|Sg×h| =
∏
i

(
∑
j|i

j ·mj)
li (29)

Combining (23) and (29) we deduce

|∆(S)| = 1

|G| · |H|
∑
g∈G

∑
h∈H

∏
i

(
∑
j|i

j ·mj)
li (30)

where (as indicated above) (l1,l2,..,l|D|) is the type of g and (m1,m2,..,m|R|) is the type of h.

Let us now focus on the case where R reduces to two elements R = {↑, ↓} and H to the

group with two operators, namely identity (ER) and exchange (XR) of ↑ and ↓; the cycle

structure of ER and XR is (↑), (↓) and (↑, ↓)), respectively. Then, Eq. (30) reduces to

|∆(S)| = 1

2|G|
∑
g∈G

∏
i

2li + χ(g)
∏
i|2

2li

 (31)
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where χ(g) = 0 if g contains a cycle with an odd length and χ(g) = 1 if this is not the case.

Introducing the notation

Ge = {g ∈ G,χ(g) = 1} (32)

we can rewrite (31) as

|∆(S)|= 1

2|G|
∑
g∈G

2|CycD(g)| +
1

2|G|
∑
g∈Ge

2|CycD(g)| (33)

The first term of the sum is equivalent to the Pólya’s counting formula (up to the factor 1
2
).

The second term gives a zero contribution if every operation contains odd cycles.

Counting orbits with a given spin composition is not as easy as for the classical Pólya’s

action. This is discussed by de Bruijn33 and by Harary and Palmer34. In order to overcome

this difficulty, we propose to proceed as follows. The first step consists in constructing the

analog of the polynomials (18) attached to the group G acting individually on RD. This

gives a polynomial expression in ↑ and ↓ of the form

PP
|D|
↑↓ (↑, ↓) =

∑
n1+n2=|D|

k(n1,n2) ↑n1↓n2 (34)

where the coefficients k(n1,n2) satisfy

k(n1,n2) = k(n2,n1) ,
∑

n1+n2=|D|

k(n1,n2) =
1

|G|
∑
g∈G

2|CycD(g)| (35)

It is easy to see that the number of orbits corresponding to composition (n1 ↑,n2 ↓) with n1 6=

n2 is directly given by k(n1,n2). When |D| is odd, these compositions are the only possible and

the polynomial (34) encodes all the required information about the spin composition. One

should note that in this case Ge = ∅ and formula (33) reduces to the Pólya term. When |D|

is even the second term in (33) contributes in a subtle way. The right counting is obtained

by combining (10), (33) and (35):

k(n↑,n↓) =
1

2|G|
∑
g∈Ge

2|CycD(g)| +
k(n,n)

2
(36)

For models A and B (Tables I and II), Formula (33) yields 4 and 27 spin SICs, respectively:

N4
↑↓ =

1

8
(2 · 21︸ ︷︷ ︸

C4

+ 22︸︷︷︸
C2

+ 2 · 22︸ ︷︷ ︸
σv

) +
1

16
( 24︸︷︷︸

E

+ 2 · 23︸ ︷︷ ︸
σd

) = 4 (37)

N8
↑↓ =

1

8
(2 · 22︸ ︷︷ ︸

C4

+ 24︸︷︷︸
C2

+ 2 · 24︸ ︷︷ ︸
σv

+ 2 · 24︸ ︷︷ ︸
σd

) +
1

16
( 28︸︷︷︸

E

) = 27 (38)
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The 4 spin representatives of model A correspond to the first 4 representatives in Figure 2,

provided that b is substituted by ↑ and r by ↓. Only compositions in the range 0 - 50 % have

representatives; the reason is that (0 ↑, 4 ↓) and (1 ↑, 3 ↓) are equivalent to (4 ↑, 0 ↓) and

(3 ↑, 1 ↓), respectively, due to the spin exchange symmetry. As regards the 50 % composition

(2 ↑, 2 ↓), there are 2 spin SICs, as in the case of the two colors b and r. However, the last

statement is not true in general, as we will discuss below in the case of model B.

In the cases of model A and B (Tables I and II), formula (35) gives, respectively:

k(2↑,2↓) =
1

16
(2 · 21︸ ︷︷ ︸

C4

+ 22︸︷︷︸
C2

+ 2 · 22︸ ︷︷ ︸
σv

) +
2

2
= 2 (39)

k(4↑,4↓) =
1

16
(2 · 22︸ ︷︷ ︸

C4

+ 24︸︷︷︸
C2

+ 2 · 24︸ ︷︷ ︸
σv

+ 2 · 24︸ ︷︷ ︸
σd

) +
13

2
= 12 (40)

Note that in the case of model A (4 sites), the number of spin SICs at 50 % composition

is the same than in the two colors (b, r) case. On the contrary, for the 50% model B (8

sites) composition, the spin case yields 12 spin SICs, to be compared with 13 SICs for the

two colors (b, r) case. The reason is that there are two SICs of the latter case that become

symmetry equivalent in the former, due to the additional exchange operator XR acting on

the two spin states ↑ and ↓. The full sets of configurations corresponding to these two SICs

are illustrated in Figure 3. The two sets are symmetry independent in the b, r-colors case,

but become symmetry equivalent under the action of the spin exchange operator XR on the

set of colors; couple of configurations related by this operator are shown in the same row in

the Figure.

D. Algorithmic aspects: lexicographic ordering and surjective resolution

In this Section, we are concerned with the difficult problem of finding the complete set

of SICs. Direct methods require lists of independent configurations together with their

equivalent configurations that must be stored for subsequent use. To decide whether a new

configuration is independent or not from those already produced (isomorphism test), the

complete list must be spanned.

Orderly generation methods28,29,35 provide practical algorithms that do not require long lists,

perform efficiently with more than two colors and reduce drastically the cost of isomorphism

tests. They are based on the fact that orders on D and R induce a canonical order on the
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set RD: the lexicographic order (see Figure 4). Providing the set of configurations with this

canonical order permits to form a system of canonical representatives by taking the smallest

element in each orbit. Within this framework, the generalization of de Bruijn can be easily

implemented, thanks to the direct product group structure of the symmetry operation in-

volved in the de Bruijn’s action (22).

In order to explain the implementation of the orderly generation, we consider the simple

case of a set D mapped on two colors |R| = 2 represented by 0 and 1. Each configuration

can be represented as a 0-1 sequences of length |D|. For convenience, this sequences can

be identified with a |D|-number in base 2, but this identification plays no role in the enu-

meration of the SICs. Starting from the “first” configuration `1 = (0 · · · 0), one produces

the sequence of successive configurations by increasing the |D|-digits number by 1 at each

step. Application to model A is illustrated in Figure 4, where the various configurations are

labelled to the left from `1 to `16. Increasing proceeds from right to left; a configuration of

the list is higher than another when the corresponding |D|-digits number is larger. On this

basis, canonical representatives of the orbits are efficiently selected. Being the first of the

list, `1 is obviously a representative. `2 is compositionally different from `1, so no operator

transforms it into `1. It does not belong to the orbit of `1 and is the smallest element of a

new class of configurations. As such it is stored as the second representative. In the case of

model A, configurations `3 and `2 have the same composition, so they could be equivalent by

symmetry, that is it may exist an operator transforming `3 into `2. This is the case since the

clockwise 4-fold rotation transformed `3 into `2. Then `3 is symmetry equivalent to `2 and

discarded. `4 is then considered. Applying every symmetry operator it is never transformed

into a configuration equal or smaller than `3. It is then recorded as a representative. It is

easy to see that if there exists g ∈ G such that g · `4 is lexicographically smaller than or

equal to `2 then either `4 ∈ Ω(`1) or `4 ∈ Ω(`2). On the basis of this remark, there is no

need to hold the complete list of the elements of orbits already classified to decide if a new

configuration `n belongs to one of these orbits. If there exists g ∈ G transforming `n into

a configuration smaller or equal to the last found canonical representative, then it belongs

to one of these orbits and is not the canonical representative of a new orbit. The process

continues along the same lines for the following members of the list and yields the next

canonical representatives: `6, `8 and `16 (Figure 4).

Such an implementation does not require long lists and the canonicity test is reduced to

17



the comparison of G-equivalent configurations of the one under consideration with the last

identified canonical representative. These features considerably speed up the selection with

respect to direct schemes (it should be noticed that the cost of the selection of SICs, also

when the direct strategy is adopted, may correspond in many cases to a small fraction of

the overall cost of the calculation21–23). The possibility of reducing the number of canonicity

tests using an augmentation procedure, as proposed by Read35, has not been implemented

here because it would require to hold a sub-list of canonical representatives. Furthermore,

Goldberg36 noted that in such case there is no efficient method to determine whether a

configuration is canonical or not and no mechanism ensures that the algorithm does not

consider an exponentially long list of unsuccessful augmentations.

Orderly generation of configurations applies equally for more than two colors and could pro-

vide the complete list of SICs. However, it can be improved by combining it with a recursion

procedure. Before introducing this procedure, we show how the previous considerations al-

low to identify the SICs corresponding to a fixed composition. This is useful for situations

where only one composition is of interest, for example in the study of inverse spinels or

disordered systems in general.

All we need, starting from the configuration having the required composition and the lowest

lexicographic rank, is to generate the lexicographically ordered list of |D| sequences corre-

sponding to the composition and test the canonicity of each new generated configuration

as previously described. These |D|-sequences can be interpreted either as anagrams or as

|D|-digit numbers in base |R|. If one converts configurations (|D|-sequences, or |D|-digit

numbers in base |R|) into base-10 integers, one obtains a list of increasing but not con-

secutive integers. In the computer science language, this corresponds to a hashing scheme

using a perfect, but not minimal hash table. In contrast, Hart et al.37, looking for derivative

structures at fixed composition, proposed an approach demanding minimality of the hash

table. To index the configurations in minimal mode, they cleverly introduced a mixed-radix

number. Minimality is not taken as a condition in the approach here presented. However

an improvement is offered by the use of the Pólya’s polynomial, whose coefficients provide

a stopping condition. As soon as the number of classes is found, the search is interrupted.

Figure 5 illustrates the scheme in the case of model A with 3 colors.

In the general case where more than two colors are considered, we combine lexicographic

ordering with a recursion procedure: the so-called surjective resolution. In order to explain
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this procedure let us assume that the group G acts on two sets of configurations S = RD

and S1 = RD
1 , where R1 is obtained by adding a new color z|R|+1 to the set R:

R1 = R ∪ {z|R|+1} = {z1, . . . , z|R|, z|R|+1}. (41)

A natural mapping Θ can be defined from RD
1 onto RD

Θ :RD
1 −→ RD

s −→ Θs (42)

by setting  (Θs)i = si if si 6= z|R|+1

(Θs)i = z|R| if si = z|R|+1

(43)

This mapping is surjective and “compatible” with the actions of G on RD and RD
1 . This

means that

Θ(g · s) = g ·Θ(s) ; s ∈ RD
1 , g ∈ G. (44)

In particular the orbit of an element s ∈ RD
1 projects on the orbit of Θ(s) in RD.

For model A and three colors (R1 = {r, b, g}, where g stands for “green”), the projection Θ

from RD
1 onto RD corresponds to substitute r for g in each configuration s containing green

color. The fact that every orbit of the action of G = C4v on {g, r, b}{1,2,3,4} is projected on

the orbit of the projection of one of its elements is illustrated in Figure 6.

The surjective resolution principle asserts that it is possible to construct a system of repre-

sentatives of the action of G on RD
1 from a set of representatives of the action of G on RD

and their stabilizers in G.

More precisely let Ω1 denote an orbit of the action of G on RD
1 and let s1 an element of this

orbit. Let ω denote the canonical representative of the orbit Ω(Θ(s1)) and let g ∈ G be the

operator defined by ω = g ·Θ(s1).

The compatibility property (44) implies that ω = Θ(g ·s1), which means that g ·s1 ∈ Θ−1(ω).

In other words the orbit Ω1 intersects a set of form Θ−1(ω) for an ω belonging to the set of

canonical representatives of the action of G on RD. Figure 6 shows for example that orbit

13 intersects the set Θ−1(10) and orbit 19 intersects the set Θ−1(16).

It is easy to see that such a canonical representative is unique: if we assume that ω′ is

another canonical representative such that Ω1∩Θ−1(ω′) 6= ∅, then there exists s′1 ∈ Ω1 such
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that:

ω′ = Θ(s′1) = Θ(g′ · s1) = g′ ·Θ(s1) = g′ · g−1 · ω (45)

for a certain g′ ∈ G, which means that ω and ω′ are on the same orbit.

It follows that each orbit of the action of G on RD
1 intersects one and only one preimage

Θ−1(ω) of the set of canonical representatives of the action of G on RD. On Figure 6, these

representatives are indicated by an asterisk.

The second important fact is that for each canonical representative ω, orbits of the action

of G on Θ−1(ω) are exactly the orbits of the action of the stabilizer Gω on Θ−1(ω). To see

this, consider two elements s, s′ ∈ Θ−1(ω) which are on the same orbit, i.e. s′ = g · s, for

some g ∈ G, and note that

ω = Θ(s′) = Θ(g · s) = g ·Θ(s) = g · ω (46)

which shows that the operator g is an element of the stabilizer Gω. In model A, the 3-

colors orbits are derived from 2-colors ones. As an example, consider class (orbit) 7 and its

canonical representative. Classes 8 and 9 are obtained using the stabilizer of 7: C2v.

The upshot is that once we have produced a set of canonical representatives ω of the action

of G on RD, it is enough to compute the preimages Θ−1(ω) and then the set of canonical

representatives of the orbits of the action of the stabilizers Gω on Θ−1(ω). Proceeding in

this way permits to reduce the number of isomorphisms tests, because canonicity tests are

performed within shorter lists and under the action of smaller groups. Figures 6 and 7 can

help to illustrate this point, again with reference to model A. The latter shows to the left

the generation of the representatives for |R|=2; to the right, on the contrary, the generation

of the representatives for |R|=3 is shown, where the branching for the third color starts from

the |R|=2 representative only. The more explicit generation of orbits with three colors, blue,

red and green is shown in Figure 6.

From Figures 6 and 7, one can note that after the representative of the 15th class has

been found, there is no need to go on. More precisely, the process is stopped when all the

descendants of the last but one 2-colors only representative have been found. As shown by

the presented example, we would then be looking for configurations built on 2 colors, labelled

1 and 2, instead of 0 and 1. The labeling of colors being irrelevant, the next representatives

can be obtained from previous one by properly re-labeling the colors.
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E. Orderly generation: scaling with number of SICs

In this Section we discuss time scaling aspects of the orderly generation algorithm. We

start our analysis of the lexicographic ordering scheme for the 2-colors case, as described in

Section II D. The full list of configurations {`i} is explored (providing a factor 2|D|); to each

of them at most |G| symmetry operators are applied to test the canonicity. The required

total time (TLO) is then:

TLO ≈ 2|D| · |G| (47)

In contrast, we can estimate the scaling behavior of the direct method (see the flow charts

reported in Figure 2 of Ref. 20) for the 2-colors case. This method requires to construct

the full list of the 2|D| configurations. Within this list the first occurrence of a new orbit

is determined by comparing each element of the list with all the elements of the already

identified symmetry classes of configurations stored in a second vector. The process is

initiated by taking the first element of the full list as the representative of the first class

and applying to it all the |G| operators; the obtained configurations belonging to its class

are stored in the second vector. Every time an element of the long list is not in the second

vector, then it is taken as the representative of a new class and all its equivalent are added

to the second vector. All the symmetry classes are found when the length of the two vectors

are equal. This approach scales as 22|D|. The application of the symmetry operators adds

a contribution proportional to |∆(S)| · |G| that is negligible with respect to 22|D|. So the

required time is

Tdir ≈ 22|D| (48)

Relation (47) gives

Tdir ≈ TLO ·
2|D|

|G|
(49)

from which we deduce, by using the Oberschelp’s formula (13):

Tdir
TLO

≈ |∆(S)| (50)

In order to illustrate the relations (47) and (49), we considered the Mg sites in the tetrago-

nal MgO (n,1,1) supercells built from the primitive cell, with n ranging from 12 to 32 and

|R| = 2. The number of sites |D| equals n and |G| ranges from 48 to 128 (in steps of 4). The

results are plotted in Figure 8. The CPU time needed by the algorithm to generate all the
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representatives of the SICs is linear on |R||D|. The quadratic behavior of the direct method

on |R||D| with |R| = 2 is also shown for comparison. For large cells (|D| large), the number

of SICs agrees with the relation (13) and supports the approximations used previously.

Let us now discuss the case of |R| colors, with |R| > 2, which is handled by means of the sur-

jective resolution. The 3-colors case will be considered, the obtained results being applicable

to larger numbers of colors. Let N and `1, `2, . . . be the number and the representatives of

the 2-colors SICs, respectively. From the definition and properties of the Θ mapping (42)-

(43), the sum of the lengths of the preimages of all the `j is the number of the 3-colors

configurations 3|D|:
N∑
j=1

∣∣Θ−1(`j)
∣∣ = 3|D| (51)

For large |D|, and obviously large N (approximated by the Oberschelp’s formula), the mean

length of the preimages of the `j is given by

<
∣∣Θ−1(`j)

∣∣ > 2|D|

|G|
≈ 3|D| (52)

<
∣∣Θ−1(`j)

∣∣ >≈ |G|(3

2

)|D|
(53)

For each `j, j = 1, . . . , N , the time needed to explore the set Θ−1(`j) is in the order of

|Θ−1(`j)| ·
∣∣G`j

∣∣
The total time to explore the 3-colors SICs is then

Tsurj =
N∑
j=1

∣∣Θ−1(`j)
∣∣ · ∣∣G`j

∣∣ ≈< ∣∣Θ−1(`j)
∣∣ > N∑

j=1

∣∣G`j

∣∣ (54)

As shown by Goldberg (see Lemma 1 in Ref. 36), an important consequence of Oberschelp’s

formula is
N∑
j=1

∣∣G`j

∣∣ = (1 + o(1))N ≈ N ≈ 2|D|

|G|
(55)

Combining Eqs. (53), (54) and (55)

Tsurj ≈ |G|
(

3

2

)|D|
× 2|D|

|G|
= 3|D| (56)

In the case of |R| colors, the previous formula is written

Tsurj ≈ |R||D| (57)
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This result is well illustrated in Figure 9, where the CPU time needed to produce the

representatives of SICs with 3 colors for MgO supercell of type (n,1,1), with 7 ≤ n ≤ 22,

appears to be linearly dependent on 3|D|. With respect to lexicographic approach, the

surjective resolution is |G| times more efficient.

This rather favorable scaling behavior permits to explore a relatively high number of colors.

As an example, up to 5 and 6 colors are considered in Figure 10, with two different values

for |D|, 12 and 16. Note that the CPU time depends on both |R| and |D|, as expected from

Eq. (57).

III. EXAMPLES FROM GEOCHEMISTRY: GARNETS AND OLIVINES

In this Section, we apply Pólya’s and De Bruijn’s theories introduced in the previous

Sections to two real systems, namely garnets and olivines.

Garnets are orthosilicates with general chemical formula X3Y2Si3O12, where X2+ and Y3+ are

divalent and trivalent cations, respectively. The primitive cell contains four formula units,

for a total of 80 atoms; the space group G is cubic (Ia3̄d) with 48 symmetry operators.

Natural garnets form substitutional solid solutions extending over a broad chemical range,

and involving up to 12 end members38,39. The most common cases refer to substitutions of

either trivalent cations at the Y octahedral site (1 orbit containing 8 symmetry equivalent

sites in the primitive cell) or divalent cations at the X dodecahedral site (1 orbit with 12

equivalent sites).

In Table III we reported the analysis of the action of G on the set D = {1, 2, 3, 4, 5, 6, 7, 8} of

octahedral sites in the primitive cell. To make the Table more compact, symmetry operators

g were grouped in conjugacy classes CC (10 in total); for each class CC, the number of cycles

|CycD(CC)| and the type TD(CC) are shown.

Various trivalent cations can occur in the garnet octahedral site, such as Fe3+ (iron), Al3+

(aluminium), Cr3+ (chromium). For the corresponding solid solutions, Pólya’s formulas (10)

and (17)-(18) can then be used to compute the total number of SICs and the number of

SICs at fixed composition. For example, in the case of 2-colors binary systems, we have:

N8
2 =

1

48
( 28︸︷︷︸

E

+ 3 · 24︸ ︷︷ ︸
C2

+ 6 · 24︸ ︷︷ ︸
C′

2

+ 8 · 24︸ ︷︷ ︸
C3

+ 6 · 22︸ ︷︷ ︸
C4

+ 28︸︷︷︸
i

+ 6 · 22︸ ︷︷ ︸
S4

+ 8 · 24︸ ︷︷ ︸
S6

+ 3 · 24︸ ︷︷ ︸
σh

+ 6 · 24︸ ︷︷ ︸
σd

) = 23

(58)
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PP 8
2 (b, r) = b8 + b7r + 3 · b6r2 + 3 · b5r3 + 7 · b4r4 + 3 · b3r5 + 3 · b2r6 + br7 + r8 (59)

In the case of magnetic trivalent cations, such as Fe3+, the system is usually a magnetic

“solid solution”, involving Fe(↑) and Fe(↓) species. Formulas (33) and (36), from De Bruijn’s

approach, become then useful to calculate the number of spin SICs:

N8
↑,↓ =

1

48
(3 · 24︸ ︷︷ ︸

C2

+ 6 · 24︸ ︷︷ ︸
C′

2

+ 6 · 22︸ ︷︷ ︸
C4

+ 6 · 22︸ ︷︷ ︸
S4

+ 3 · 24︸ ︷︷ ︸
σh

+ 6 · 24︸ ︷︷ ︸
σd

)+
1

96
( 28︸︷︷︸

E

+ 28︸︷︷︸
i

+ 8 · 24︸ ︷︷ ︸
C3

+ 8 · 24︸ ︷︷ ︸
S6

) = 15

(60)

k(4↑,4↓) =
1

96
(3 · 24︸ ︷︷ ︸

C2

+ 6 · 24︸ ︷︷ ︸
C′

2

+ 6 · 22︸ ︷︷ ︸
C4

+ 6 · 22︸ ︷︷ ︸
S4

+ 3 · 24︸ ︷︷ ︸
σh

+ 6 · 24︸ ︷︷ ︸
σd

) +
7

2
= 7 (61)

note that, in the case of garnets, the number of spin SICs at 50 % composition is the same

than the number of “chemical” SICs: compare k(4↑,4↓) with the coefficient of the b4r4 term

in polynomial (59).

To explore a bigger set of SICs, it is necessary to take a larger set of sites D, by using

a supercell of the primitive cell as a reference. As an example, we performed the Pólya’s

analysis in the case of the garnet conventional cell (160 atoms instead of 80), for both

octahedral (1 orbit containing 16 equivalent sites in the conventional cell) and dodecahedral

sites (1 orbit with 24 equivalent sites). The sets of |CycD(CC)| and the total numbers of

SICs ND
|R| are reported in Tables IV and V, respectively.

Note that, when building a supercell, the symmetry group of the system must be enlarged:

it is obtained as product group of the space group and of the translational vectors used to

build up the supercell from the primitive one. The garnet conventional cell is double than

the primitive one, so that there are 96 operators instead of 48, grouped in 20 (instead of 10)

conjugacy classes. The additional classes result from the composition of each class of the

primitive case with the centering vector (1
2
, 1

2
, 1

2
) of the conventional cell. The |CycD(CC)|

values for the conventional cell were reported in Table IV in a compact form (see caption to

Table).

Now, let us comment on the number of SICs (Table V), which was also studied as a function

of the number of colors |R|. Taking the 2-colors case and starting from the primitive cell,

when going from the octahedral (|D| = 8) to the dodecahedral (|D| = 12) sites, the number

of configurations goes from 23 to 154; This number increases up to 179’444 for the 24

dodecahedral sites in the conventional cell. The number of SICs increases enormously with

the number of colors: yet for 3 colors it can reach the order of billions (dodecahedral sites
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in conventional cell). Note that these numbers can be obtained with a very limited number

of operations with the present scheme.

The second mineralogical example refers to olivines. They are orthosilicates, too, with

chemical formula X2SiO4 (X2+ are divalent cations). Their primitive cell contains four

formula units and 28 atoms in total; The space group G is orthorhombic (Pbnm) with 8

symmetry operators. The binary system Mg2SiO4-Fe2SiO4 is very common in nature38,40.

The X octahedral site, involved in this solid solution, shows 2 orbits in the primitive cell,

each of them containing 4 equivalent sites (8 sites in total).

The action of G on the set of octahedral sites D = {1, 2, 3, 4, 5, 6, 7, 8} is analyzed in Table

VI. Sites 1-4 and 5-8 belong to the 2 separate orbits; this implies that in every cycle

decomposition they are always found in different cycles. Similar to the case of garnets, we

can apply Pólya’s theory to get the number of SICs of the binary system:

N8
2 =

1

8
( 28︸︷︷︸

E

+ 3 · 24︸ ︷︷ ︸
C2

+ 26︸︷︷︸
i

+ 26︸︷︷︸
σh

+ 2 · 24︸ ︷︷ ︸
σv

) = 58 (62)

PP 8
2 (b, r) = b8 + 2·b7r + 8·b6r2 + 10·b5r3 + 16·b4r4 + 10·b3r5 + 8·b2r6 + 2·br7 + r8 (63)

The iron end member Fe2SiO4 has magnetic Fe2+ cations in the octahedral sites, which

result in the occurrence of magnetic solid solutions. A De Bruijn’s analysis yields

N8
↑,↓ =

1

8
(3 · 24︸ ︷︷ ︸

C2

+ 2 · 24︸ ︷︷ ︸
σv

) +
1

16
( 28︸︷︷︸

E

+ 26︸︷︷︸
i

+ 26︸︷︷︸
σh

) = 34 (64)

k(4↑,4↓) =
1

16
(3 · 24︸ ︷︷ ︸

C2

+ 2 · 24︸ ︷︷ ︸
σv

) +
16

2
= 13 (65)

note that, in the case of 50 % spin composition there are 13 spin SICs, against the 16 SICs

of the “chemical” case.

IV. CONCLUSIONS

In the present study it has been shown that the problem of the automatic and efficient

identification of the symmetry independent configurations can be successfully solved for (for-

mally) any number of involved positions and species (colors) by using Pólya’s and de Bruijn’s

formalisms and, for the explicit generation of SICs representatives, an orderly generation

approach based on lexicographic ordering combined with the surjective resolution principle.
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The proposed algorithm (that presents many evident advantages with respect to the direct

scheme21–23), has been implemented in a development version of the CRYSTAL code and

represents a contribution to the automatic investigation of solid solutions, nowadays (and

even more in the near future) at hand, as high performance computing provides thousands

of processors whose use imposes to minimize the number of manual operations at the various

stages of the calculation.

Despite common features with a previously proposed method18,19,37, the present approach

offers a new lightening on the relevant problem of enumerating structures, and is prone to

further developments which will be part of future work. Just as an example, we mention

the problem of the automatic identification of the minimal cell that provides the required

information (that is that contains all the required two-body interactions) with the constraint

of the maximum symmetry.
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g Moves Cycles |Cyc4(g)| T4(g) pp4
2(g) pp4

3(g)

E 1 2 3 4 (1)(2)(3)(4) 4 (4,0,0,0) (b+ r)4 (b+ r + g)4

C4 2 3 4 1 (1234) 1 (0,0,0,1) (b4 + r4) (b4 + r4 + g4)

C2 3 4 1 2 (13)(24) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

C−1
4 4 1 2 3 (1432) 1 (0,0,0,1) (b4 + r4) (b4 + r4 + g4)

σv1 4 3 2 1 (14)(23) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

σv2 2 1 4 3 (12)(34) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

σd1 3 2 1 4 (13)(2)(4) 3 (2,1,0,0) (b+ r)2 · (b2 + r2) (b+ r + g)2 · (b2 + r2 + g2)

σd2 1 4 3 2 (1)(3)(24) 3 (2,1,0,0) (b+ r)2 · (b2 + r2) (b+ r + g)2 · (b2 + r2 + g2)

TABLE I. Action of the 8 symmetry operators g of the C4v group on the 4-sites square (see Figure

1-A). “Moves” column gives the one-line notation for the permutation of the |D|=4 sites under the

effect of each g; e.g. in the case of C2, “3412” reads as “1 goes to 3, 3 to 1, 2 to 4 and 4 to 2”.

The cycles generated by each g are given in the third column, while their number |Cyc4(g)| is in

the fourth column. T4(g) is a 4-plet whose ith value li indicates the number of cycles of length i

resulting in the “Cycles” column. pp4
2(g) gives the contribution of each g to the Pólya’s polynomial

PP 4
2 (b, r) (Eqs. (17)-(18)); the subscript and superscript (2 and 4 in this case) are the number of

colors and the label of the set of sites, respectively. pp4
3(g) gives the contributions to PP 4

3 (b, r, g).
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g Cycles |Cyc8(g)| T8(g) pp8
2(g)

E (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

C4 (1234)(5678) 2 (0,0,0,2,0,0,0,0) (b4 + r4)2

C2 (13)(24)(57)(56) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

C−1
4 (1432)(5876) 2 (0,0,0,2,0,0,0,0) (b4 + r4)2

σv1 (18)(27)(36)(45) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σv2 (16)(25)(38)(47) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σd1 (17)(26)(35)(48) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σd2 (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

TABLE II. Action of the 8 symmetry operators of the C4v group on the 8-sites square (see Figure

1-B). Symbols as in Table I.
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CC Cycles |Cyc8(CC)| T8(CC) pp8
2(CC)

E (1) (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

C2 (3) (12)(34)(56)(78) 4 (0,4,0,0,0,0,0,0) 3 · (b2 + r2)4

C2’ (6) (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) 6 · (b2 + r2)4

C3 (8) (1)(234)(5)(687) 4 (2,0,2,0,0,0,0,0) 8 · (b+ r)2 · (b3 + r3)2

C4 (6) (1827)(3645) 2 (0,0,0,2,0,0,0,0) 6 · (b4 + r4)2

i (1) (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

S4 (6) (1827)(3645) 2 (0,0,0,2,0,0,0,0) 6 · (b4 + r4)2

S6 (8) (1)(234)(5)(687) 4 (2,0,2,0,0,0,0,0) 8 · (b+ r)2 · (b3 + r3)2

σh (3) (12)(34)(56)(78) 4 (0,4,0,0,0,0,0,0) 3 · (b2 + r2)4

σd (6) (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) 6 · (b2 + r2)4

TABLE III. Action of the space group Ia3d (48 symmetry operators) on the 8 octahedral sites of the

garnet structure (primitive cell). Symbols as in Table I. The first column lists the conjugacy classes

CC of symmetry operators; their cardinal is given in brackets. pp8
2(CC) gives the contribution of

each CC to the Pólya’s polynomial PP 8
2 (b, r) (Eqs. (17)-(18)); note that it has the cardinal of the

class as a multiplying factor.

30



Primitive cell Conventional cell

CC |Cyc8| |Cyc12| |Cyc16| |Cyc24|

E (1) 8 12 16 | 8 24 | 12

C2 (3) 4 8 8 | 8 16 | 12

C2’ (6) 4 8 8 | 8 14 | 14

C3 (8) 4 4 8 | 4 8 | 4

C4 (6) 2 4 4 | 4 6 | 6

i (1) 8 6 12 | 12 12 | 12

S4 (6) 2 4 4 | 4 8 | 8

S6 (8) 4 2 6 | 6 4 | 4

σh (3) 4 6 8 | 8 12 | 12

σd (6) 4 6 4 | 4 6 | 6

TABLE IV. Number of cycles |CycD| resulting from the action of the space group Ia3d on four sets

of sites of the garnet structure. |Cyc8| and |Cyc12| refer to the 8 octahedral and 12 dodecahedral

sites, respectively, of the primitive cell. |Cyc16| and |Cyc24| refer to the same 16 and 24 sites of the

conventional cell. The first column lists the conjugacy classes CC of symmetry operators g; their

cardinal is given in brackets. In the conventional cell case, in each |CycD| column there are two

sets of values: the first refers to the classes CC in the first column, the second to the classes CC ′,

resulting from the composition of each CC with the centering vector (1
2 ,

1
2 ,

1
2) of the conventional

cell.
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Primitive Cell Conventional Cell

|R| N8
|R| N12

|R| N16
|R| N24

|R|

2 23 154 874 179’444

3 333 12’489 461’889 2’943’985’419

4 2’916 362’776 45’112’096 2’932’200’891’456

5 16’725 5’163’025 1’594’680’625 620’887’278’324’375

6 70’911 45’674’826 29’432’496’906 49’358’237’168’514’996

TABLE V. Total number of SICs ND
|R| resulting from the action of the space group Ia3d on four

sets of sites of the garnet structure, as a function of the number of colors |R|. N8
|R| and N12

|R| refer

to the 8 octahedral and 12 dodecahedral sites, respectively, of the primitive cell. N16
|R| and N24

|R|

refer to the same sites of the conventional cell.
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g Cycles |Cyc8(g)| T8(g) pp8
2(g)

E (1)(2)(3)(4) (5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

Ca
2 (13)(24) (57)(68) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Cb
2 (14)(23) (58)(67) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Cc
2 (12)(34) (56)(78) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

i (1)(2)(3)(4) (56)(78) 6 (4,2,0,0,0,0,0,0) (b+ r)4 · (b2 + r2)2

σh (12)(34) (5)(6)(7)(8) 6 (4,2,0,0,0,0,0,0) (b+ r)4 · (b2 + r2)2

σv1 (13)(24) (58)(67) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σv2 (14)(23) (57)(68) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

TABLE VI. Action of the space group Pbnm (8 symmetry operators) on the 8 octahedral sites of

the olivine structure (primitive cell). Symbols as in Table I.
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FIG. 1. Action of the symmetry group C4v (8 symmetry operators) on two sets of objects in

a square: (A) 4 symmetry equivalent sites lying on the σd reflection planes (diagonals); (B) 8

symmetry equivalent sites in general position. The full list of the C4v symmetry operators is given

in the first column of Table I.
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FIG. 2. C4v group acting on the 4-sites, 2-colors square (see Figure 1-A): the set of 24 = 16

configurations, grouped in the 6 orbits. Each row corresponds to an orbit; the first configuration

of each orbit has been chosen as its “canonical” representative. The orbit stabilizer Gs and its

cardinal |Gs| are given in the last two columns (Schoenflies notation).
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FIG. 3. C4v group acting on the 8-sites, 2-colors square (see Figure 1-B): effect of the additional

action of H = S2 group on the set of colors. The configurations belonging to orbits 7 and 8 for the

50% composition (4b, 4r) (13 orbits in total) are reported in two columns. These two orbits are

symmetry independent in the general b, r-colors case. On the contrary, they compose a single orbit

of symmetry equivalent configurations in the ↑, ↓-colors case, i.e. when the H = S2 group acts on

the 2 colors. Couples of configurations that become equivalent due to the action of the exchange

operator XR ∈ S2 are on the same row. The symmetry operator g ∈ C4v, that must be applied to

the first-row configurations to obtain the configurations in each row, is reported in the left column.
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FIG. 4. C4v group acting on the 4-sites, 2-colors square (see Figure 1-A): generation of the canonical

representatives through orderly generation; the left column gives the lexicographic order (LO) of

the representatives.
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FIG. 5. C4v group acting on the 4-sites, 3-colors square (see Figure 1-A): generation of the canonical

representatives at fixed composition (b, 2r, g) through orderly generation; the left column gives

the LO of the representatives. All configurations at constant composition (b, 2r, g) are listed in

lexicographic order. The first one, the lowest, (f1), is canonical. The second one (f2) cannot be

transformed in the previous one by any operator, it is then canonical. Pólya’s polynomial (Table

I) indicates that there are only 2 representatives for this composition, then the search is stopped.
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FIG. 6. C4v group acting on the 4-sites square (see Figure 1-A): orbits vs number of colors |R|,

from one (blu, bottom layer), to two (red, middle layer), to three (green, top layer). The number

of orbits increases from 1 to 6 to 21. The canonical representatives (SICs) for the |R|+ 1 case are

generated from the set of SICs for the |R| case by using the surjective resolution principle. The

arrows represent the θ mapping, according to Eqs. (42)-(43), Section II D. Asterisks in the 2-colors

(middle) layer label the 2-colors SICs. Asterisks in the 3-colors (top) layer label the configurations

belonging to the θ-preimages of the 2-colors SICs; among them, primed asterisks label the 3-colors

SICs.
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FIG. 7. C4v group acting on the 4-sites, 3-colors square (see Figure 1-A): generation of the canonical

representatives (SICs) through lexicographic ordering (LO) combined with surjective resolution.

On the left side, the 2-colors configurations are given. The left-most column gives the LO of the

corresponding SICs in the 2-colors only case (see also Figure 4), while the central column indicates

their LO in the 3-colors case. On the right side, the additional 3-colors configurations are listed.

The arrows in the central column represent the θ mapping according to the surjective resolution

principle (see Eqs. (42)-(43), Section II D). In the right-most column the LO of the additional

3-colors SICs is reported.
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FIG. 8. CPU time (circles, logarithmic scale) needed to generate the SICs using lexicographical

ordering, as a function of the size of the system |R||D|, for |R| = 2. The reference system is

a tetragonal MgO (n,1,1) supercell, with 12 ≤ n ≤ 32. There are 12 ≤ |D| ≤ 32 sites and

48 ≤ |G| ≤ 128 symmetry operators. The number of SICs is represented by squares. The arrow

indicates the time growth for direct method (see Eq. (48)). The scaling difference between the

time and SICs curves is in the order of |G|2 (see Eqs. (13) and (47)).
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FIG. 9. CPU time (triangles, logarithmic scale) needed to generate the SICs using surjective

resolution, as a function of the size of the system |R||D|, for |R| = 3. The reference system is a

tetragonal MgO (n,1,1) supercell, with 7 ≤ n ≤ 22. There are 7 ≤ |D| ≤ 22 sites and 28 ≤ |G| ≤ 88

symmetry operators. The number of SICs is represented by squares. The arrow indicates the time

growth for direct method (see Eq. (48)).
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FIG. 10. CPU time (circles and triangles, logarithmic scale) needed to generate the SICs using

surjective resolution, as a function of the number of colors |R|. The reference system is the garnet

structure, either octahedral sites in the conventional cell (circles, |D| = 16, |G| = 96 symmetry

operators) or dodecahedral sites in the primitive cell (triangles, |D| = 12, |G| = 48). The number

of SICs is represented by squares and hexagons for the two cases, respectively. For details on the

garnet system, see Section III.
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33 N. G. de Bruijn. Generalization of Pólya’s fundamental theorem in enumerative combinatorial

analysis. Indag. Math., 21:59–69, 1959.

34 F. Harary and E. Palmer. The power group enumeration theorem. J. Combin. Theory, 1:157–

173, 1966.

35 R. C. Read. Every One a Winner or How to Avoid Isomorphism Search when Cataloguing

Combinatorial Configurations. Annals Discrete Math., 2:107–120, 1978.

36 L. A. Goldberg. Efficient algorithms for writing unlabeled graphs. J. Algorithms, 13:128–143,

1992.

37 G. L. W. Hart, L. J. Nelson, and R. W. Forcade. Generating derivative structures at a fixed

concentration. Comp. Mater. Sci., 59:101–107, 2012.

38 W. Deer, R. Howie, and J. Zussman. An introduction to the rock forming minerals. John Wiley,

New York, 1992.

39 P. C. Rickwood. On recasting analyses of garnet into end-member molecules. Contrib. Mineral.

Petrol., 18:175–198, 1968.

40 F. J. Molster, L. B. F. M. Waters, N. R. Trams, H. van Winckel, L. Decin, J. T. van Loon,

C. Jager, T. Henning, H. U. Kaufl, A. De Koter, and J. Bouwman. The composition and nature

of the dust shell surrounding the binary AFGL 4106. Astronomy and Astrophysics, 350:163–180,

1999.

48


