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Optimal impulse control of a portfolio with a fixed
transaction cost

Stefano Baccarin · Daniele Marazzina

Abstract The aim of this work is to investigate a portfolio optimization prob-
lem in presence of fixed transaction costs. We consider an economy with two
assets: one risky, modeled by a geometric Brownian motion, and one risk-free
which grows at a certain fixed rate. The agent is fully described by his/her
utility function and the objective is to maximize the expected utility from the
liquidation of wealth at a terminal date. We deal with different forms of util-
ity functions (power, logarithmic and exponential utility), describing in each
case how the fixed transaction costs influence the agent’s behavior. We show
when it is optimal to recalibrate his/her portfolio and which are the best ad-
justed portfolios. We also analyze how the optimal strategy is influenced by
the risk-aversion, as well as other model parameters.

Keywords Portfolio Optimization · Transaction Costs · Impulse Control ·
Quasi-variational Inequalities

1 Introduction

Portfolio optimization in presence of transaction costs have been intensively
studied in literature. For a survey of the literature on consumption-investment
problems with transaction costs we refer to [Cadenillas 2000]. However, most
of the articles deal with proportional transaction costs, as, for example, in
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[Davis and Norman 1990,Shreve and Soner 1994,Akian et al. 1996] and in
[Liu and Loewenstein 2002], where expected utility maximization problems
are considered, or in [Assaf et al. 1988,Dumas and Luciano 1991] and in
[Akian et al. 2001], where the objective is to maximize the long-term growth
rate of the portfolio value. In this case, the optimal strategy is to make the
minimal effort, in terms of transactions, to maintain the portfolio composi-
tion inside a no-trading region. When only one risky stock is present, this
means to keep the fraction of the portfolio invested in the risky asset inside
an interval of values. The investor trades only when the boundary of the in-
terval is reached, making a great number of small transactions to prevent
the portfolio composition to cross the borders (see [Davis and Norman 1990,
Dumas and Luciano 1991,Shreve and Soner 1994,Liu and Loewenstein 2002]).
Thus the proposed strategies have a lack of realism because the investor trades
continuously, at least part of the time, and he/she makes infinitesimally small
transactions, which is not the case in the real world.

Considering the presence of fixed transaction costs leads to more realistic
strategies: the agent intervenes only a finite number of times in any time inter-
val and he/she trades finite amounts of the assets. In [Morton and Pliska 1995,
Bielecki et al. 2004] authors assume that whenever the investor trades he/she
must pay a transaction cost equal to a fixed fraction of the portfolio values
(‘portfolio management fee’), while [Eastham and Hastings 1988,Korn 1998]
and [Oksendal and Sulem 2002] consider the transaction costs of a trade made
of two parts: a fixed fee and a cost proportional to the transaction size. To
solve the stochastic control problem, these papers use a dynamic program-
ming approach and the impulse control techniques. Impulse control associate
the value function to a Hamilton-Jacobi-Bellman quasi-variational inequality
(HJBQVI). In [Eastham and Hastings 1988,Korn 1998] authors characterize
the value function and the optimal control by means of verification theo-
rems: if a sufficiently regular solution of the HJBQVI exists, then that so-
lution is the value function and it is possible to build an optimal control.
They solve the problem in some simple examples with a finite horizon, us-
ing a linear or, by an asymptotic analysis, an exponential utility function. In
[Oksendal and Sulem 2002] the problem is formulated with an infinite horizon
and considering a power utility function with a positive exponent. The value
function is characterized as a viscosity solution of the HJBQVI and an example
of a numerical solution is given.

In this article we study the optimal strategy for an investor who invests
in two assets, one risky and one risk-free. Our agent pays a fixed cost K > 0
whenever he/she trades and he/she seeks to maximize the expected value of the
utility of his/her terminal wealth at a finite horizon. We formulate the prob-
lem as a parabolic impulse control problem where the variables are the values
invested in the two assets and time. We will show, in a heuristic approach,
that the value function is a solution of the associated HJBQVI and that from
this solution it is possible to obtain a Markovian optimal policy. The optimal
control is characterized by a continuation and a transaction region, but also
by a set of target portfolios. These are the portfolios where it is optimal to
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move when the portfolio composition touches the borders of the transaction
region. Unlike most of the literature on portfolio optimization under transac-
tion costs, see for instance [Shreve and Soner 1994,Morton and Pliska 1995,
Liu and Loewenstein 2002,Oksendal and Sulem 2002], our optimal policy is
not stationary. The control regions change as time passes up to the finite
horizon. The main contribution of the present article is to show the shape
and evolution of the no-transaction region, as well as the target portfolio line,
in the presence of a fixed transaction cost and for different utility functions.
Moreover we also investigate the sensitivity of the optimal strategy with re-
spect to the model parameters, such as the fixed cost K, the risk-aversion
of the agent or the volatility of the stock price. We have computed the so-
lution of the HJBQVI numerically by solving (as in [Chancelier et al. 2002]
and [Baccarin 2009]) an iterative sequence of variational inequalities, each one
representing the value function of a problem where only a finite number of
interventions are available. In our numerical experiments we have considered
the case of a power or logarithmic utility, which assume a constant relative
risk-aversion index for the agent, and the case of an exponential utility, which
implies a constant absolute risk-aversion.

The structure of the paper is as follows. In Section 2 we describe the fi-
nancial framework as well as the optimal investment problem in presence of
fixed transaction costs. Then, in Section 3 we deal with the quasi-variational
inequality associated to the optimal problem. Section 4 addresses the numeri-
cal solution of the problem with a finite element technique, and finally Section
5 contains the numerical results.

2 The investment problem

We consider a continuous time economy with a finite horizon T . We assume
that there are two assets: the risk-free asset B with a constant instantaneous
interest rate r, and a risky asset S, whose price evolves according to a geometric
Brownian motion of constant drift b and volatility σ

dS(t) = bS(t)dt+ σS(t)dZ(t),

Zt being an adapted Wiener process on the filtered probability space (Ω,F, P,Ft).
The agent maximizes the expected utility over the finite horizon. The utility
at time T is a function of the wealth, and we assume one of the following forms
for the utility function:

u(x) =
xγ

γ
, γ < 0 or 0 < γ < 1,

u(x) = log(x), (1)

u(x) = −e−γx, γ > 0.

We will denote the investor’s portfolio by

(πS , πB)
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where πS and πB are the amounts of money invested respectively in the stock
and in the risk-free asset. At any time t the agent can buy (or sell if ξ < 0)
a value ξ of the risky asset reducing (or increasing) correspondingly the bank
account. However, for each transaction, he/she must face a fixed transaction
cost, paying K. Thus the portfolio composition in t becomes

(πS(t−) + ξ, πB(t−)−K − ξ),

where (πS(t−), πB(t−)) are the values invested in the two assets just before
the transaction.

A fundamental notion in our model is the liquidation value of the portfolio.
We define the liquidation value L(πS , πB) as

L(πS , πB) = πS + πB −K if πS 6= 0, L(0, πB) = πB

i.e., it is the value when the long or short position in the risky asset is cleared
out. Besides the transaction costs, we assume that the agent must face a
solvency constraint, that is a portfolio is admissible only if L(πS(t), πB(t)) ≥
Lmin, ∀t ∈ [0, T ]. Here Lmin is a positive constant denoting the minimum value
of liquidity required to the agent. If his/her wealth reaches this lower bound
the portfolio will be liquidated and the remaining value invested only in the
risk-free asset. Moreover we will assume that there are lower bounds Bmin < 0
and Smin < 0 in the open short positions in the bank account and in the
risky security, respectively. We thus define the region P ⊂ R2 of admissible
portfolios by

P =
{

(πS , πB) ∈ R2 : L(πS , πB) ≥ Lmin ∧ (B ≥ Bmin) ∧ (S ≥ Smin)
}
.

A control policy p is a sequence of stopping times {τi} (with respect to the
filtration Ft) and corresponding random variables {ξi} verifying the conditions:0 ≤ τi ≤ τi+1 almost surely ∀i

limi→+∞ τi = +∞ almost surely
ξi is Fτi measurable .

Here ξi represents the value of stocks bought (if ξi > 0) or sold (if ξi < 0) at
time τi. Notice that limi→∞ τi =∞ implies that the number of stopping times
τi which are less or equal to T is almost surely finite (τi = +∞ almost surely
for some i <∞ is possible). Starting from the initial condition (πB(0), πS(0))
the dynamics of the controlled portfolio can be described by the following set
of stochastic differential equations:{

dπS = bπSdt+ σπSdZ
dπB = rπBdt

if τi < t < τi+1{
πS(τi) = πS(τ−i ) + ξi
πB(τi) = πB(τ−i )− ξi −K

if t = τi ,

Z being the one-dimensional Brownian motion driving the risky asset.
We will say that a policy p is admissible if the corresponding controlled process
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verifies (πpB(t), πpS(t)) ∈ P, ∀t ∈ [0, T ]. Since the investor’s preferences are
represented by one of the utility functions (1), we can formulate our model as
the following optimal impulse control problem

max
p∈A(0,πS(0),πB(0))

E0,πS(0),πB(0)[u(L(πS(T ), πB(T ))]

where A(0, πS(0), πB(0)) is the set of admissible policies when the process
starts at time 0 with a portfolio (πS(0), πB(0)).

We will solve this problem by using a dynamic programming approach,
considering a variable initial condition and the value function

V (t, πS , πB) = sup
p∈A(t,πS ,πB)

Et,πS ,πB [u(L(πS(T ), πB(T ))]

defined in [0, T ]×P. Here A(t, πS , πB) is the set of admissible policies when the
process starts in t with a portfolio (πS , πB). In the next section we will show
heuristically that V (t, πS , πB) is a solution of a quasi-variational inequality,
and that there exists an optimal control of a Markovian type for our model.

3 The quasi-variational inequality associated to the value function
and the optimal control

We define the following non-local operatorM for bounded functions in [0, T ]×
P as

MV := sup
ξ∈F (πS ,πB)

V (t, πS + ξ, πB − ξ −K),

being F (πS , πB) the set of admissible transactions from (πS , πB) ∈ P

F (πS , πB) := {ξ ∈ R : (πS + ξ, πB − ξ −K) ∈ P} .

Notice that MV corresponds to the best transaction the agent can make if
he/she decides to intervene. If F (πS , πB) = ∅, we set MV = −∞. We also
define the second order linear operator L by

LV :=
∂V

∂t
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+

1

2
σ2π2

S

∂2V

∂π2
S

.

In this section we will show, in a formal way, that the value function V of
our problem is a solution of the following parabolic quasi-variational inequality
in (0, T )× P

V (t, πS , πB) ≥MV (t, πS , πB) (2)

LV (t, πS , πB) ≤ 0 (3)

(V (t, πS , πB)−MV (t, πS , πB))LV (t, πS , πB) = 0. (4)

We will assume that the value function is regular enough to apply the Dynkin’s
formula in (0, T ). This is the case when V is a C1,2 function but it can also
hold true when the distributional derivatives of V are ordinary functions in
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Sobolev spaces (see [Bensoussan and Lions 1984,Krylov 1980]). For the vis-
cosity solution characterization of value functions of impulse control problems
see [Oksendal and Sulem 2007, Chapter 9]. Let us consider our agent at the
time instant t. He/she can take only one of two possible decisions:

1) to let the system evolve freely for the infinitesimal interval (t, t+ h);

2) to make the best transaction, selling or buying stocks.

Since there is no other alternative it is likely that the following version of
Bellman’s optimality principle holds true:

V (t, πS , πB) = max {Et,πS ,πB [V (t+ h, πS(t+ h), πB(t+ h))] ,MV (t, πS , πB)} .

Therefore we obtain immediately V ≥ MV, which is condition (2). Now,
suppose that we can apply the Dynkin’s formula in the interval (t, t+ h). We
obtain

Et,πS ,πB [V (t+ h, πS(t+ h), πB(t+ h))]

= V (t, πS , πB) + Et,πS ,πB

[∫ t+h

t

∂V

∂s
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+

1

2
σ2π2

S

∂V

∂π2
S

ds

]
.

But, from the Bellman’s principle, it holds

V (t, πS , πB) ≥ Et,πS ,πB [V (t+ h, πS(t+ h), πB(t+ h))]

and consequently we have

Et,πS ,πB

[∫ t+h

t

∂V

∂s
+ rπB

∂V

∂πB
+ bπS

∂V

∂πS
+

1

2
σ2π2

S

∂V

∂π2
S

ds

]
≤ 0.

Letting h → 0+ and using the integral version of the mean value theorem
we obtain the inequality (3), that is LV ≤ 0. Since no other alternative is
possible, the third equality (4), (V −MV )LV = 0, is also verified. To uniquely
characterize V as a solution of (2-4) in [0, T ]×P we must consider the behavior
of the value function at the boundary of (0, T ) × P. At the terminal date T
it holds, obviously, V (T, πS , πB) = u(L(πS , πB)), ∀(πS , πB) ∈ P. Along the
straight line πS + πB = K + Lmin, we have

V (t,−πB +K + Lmin, πB) = u(Lmine
r(T−t)) ∀t ∈ [0, T ]

because the minimum solvency level has been reached and the investor is forced
to liquidate his/her position. Moreover when πB = Bmin or πS = Smin we have
V = MV because one of the open short position is too big and the agent is
forced to transact. The value function is also determined by the fact that it
is upper bounded, because it is certainly lower than the value function of a
corresponding problem without transaction costs.

We also can show heuristically that an optimal control of a Markovian type
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always exists for our model. We divide the [0, T ]×P domain into two regions,
the transaction region

A ≡ {(t, πS , πB) ∈ [0, T ]× P : V =MV }

and the complementary continuation region

C ≡ {(t, πS , πB) ∈ [0, T ]× P : V >MV } .

Setting τ∗0 ≡ t, the optimal policy p∗(t, πS , πB) for the process starting in
(t, πS , πB) is given by:

p∗ =



τ∗i =

{
inf
{
Ii ≡

{
T ≥ s ≥ τ∗i−1 : (s, πS(s−), πB(s−)) ∈ A

}}
if Ii 6= ∅

+∞ if Ii = ∅

ξ∗i =

 arg max
ξ∈F (πS(τ

−
i ),πB(τ−

i ))

V (τi, πS(τ∗−i ) + ξ, πB(τ∗−i )− ξ −K) if τ∗i <∞

arbitrary if τ∗i = +∞

Indeed, if we apply the Dynkin’s formula, separately in the intervals (τ∗i−1 ∧
T, τ∗i ∧T ) to the process (π∗S , π

∗
B) controlled by policy p∗, and we take account

of the jumps ξ∗i , we have (i = 1, ...,m) :

Et,πS ,πB [V (τ∗m ∧ T, πS(τ∗−m ∧ T ), πB(τ∗−m ∧ T ))] = V (t, πS , πB)

+Et,πS ,πB [
∑m−1
i=0

∫ τ∗
i+1∧T

τ∗
i ∧T

(∂V∂s + rπB
∂V
∂πB

+ bπS
∂V
∂πS

+ 1
2σ

2π2
S
∂V
∂π2

S
) ds]

+Et,πS ,πB [
∑m−1
i=1 (V (τ∗i , πS(τ∗−i ) + ξ∗i , πB(τ∗−i )− ξ∗i −K)

− V (τi, πS(τ∗−i ), πB(τ∗−i ))χτ∗
i <∞] .

Since V verifies LV = 0 when V >MV, and by construction (s, π∗S , π
∗
B) ∈ C

in the intervals (τ∗i ∧ T, τ∗i+1 ∧ T ) when τ∗i ∧ T < τ∗i+1 ∧ T, all the terms in
the first expectation vanish. Similarly, as V verifies V = MV in A, and by
construction (τ∗i , πS(τ∗−i ), πB(τ∗−i )) ∈ A if τ∗i <∞, we have V (τ∗i , πS(τ∗−i ) +
ξ∗i , πB(τ∗−i ).ξ∗i −K)τ∗

i <∞ = V (τ∗i , πS(τ∗−i ), πB(τ∗−i )τ∗
i <∞, and also the second

expectation vanishes. Therefore we obtain

V (t, πS , πB) = Et,πS ,πB [V (τ∗m ∧ T, πS(τ∗−m ∧ T ), πB(τ∗−m ∧ T ))] .

By taking the limit for m → ∞, as τ∗m → ∞ almost surely because p∗ is
admissible, we have

V (t, πS , πB) = Et,πS ,πB [V (T, π∗S(T ), π∗B(T ))] = Et,πS ,πB [U(L(π∗S(T ), π∗B(T )))]
(5)

and by the definition of the value function the policy p∗ is optimal.
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Fig. 1 Bounded admissible region (Ph): OG=K, OF=OE=K+Lmin, while the trapezoidal
region has vertices A=(Bmin,K+Lmin−Bmin), B=(K+Lmin−Smin, Smin), C=(K+Lmax−
Smin, Smin) and D=(Bmin,K + Lmax −Bmin).

4 A numerical solution

To solve numerically our model, it is necessary to deal with a finite domain. To
avoid artificial boundary conditions, instead of using some transformation to
reduce the unbounded region P to a bounded domain, we will assume that the
agent must face another constraint, which has a natural economic meaning.
Our investor will be fully satisfied if his/her portfolio reaches a threshold
liquidation value Lmax, at a time t < T . In this case the portfolio will be
liquidated in t and Lmax will be invested in the bank account up to the finite
horizon T . Therefore we can define the bounded region Ph ⊂ P of admissible
portfolios by

Ph =
{

(πS , πB) ∈ R2 : (Lmin ≤ L(πS , πB) ≤ Lmax)

∧ (πB ≥ Bmin) ∧ (πS ≥ Smin)
}
.

The bounded region Ph is depicted in Figure 1: Ph consists of the trapezoidal
domain ABCD and the segment GF. For computational purposes, we only
consider the bounded domain ABCD.

We now consider the backward-in-time problem: as specified in the previous
section, at the final time T it holds

V (T, πS , πB) = u(L(πS , πB)). (6)

The value function is fully described by the terminal condition problem (2-4).
We set the boundary conditions on the domain depicted in Figure 1 as follows:
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– on edges AB and CD: V (t, πS , πB) = u(L(πS , πB)er(T−t));
– on edges BC and AD: V (t, πS , πB) =MV (t, πS , πB).

The first boundary condition is due to the assumption on the threshold liquida-
tion values Lmin and Lmax: if the agent reaches these levels, he/she recalibrate
his/her portfolio investing only in the risk-free asset up to the horizon T . The
second boundary condition is due to the Bmin and Smin bounds, where the
agent is obliged to transact.

The above problem can be solved with a projected SOR method coupled
with an iterative procedure above the obstacle (2-4). We define the function
V0(t, πS , πB) such that

LV0(t, πS , πB) = 0

for any t ∈ [0, T ) and (πS , πB) ∈ Ph, with the condition V (t, πS , πB) =
u(L(πS , πB)er(T−t)) on the whole boundary. This is the the expected util-
ity of the final position when no transactions are permitted. Beginning with
V0(t, πS , πB), one defines Vi(t, πS , πB), i ≥ 1, as the solution of

Vi(t, πS , πB) ≥MVi−1(t, πS , πB),

LVi(t, πS , πB) ≤ 0, (7)

(Vi(t, πS , πB)−MVi−1(t, πS , πB))LVi(t, πS , πB) = 0,

with boundary condition Vi(t, πS , πB) = MVi−1(t, πS , πB) on edges BC and
AD. In the Appendix we show, in a formal way, that the solution Vi(t, πS , πB)
can be interpreted as the value function of our problem when at most i trans-
action can be made by the investor. Thus it holds

V0(t, πS , πB) ≤ V1(t, πS , πB) ≤ V2(t, πS , πB) ≤ · · · ≤ V (t, πS , πB),

and, as the number of transactions in the interval [0, T ] is almost surely finite,
the sequence Vi converges to V .

Each variational inequality (7) can be solved with a projected SOR method.
We discretize the PDE LV = 0 considering a finite element technique with
polynomial of degree 1, and a Crank-Nicholson scheme. For details on the
implementation of the PSOR algorithm see, for example, [Wilmott et al. 1995],
while for applications of the finite element technique to financial problems
see, as examples, [Achdou and Pironneau 2005,Barucci and Marazzina 2012,
Marazzina et al. 2012].

5 Numerical results

In this section we present some numerical results considering different utility
functions and different values of the model parameters. We will always assume
a finite horizon of one year (T = 1) and the following bounds of the domain (see
Figure 1): Bmin = Smin = −20, Lmin = 1 and Lmax = 100. The finite element
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discretization is done with a mesh of 3000 points (approximately 5000 trian-
gles) and a time grid of 50 steps. The numerical experiments are performed
with Matlab R2011a. We will separate the case of a power or logarithmic
utility, with a constant relative risk-aversion, from the case of an exponential
utility, with a constant absolute risk-aversion. In both cases an exact solution
is available if we consider our portfolio problem without transaction costs.

5.1 Power and logarithmic utility

In this case it is well known that the optimal policy without transaction costs
is to transact continuously, to maintain fixed the proportion of wealth invested
in the risky asset

πS
πB + πS

=
b− r

σ2(1− γ)

the so-called Merton’s proportion, see [Merton 1969]. The logarithmic utility
can be seen as the particular case when γ = 0. To analyze the influence of
transaction costs, in Figures 2-5 we show the transaction region (in blue) as
well as the target portfolios (in red), i.e., the portfolio where it is optimal
to move when the agent portfolio falls into the transaction region. In these
figures we have set the values r = 3%, b = 0.08, σ = 0.5, we have consid-
ered a power utility with exponent γ = 0.5 and different transaction costs
(K = 0.01, 0.05, 0.1 and 0.25). We show the transaction areas at time t = 0
and t = 0.5. From these numerical experiments we notice that the target
portfolios belongs to the Merton’s line, with few exceptions near the edge CD
(see Figure 1). These exceptions are due to the fact that the portfolio value
is already near the threshold value Lmax. The investor will likely liquidate
his/her position in short time and before T , and this makes the risky asset
less attractive. The transaction region consists of two parts. The shape of the
continuation region (white) is similar to a cone, enlarging as time increases,
and it seems nearly symmetric with respect to the Merton’s line.
Moreover, as expected, transaction costs strongly influence the optimal strate-
gies. The transaction region, in fact, decreases as the transaction cost K in-
creases. Moreover, it also decreases as time increase: this happens because,
as the time to maturity T − t decreases, only a large change in the portfolio
composition can compensate the transaction costs.

To describe how the risk-aversion influences the transaction region as well
as the target portfolio, in Figure 6 we consider both the power utility function
(with different exponents) as well as the logarithmic utility. Considering this
figure and Figure 4 (left), we notice that, as expected, increasing the risk-
aversion 1− γ, the target portfolios move according to the Merton’s line, i.e.,
the agent prefers to invest more in the risk-free asset instead of the risky one,
and the transaction area increases, since the amplitude of the no-transaction
cone decreases. This implies that a more risk-averse agent recalibrates more
frequently his/her portfolio, paying transaction costs, to maintain his/her port-
folio into a less risky position.
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Fig. 2 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and
t = 0.5 (right). K = 0.01.

Fig. 3 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and
t = 0.5 (right). K = 0.05.

Fig. 4 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and
t = 0.5 (right). K = 0.1.

To conclude, in Figure 7 we modify the volatility parameter. Comparing
this figure with Figure 6 (down-left), where we recall that we set σ = 0.5,
we notice that the behavior of the transaction area varying the volatility pa-
rameter is similar to the one described above for the risk-aversion: increasing
the volatility, it is well known that the slope of the Merton’s line decreases,
and thus also the target portfolio line’s slope decreases, while the transaction
region increases. Numerical experiments not reported here show a similar be-
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Fig. 5 Transaction area in the plane (πB , πS) for power utility. Time t = 0 (left) and
t = 0.5 (right). K = 0.25.

Fig. 6 Transaction area in the plane (πB , πS) at time t = 0 and K = 0.1. Power utility
with γ = 0.8 (up-left), γ = −0.5 (down-left) and γ = −0.8 (down-right); logarithmic utility
(up-right).

havior decreasing the risky-asset drift b or increasing the risk-free interest rate
r: the target portfolio always follows the Merton’s line and the no-trade region
decreases.

5.2 Exponential utility

In this sub-section we deal with the exponential utility u(x) = −e−γx. In this
case (see [Pliska 1986]) the optimal strategy without transaction costs is to
transact continuously to maintain the amount of money invested in the risky
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Fig. 7 Transaction area in the plane (πB , πS) at time t = 0 and K = 0.1 for power utility
with γ = −0.5. Volatility σ = 0.3 (left) and σ = 0.4 (right).

Fig. 8 Transaction area in the plane (πB , πS) for the exponential utility. Time t = 0 (left)
and t = 0.5 (right). K = 0.25.

Fig. 9 Transaction area in the plane (πB , πS) for the exponential utility. Time t = 0 (left)
and t = 0.5 (right). K = 0.1.

security equal to the discounted constant

πS(t) =
b− r
σ2γ

e−r(T−t).

Note that this trading policy appears to be rather unrealistic. The value in-
vested in the stock does not depend on the current wealth but only on time
and the model’s parameters, including the constant absolute risk-aversion γ.
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Fig. 10 Transaction area in the plane (πB , πS) at time t = 0 and K = 0.1 for the expo-
nential utility. Risk-aversion equal to γ = 0.04 (left) and γ = 0.1 (right).

The investor essentially changes only the amount invested in the bank account,
behaving in a more risky way when is poor than when is rich. In Figures 8-9
we show the evolution of the transaction area for two different transaction
costs, K = 0.25 and K = 0.1. The model parameters are the same as in the
previous section, with the exception of γ, which is set equal to 0.02. Again, the
target portfolios coincide with the optimal line without transaction costs, but
the no-trade area is no more a cone, but a rectangular region with inside the
horizontal line of optimal portfolios. Moreover, as expected, the no-transaction
region is enlarging as the fixed cost and/or the time increase.

To conclude, in Figure 10 we consider two different values of the risk-
aversion parameter γ: the target portfolio follows the Merton’s line, moving
towards the line S = 0 as γ increases, while the no-transaction region collapses.
Numerical results not reported here show a similar behavior increasing the
volatility σ, the interest rate r or decreasing the drift of the risky asset b.

6 Conclusions

In this article we have studied an optimal investment problem with a fixed
transaction cost and a finite horizon. In the case of a power (or logarithmic)
utility we have shown that the no-transaction region closely resembles a cone,
which is the same shape as the no transaction region of similar problems with
proportional transaction costs (see, for instance, [Davis and Norman 1990,
Liu and Loewenstein 2002]). The fixed cost however leads to a striking dif-
ference in the optimal policy: in our framework the optimal strategy is to
move from the borders of the no-trade region to the the Merton’s line, while
in the proportional case the optimal strategy is to perform many infinitesimal
transactions to remain on the boundary of the cone. It is a remarkable fact
that also with the exponential utility our optimal target portfolios essentially
coincide with the optimal line without transaction costs. In this case it is a
horizontal line, slowly moving upwards, inside a no-trade region of a rectangu-
lar shape. Unlike most of the literature on portfolio optimization our optimal
strategies are not stationary: we have shown how the no-trade regions increase
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as time goes on up to the finite horizon.
There are several directions in which our portfolio optimization problem under
transaction costs can be further investigated. To prove rigorously that the value
function is a solution of the HJBQVI it is necessary to use some kind of weak
solution of this inequality, such as the very general notion of constrained viscos-
ity solution (as for instance in [Akian et al. 2001,Oksendal and Sulem 2002,
Ly Vath et al. 2007]). The theoretic connection between the value function
and the sequence of variational inequalities also deserves additional analysis.
It is likely that in the more general case of fixed plus proportional transaction
costs the optimal target portfolios will split in two different lines, with possi-
bly independent dynamics, and the coincidence with the optimal line without
transaction costs will no longer hold true. All these different aspects are cur-
rently under investigation by the authors.
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A Interpretation of the increasing sequence of variational
inequalities

We denote by An(t, πS , πB) the set of admissible policies when at most n interventions are
admitted before the final time T . A policy p = (τi, ξi) ∈ An(t, πS , πB) if p ∈ A(t, πS , πB) and
τn+1 = +∞ almost surely. We introduce the value function V n when the set of admissible
policies is restricted to An(t, πS , πB) :

V n(t, πS , πB) := sup
p∈An(t,πS ,πB)

Et,πS ,πB [V (πpS(T ), πpB(T ))] = sup
p∈An(t,πS ,πB)

J(p)

where (πpS(t), πpB(t)) is the process controlled by policy p, and J(p) the corresponding ob-
jective value.

We define V0 as the solution of the partial differential equation (with the other appro-
priate boundary conditions):{

LV0(t, πS , πB) = 0
V0(T, πS , πB) = u(L(πS , πB))

.

Consider now the sequence of variational inequalities (j = 1, ..., n):
LVj ≤ 0
Vj ≥MVj−1

(Vj −MVj−1)LVj = 0
Vj(T, πS , πB) = u(L(πS , πB))

starting from j = 1. We show in a heuristic way that Vn = V n, that is the solution of the
n−th variational inequality is the value function when at most n interventions are admitted.

Let p ∈ An(t, πS , πB) and define τ̂pi = τpi ∧ T . By Ito’s formula applied to Vn on the
interval (t, τ̂1), taking expectations and recalling that LVn ≤ 0 (and assuming that the
expectation of the stochastic integral vanishes), we obtain

Vn(t, πS , πB) ≥ Et,πS ,πB [Vn(τ̂1, πS(τ̂−1 ), πB(τ̂−1 ))] .
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Moreover since Vn ≥MVn−1 we also have

Vn(t, πS , πB)

≥ Et,πS ,πB [Vn(τ̂1, πS(τ̂−1 ), πB(τ̂−1 ))]χ
T<τ

p
1

+ Et,πS ,πB [Vn(τ̂1, πS(τ̂−1 ), πB(τ̂−1 ))]χ
T≥τp1

≥ Et,πS ,πB [Vn(τ̂1, πS(τ̂−1 ), πB(τ̂−1 ))]χ
T<τ

p
1

+ Et,πS ,πB [Vn−1(τ̂1, πS(τ̂−1 ) + ξ1, πB(τ̂−1 )− ξ1 −K)]χ
T≥τp1

= Et,πS ,πB [Vn−1(τ̂1, πS(τ̂1), πB(τ̂1))] .

Repeating the same reasoning we obtain (j = 1, ...., n− 1)

Et,πS ,πB [Vn−j(τ̂j , πS(τ̂j), πB(τ̂j))] ≥ Et,πS ,πB [Vn−j−1(τ̂j−1, πS(τ̂j−1), πB(τ̂j−1))] .

Summing up these inequalities we end with

Vn(t, πS , πB) ≥ Et,πS ,πB [V0(τ̂n, πS(τ̂n), πB(τ̂n))] .

Furthermore we have

Et,πS ,πB [V0(τ̂n, πS(τ̂n), πB(τ̂n))] ≥ Et,πS ,πB [V0(T, πpS(T ), πpB(T ))]

= Et,πS ,πB [u(L(πpS(T ), πpB(T )))] = J(p) .

Therefore we have shown that

Vn(t, πS , πB) ≥ J(p), ∀p ∈ An(t, πS , πB) .

Now we show that there exists p∗ ∈ An(t, πS , πB) such that Vn(t, πS , πB) = J(p∗) and
Vn ≡ V n, the value function with at most n interventions.
By Ai, i = 1, ..., n, we define the set

Ai :=
{

(t, πS , πB) : Vn+1−i =MV n−i
}

.

We consider the policy p∗ given recursively by (τ∗0 ≡ t, i = 1, ..., n)

p∗ =


τ∗i =

{
inf
{
Ii ≡

{
T ≥ s ≥ τ∗i−1 : (s, πS(s−), πB(s−)) ∈ Ai

}}
if Ii 6=∅

+∞ if Ii = ∅

ξ∗i =

{
arg maxξ∈R Vn−i(τ

∗
i , πS(τ∗−i ) + ξ, πB(τ∗−i )− ξ −K) if τ∗i < +∞

arbitrary if τ∗i = +∞

.

It is not difficult to see that using this policy the above inequalities become equalities and
we have

V n(t, πS , πB) = J(p∗) = Vn(t, πS , πB) .


