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We consider decision makers who know that payoff-relevant
observations are generated by a process that belongs to a given
class M, as postulated in Wald [Wald A (1950) Statistical Decision
Functions (Wiley, New York)]. We incorporate this Waldean piece
of objective information within an otherwise subjective setting à
la Savage [Savage LJ (1954) The Foundations of Statistics (Wiley,
New York)] and show that this leads to a two-stage subjective
expected utility model that accounts for both state and model
uncertainty.

Consider a decision maker who is evaluating acts whose out-
comes depend on some verifiable states, that is, on observa-

tions (workers’ outputs, urns’ drawings, rates of inflation, and the
like). If the decision maker (DM) believes that observations are
generated by some probability model, two sources of uncertainty
affect his evaluation: model uncertainty and state uncertainty. The
former is about the probability model that generates observations,
and the latter is about the state that obtains (and that determines
acts’ outcomes).
State uncertainty is payoff relevant and, as such, it is directly

relevant for the DM’s decisions. Model uncertainty, in contrast,
is not payoff relevant and its role is instrumental relative to state
uncertainty. Moreover, models cannot always be observed:
Whereas in some cases they have a simple physical description
(e.g., urns’ compositions), often they do not have it (e.g., fair
coins). For these reasons, the purely subjective choice frame-
works à la Savage (1) focus on the verifiable and payoff-relevant
state uncertainty. They posit an observation space S over which
subjective probabilities are derived via betting behavior.
In contrast, classical statistical decision theory à la Wald (2)

assumes that the DM knows that observations are generated by
a probability model that belongs to a given subset M, whose
elements are regarded as alternative random devices that nature
may select to generate observations. [As Wald (ref. 2, p. 1)
writes, “A characteristic feature of any statistical decision prob-
lem is the assumption that the unknown distribution FðxÞ is
merely known to be an element of a given class Ω of distributions
functions. The class Ω is to be regarded as a datum of the de-
cision problem.”] In other words, Wald’s approach posits
a model space M in addition to the observation space S. In so
doing, Wald adopted a key tenet of classical statistics, that is,
to posit a set of possible data-generating processes (e.g., nor-
mal distributions with some possible means and variances),
whose relative performance is assessed via available evidence
[often collected with independent identically distributed (i.i.d.)
trials] through maximum-likelihood methods, hypothesis test-
ing, and the like. Although models cannot be observed, in
Wald’s approach their study is key to better understanding
state uncertainty.
Is it possible to incorporate this Waldean key piece of objective

information within Savage’s framework? Our work addresses this
question and tries to embed this classical datum within an other-
wise subjective setting. In addition to its theoretical interest, this
question is relevant because in some important economic appli-
cations it is natural to assume, at least as a working hypothesis,
that DMs have this kind of information [e.g., Sargent (3)].
Our approach takes the objective information M as a primitive

and enriches the standard Savage framework with this datum:
DMs know that the true model m that generates data belongs to

M. Behaviorally, this translates into the requirement that their
betting behavior (and so their beliefs) be consistent with M,

mðFÞ≥mðEÞ ∀m∈ M ⇒ xFy≿ xEy;

where xFy and xEy are bets on events F and E, with x ≻ y. We do
not, instead, consider bets on models and, as a result, we do not
elicit prior probabilities on them through hypothetical (because
models are not in general observable) betting behavior. Never-
theless, our basic representation result, Proposition 1, shows
that, under Savage’s axioms P.1–P.6 and the above consistency
condition, acts are ranked according to the criterion

V ðf Þ=
Z
Δ

�Z
S

uðf ðsÞÞdmðsÞ
�
dμðmÞ; [1]

where μ is a subjective prior probability on models, whose sup-
port is included in M. We call this representation classical sub-
jective expected utility because of the classical Waldean tenet on
which it relies.
The prior μ is a subjective probability that may also reflect some

personal information on models that the DM may have, in addi-
tion to the objective information M. Uniqueness of μ corresponds
to the linear independence of the setM. For example,M is linearly
independent when its members are pairwise orthogonal. Re-
markably, some important time series models widely used in
economic and financial applications satisfy this condition, as dis-
cussed later in the paper. For this reason, our Wald–Savage setup
provides a proper statistical decision theory framework for em-
pirical works that rely on such time series.
Each prior μ induces a predictive probability μ on the sample

space S through model averaging:

μðEÞ=
Z
Δ

mðEÞdμðmÞ: [2]

In particular, setting P= μ,

V ðf Þ=
Z
S

uðf ðsÞÞdPðsÞ [3]

is the reduced form of V, its subjective expected utility (SEU)
representation à la Savage. On the other hand, when M is a sin-
gleton {m}, we have μ=m for all priors μ and we thus get the
von Neumann–Morgenstern expected utility representation

V ðf Þ=
Z
S

uðf ðsÞÞdmðsÞ; [4]

where subjective probabilities do not play any role. [Lucas (ref. 4,
p. 15) writes that “Muth (5) . . . [identifies] . . . agents’ subjective
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probabilities . . . with ‘true’ probabilities, calling the assumed coin-
cidence of subjective and ‘true’ probabilities rational expectations”
[Italics in the original]. In our setting, this coincidence is modeled
by singleton M and results in the expected utility criterion (4).]
Classical SEU thus encompasses both the Savage and the von
Neumann–Morgenstern representations.
In particular, the Savage criterion [3] is what an outside ob-

server, unaware of datum M, would be able to elicit from the
DM’s behavior. It is a much weaker representation than the
“structural” one ([1]), which is the criterion that, instead, an
outside observer aware of M would be able to elicit. For, this
informed observer would be able to focus on the map μ→ μ from
priors with support included in datum M to predictive proba-
bilities. Under the linear independence of datum M, by inverting
this map the observer would be able to recover prior μ from the
predictive probability μ, which can be elicited through standard
methods. The richer Waldean representation [1] is thus sum-
marized by a triple (u, M, μ), with suppμ ⊆ M, whereas for the
usual Savagean representation [3] is enough a pair (u, P).
Summing up, although the work of Savage (1) was inspired by the

seminal decision theoretic approach of Wald (2), his purely sub-
jective setup and the ensuing large literature did not consider the
classical datum central inWald’s approach. [See Fishburn (6), Kreps
(7), and Gilboa (8). See Jaffray (9) for a different “objective” ap-
proach.] In this paper we show how to embed this datum in a Savage
setting and how to derive the richer Waldean representation [1] by
considering only choice behavior based on observables. Battigalli
et al. (10) use the Wald–Savage setup of the present paper to study
self-confirming equilibria, whereas we are currently using it to pro-
vide a behavioral foundation of the robustness approach in mac-
roeconomics pioneered by Hansen and Sargent (11).

Preliminaries
Subjective Expected Utility. We consider a standard Savage setting,
where (S, Σ) is a measurable state space and X is an outcome space.
An act is a map f: S→ X that delivers outcome f (s) in state S. Let F
be the set of all simple and measurable acts. [Maps f : S→X such
that f ðSÞ is finite and fs∈ S : f ðsÞ= xg∈Σ for all x∈X .]
The DM’s preferences are represented by a binary relation ≿

over F . We assume that ≿ satisfies the classic Savage axioms P.1–
P.6. By his famous representation theorem, these axioms are
equivalent to the existence of a utility function u: X → R and
a (strongly) nonatomic finitely additive probability P on S such
that the SEU evaluation V ðf Þ= RSuðf ðsÞÞdPðsÞ represents ≿.
[Strong nonatomicity of P means that for each E∈Σ and
0≤ c≤PðEÞ there exists F ∈Σ such that F⊆E and PðFÞ= c. See
ref. 12, p. 141–143 for the various definitions and properties of
nonatomicity of finitely additive probabilities.] In this case, u is
cardinally unique and P is unique.
Given any f, g ∈ F and E ∈ Σ, f Eg is the act equal to f on E and

to g otherwise. The conditional preference ≿E is the binary relation
on F defined by f ≿E g if and only if f Eh ≿ gEh for all h ∈ F . By
P.2, the sure thing principle, ≿E is complete. An event E ∈ Σ is said
to be null if ≿E is trivial (ref. 1, p. 24); in the representation, this
amounts to P(E) = 0 (E is null if and only if it is P-null).
For each nonnull event E, the conditional preference ≿E sat-

isfies P.1–P.6 because the primitive preference does [e.g., Kreps
(ref. 7, Chap. 10)]. Hence, Savage’s theorem can be stated in
conditional form by saying that ≿ satisfies P.1–P.6 if and only if
there is a utility function u: X → R and a nonatomic finitely
additive probability P on S such that, for each nonnull event E,

VEðf Þ=
Z
S

uðf ðsÞÞdPðsjEÞ [5]

represents ≿E, where P(·jE) is the conditional of P given E.

Models, Priors, and Posteriors. As usual, we denote by Δ = Δ(S, Σ)
the collection of all (countably additive) probability measures on
S. Unless otherwise stated, in the rest of this paper all probability
measures are countably additive.
In the sequel, we consider subsets M of Δ. Each subset M of Δ

is endowed with the smallest σ-algebra M that makes the real
valued and bounded functions on M of the form m 1 m(E)
measurable for all E ∈ Σ and that contains all singletons. In the
important special case M = Δ, we write D instead of M.
Probability measures μ on Δ are interpreted as prior proba-

bilities. The observation of a (non-μ-null) event E allows us to
update prior μ through the Bayes rule

μðDjEÞ=

Z
D
mðEÞdμðmÞZ

Δ
mðEÞdμðmÞ

for all D ∈ D, thus obtaining the posterior of μ given E.
A finite subset M = {m1, . . . , mn} of Δ is linearly independent

if, given any collection of scalars {α1, . . . , αn} ⊆ R,

Xn
i= 1

αimiðEÞ= 0 ∀E∈Σ⇒ α1 = . . . = αn = 0: [6]

Two probability measures m and m′ in Δ are orthogonal (or
singular), written m ⊥ m′, if there exists E ∈ Σ such that m(E) =
0 = m′(Ec). A collection of models M ⊆ Δ is orthogonal if its
elements are pairwise orthogonal.
If E ∈ Σ and m(E) = 0 imply m′(E) = 0, m′ is absolutely

continuous with respect to m and we write m′ � m.
Finally, we denote by Δna the collection of all nonatomic

probability measures. By the classical Lyapunov theorem, the
range {(m1(E), . . . , mn(E)): E ∈ Σ} of a finite collection fmigni=1
of nonatomic probability measures is a convex subset of Rn.

Representation
Basic Result. The first issue to consider in our normative approach
is how DMs’ behavior should reflect the fact that they regard
M as a datum of the decision problem. To this end, given a subset
M of Δ, say that an event E is unanimous if m(E) = m′(E) for all
m, m′∈ M. In other words, all models in M assign the same
probability to event E.

Definition 1. A preference ≿ is consistent with a subset M of Δ if,
given E, F ∈ Σ, with E unanimous,

mðFÞ=mðEÞ ∀m∈M ⇒ xFy∼ xEy [7]

for all outcomes x ≻ y.
Consistency requires that the DM is indifferent among bets on

events that all probability models in M classify as equally likely.
The next stronger consistency property requires that DMs prefer
to bet on events that are more likely according to all models.

Definition 2. A preference ≿ is order consistent with a subset M of Δ
if, given E, F ∈ Σ, with E unanimous,

mðFÞ≥mðEÞ ∀m∈M ⇒ xFy≿ xEy [8]

for all outcomes x ≻ y.
Both these notions are minimal consistency requirements

among information and preference that behaviorally reveal (to
an outside observer) that the DM considers M as a datum of the
decision problem. Note that order consistency implies consis-
tency because the premise of [7] implies that also F must be
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unanimous (this observation also emphasizes how weak an as-
sumption is consistency).
We can now state our basic representation result, which

considers finite sets M of nonatomic models.

Proposition 1. Let M be a finite subset of Δna. The following state-
ments are equivalent:

i) ≿ is a binary relation on F that satisfies P.1–P.6 and is order
consistent with M;

ii) there exist a nonconstant utility function u: X → R and a prior μ
on Δ with suppμ ⊆ M, such that

V ðf Þ=
Z
Δ

�Z
S

uðf ðsÞÞdmðsÞ
�
d μðmÞ [9]

represents ≿.
Moreover, u is cardinally unique for each ≿ satisfying state-

ment i, whereas μ is unique for each such ≿ if and only if M is
linearly independent.
Although uniqueness of the utility function u is well known and

well discussed in the literature, uniqueness of the prior μ is an
important feature of this result. In fact, it pins down μ even though
its domain is made of unobservable probability models. Because of
the structure of Δ, it is the linear independence of M—not just its
affine independence—that turns out to be equivalent to this
uniqueness property. This simple, but useful, fact is well known
[e.g., Teicher (13)].
Each prior μ: D → [0, 1] induces a predictive probability

μ : Σ→ ½0; 1� on the sample space through the reduction [2]. The
reduction map μ1 μ relates subjective probabilities on the space
M of models to subjective probabilities on the sample space S,
that is, prior and predictive probabilities. [Note that probability
measures on S can play two conceptually altogether different
roles: (subjective) predictive probabilities and (objective) prob-
ability models.] Clearly, [9] implies that

V ðf Þ=
Z
S

uðf ðsÞÞdμðsÞ; [10]

which is the reduced form of V, its Savage’s SEU form. As ob-
served in the introductory section, this is the criterion that an
outside observer, unaware of datum M, would be able to elicit
from the DM’s behavior. It is a much weaker representation than
the structural one ([9]), which can be equivalently written as

V ðf Þ=
Z
M

�Z
S

uðf ðsÞÞdmðsÞ
�
dμðmÞ

because suppμ ⊆ M (recall that finite subsets of D are measur-
able). This is the criterion that, instead, an outside observer
aware of M would be able to elicit. In fact, denote by Δ(M)
the collection of all priors μ: D → [0, 1] such that suppμ ⊆ M.
The informed observer would be able to focus on the restriction
of the reduction map μ1 μ to Δ(M). If M is linearly indepen-
dent, such correspondence is one-to-one and thus allows prior
identification from the behaviorally elicited Savagean probability
P= μ∈Δ through inversion.
The structural representation [9] is a version of Savage’s

representation that may be called classical SEU because it takes
into account Waldean information, with its classical flavor.
[Diaconis and Freedman (14) call “classical Bayesianism” the
Bayesian approach that considers as a datum of the statistical
problem the collection of all possible data-generating mecha-
nisms.] In place of the usual SEU pair (u, P) the representation is
now characterized by a triple (u, M, μ), with suppμ ⊆ M.
According to the Bayesian paradigm, the prior μ quantifies

probabilistically the DM’s uncertainty about which model in M is
the true one. This kind of uncertainty is sometimes called
(probabilistic) model uncertainty or parametric uncertainty.
In the introductory section, we observed that when datum M is

a singleton, the classical SEU criterion [9] reduces to the von
Neumann–Morgenstern expected utility criterion [4], which is
thus the special case of classical SEU that corresponds to sin-
gleton data. In contrast, when M is nonsingleton but the support
of a prior μ is a singleton, say suppμ = {m′} ⊆ M, then it is the
DM’s personal information that prior μ reflects, which leads him
to a predictive that coincides with m′. In this case,

V ðf Þ=
Z
Δ

�Z
S

uðf ðsÞÞdmðsÞ
�
dδm′ðmÞ=

Z
S

uðf ðsÞÞdm′ðsÞ

is a Savage’s SEU criterion.

Support. In Proposition 1 the support of the prior is included in
M; i.e., suppμ ⊆ M. In fact, because of consistency, models are as-
signed positive probability only if they belong to datum M. How-
ever, the DM may well decide to disregard some models in M
because of some personal information. This additional information
is reflected by his subjective belief μ, with strict inclusion and
μ(m) = 0 for some m ∈M. (In fact, the interpretation of μ is purely
subjective, not at all logical/objective à la Carnap and Keynes.)
Next we behaviorally characterize suppμ as the smallest subset

of M relative to which ≿ is consistent. These are the models that
the DM believes to carry significant probabilistic information for
his decision problem. In this perspective it is important to re-
member that M is a datum of the problem whereas suppμ is
a subjective feature of the preferences.
We consider a linearly independent M in view of the identi-

fication result of Proposition 1.

Proposition 2. Let M be a finite and linearly independent subset of
Δna and ≿ be a preference represented as in point ii of Proposition 1.
A model m ∈ M belongs to suppμ if and only if ≿ is not consistent
with M\m.
Therefore, consistency arguments not only reveal the accep-

tance of a datum M, but also allow us to discover what elements
of M are subjectively maintained or discarded.

Variations. We close by establishing the conditional and orthog-
onal versions of Proposition 1. We begin with the conditional
version, i.e., with the counterpart of representation [5] under
Waldean information.

Proposition 3. Let M be a finite subset of Δna. The following state-
ments are equivalent:

i) ≿ is a binary relation on F that satisfies P.1–P.6 and is order
consistent with M;

ii) there exist a nonconstant utility function u: X → R and a prior μ
on Δ with suppμ ⊆ M, such that

VEðf Þ=
Z
Δ

�Z
S

uðf ðsÞÞdmðsjEÞ
�
d μðmjEÞ [11]

represents ≿E for all non-μ-null events E∈Σ.
Moreover, u is cardinally unique for each ≿ satisfying statement i,

whereas μ is unique for each such ≿ if and only if M is
linearly independent.
The representation of the conditional preferences ≿E thus

depends on the conditional models mð · jEÞ : Σ→ ½0; 1� and on
the posterior probability μð · jEÞ : D→ ½0; 1� that, respectively,
update models and prior in the light of E. Criterion [11] shows
how the DM currently plans to use the information he may
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gather through observations to update his inference on the actual
data-generating process. [As Marschak (ref. 15, p. 109) remarked
“to be an ‘economic man’ implies being a ‘statistical man’.” Some
works of Jacob Marschak (notably refs. 15 and 16 and his classic
book, ref. 17, with Roy Radner) have been a source of inspiration
of our exercise, as we discuss in ref. 18. Our work addresses, inter
alia, the issue that he raised in ref. 16, in which he asked how to
pin down subjective beliefs on models from observables. In so
doing, our analysis also shows that to study general data M, pos-
sibly linearly dependent, it is necessary to go beyond betting be-
havior on observables.]
The conditional predictive probability is

μðFjEÞ=
Z
Δ

mðFjEÞdμðmjEÞ ∀F ∈Σ [12]

and therefore the reduced form of [11] is

VEðf Þ=
Z
S

uðf ðsÞÞdμðsjEÞ: [13]

The conditional representations [11] and [13] are, respectively, in-
duced by the primitive representations [9] and [10] via conditioning.
Orthogonality is a simple, but important, sufficient condition

for linear independence that, as the next section shows, some
fundamental classes of time series models satisfy. Because of its
importance, the following result shows what form the classical
SEU representation of Proposition 1 takes in this case.

Proposition 4. Let M be a finite and orthogonal subset of Δna. The
following statements are equivalent:

i) ≿ is a binary relation on F that satisfies P.1–P.6 and is consistent
with M;

ii) there exist a nonconstant utility function u : X →R and a prior μ
on Δ with suppμ⊆M, such that

V ðf Þ=
Z
Δ

�Z
S

uðf ðsÞÞdmðsÞ
�
dμðmÞ

represents ≿.
Moreover, for each ≿ satisfying i, u is cardinally unique and μ

is unique.
Note that here consistency suffices and that the prior μ is auto-
matically unique because of the orthogonality of M. In ref. 18 we
also show that a representation with an infinite M can be derived
in the orthogonal case.
The reduction map μ1 μ between prior and predictive proba-

bilities is easily seen to be affine. More interestingly, in the orthog-
onal case it also preserves orthogonality and absolute continuity.

Proposition 5. Under the assumptions of Proposition 4, two priors μ
and ν on Δ with support in M are orthogonal (resp., absolutely
continuous) if and only if their predictive probabilities μ and ν on S
are orthogonal (resp., absolutely continuous).

Intertemporal Analysis
Setup. Consider a standard intertemporal decision problem
where information builds up through observations generated by
a sequence fZtg of random variables taking values on observa-
tion spaces Zt. For ease of exposition, we assume that the ob-
servation spaces are finite and identical, each denoted by Z and
endowed with the σ-algebra B= 2Z .
The relevant state space S for the decision problem is the

sample space Z∞ =∏∞
t=1Z. Its points are the possible observa-

tion paths generated by the process fZtg. Without loss of

generality, we identify fZtg with the coordinate process such that
ZtðzÞ= zt for each z∈Z∞.
Endow Z∞ with the product σ-algebra B∞ generated by the

elementary cylinder sets zt = fs∈Z∞ : s1 = z1; . . . ; st = ztg. These
sets are the observables in this intertemporal setting. In partic-
ular, the filtration fBtg, where Bt is the algebra generated by the
cylinders zt, records the building up of observations. Clearly, B∞

is the σ-algebra generated by the filtration fBtg.
In this intertemporal setting the pair ðS;ΣÞ is thus given by

ðZ∞;B∞Þ. The space of data-generating models Δ consists of all
probability measures m on Z∞. The outcome space X has also
a product structure X = C∞, where C is a common instant outcome
space. Acts f : Z∞ → C∞ can thus be identified with the processes
fftg of their components. When such processes are adapted, the
corresponding acts are called plans [here ftðsÞ= ftðs1; . . . ; stÞ is the
outcome at time t if state s obtains]. By Proposition 3, the con-
ditional version of the classical SEU representation at zt is

Vztðf Þ=
Z
Δ

� Z
Z∞

uðf ðsÞÞdmðsjztÞ
�
dμðmj ztÞ; [14]

where mð · jztÞ and μð · jztÞ are, respectively, the conditional
model and the posterior probability given the observation his-
tory zt. Under standard conditions, the intertemporal utility
function u : C∞ →R in [14] has a classic discounted form
uðc1; . . . ; ct; . . .Þ=

P∞
τ=1β

τ−1υðcτÞ, with subjective discount factor
β∈ ð0; 1Þ and bounded instantaneous utility function υ : C→R.

Stationary Case. The next known result (e.g., ref. 19, p. 39) shows
that models are orthogonal in the fundamental stationary and er-
godic case, which includes the standard i.i.d. setup as a special case.

Proposition 6. A finite collection M of models that make the process
fZtg stationary and ergodic is orthogonal.
By Proposition 4, if ≿ satisfies P.1–P.6 and is consistent with

a finite collection M of nonatomic, stationary and ergodic
models, then there are a cardinally unique utility function u and
a unique prior μ, with suppμ⊆M, such that [14] holds. Its re-
duced form V ðf Þ= RZ∞uðf ðsÞÞdμðsÞ features a predictive proba-
bility μ that is stationary (exchangeable in the special i.i.d. case).
Because a version of Proposition 6 holds also for collections of

homogenous Markov chains, we can conclude that time series
models widely used in applications satisfy the orthogonality
conditions that ensure the uniqueness of prior μ. The Wald–
Savage setup of this paper provides a statistical decision theory
framework for empirical works that rely on such time series (as is
often the case in the finance and macroeconomics literatures).
Under these orthogonality conditions, there is full learning.

Formally, denoting by

Wztðf Þ=
Z
Δ

 Z
Z∞

X∞
τ= t

βτ−tυðfτðsÞÞdmðsjztÞ
!
dμðmjztÞ

the continuation value at zt of any act f and by m′∈M the true
model, it can be shown that�����Wztðf Þ−

Z
Z∞

X∞
τ= t

βτ−tυðfτðsÞÞdm′ðsjztÞ
�����→ 0

form′ almost every z in Z∞. As observations build up, DMs learn
and eventually behave as SEU DMs who know the true model
that generates observations. The above convergence result shows
how the Classical SEU framework of this paper allows to for-
malize, in terms of learning, the common justification of rational
expectations according to which “with a long enough historical
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data record, statistical learning will equate objective and subjec-
tive probability distributions” [Sargent and Williams (ref. 20,
p. 361)]. Further intertemporal results are studied in ref. 18
(the working paper version of this paper), which we refer the
interested reader to.

Appendix: Proofs and Related Analysis
Letting M be a subset of ΔðS;ΣÞ, a probability measure
P∈ΔðS;ΣÞ is said to be a predictive of a prior on M (or to be
M-representable) if there exists μ∈ΔðM;MÞ such that P= μ. If
in addition such μ is unique, then P is said to be M-identifiable
(13).
We state the next result for any M because the proof for the

finite case is only slightly simpler. We say that a subsetM of ΔðS;ΣÞ
is measure independent if, given any signed measure γ : M→R,Z

M

mðEÞdγðmÞ= 0 ∀E∈Σ⇒ γ = 0:

If M is finite, measure independence reduces to the usual notion
([6]) of linear independence.

Lemma 1. Let M⊆ΔðS;ΣÞ. The following statements are equivalent:

i) every predictive of a prior on M is M-identifiable;
ii) the map μ1μ from ΔðM;MÞ to ΔðS;ΣÞ is injective;
iii) M is measure independent.

Proof: The equivalence of statements i and ii is trivial.
Statement iii implies ii. If μ1; μ2 ∈ΔðM;MÞ are such that

μ1 = μ2 =P, then μ1 − μ2 is a signed measure on M andZ
M

mðEÞdðμ1 − μ2ÞðmÞ

=
Z
M

mðEÞdμ1ðmÞ−
Z
M

mðEÞdμ2ðmÞ

=PðEÞ−PðEÞ= 0 ∀E∈Σ:

Because M is measure independent, it follows that μ1 − μ2 = 0;
i.e., μ1 = μ2.
Statement ii implies iii. Assume, per contra, that M is not

measure independent. Then, there is a signed measure γ on M
such that

γ ≠ 0 and
Z
M

mðEÞdγðmÞ= 0 ∀E∈Σ: [15]

By the Hahn–Jordan decomposition theorem, γ = γ+ − γ−,
where γ+ and γ− are, respectively, the positive and negative parts
of γ. By [15],

0=
Z
M

mðSÞdγðmÞ=
Z
M

1Mdγ = γðMÞ= γ+ðMÞ− γ−ðMÞ:

Because γ ≠ 0, this implies that γ+ðMÞ= γ−ðMÞ= 1=k> 0. Then
kγ+; kγ− ∈ΔðM;MÞ, kγ+ ≠ kγ− (else γ = 0), and, by [15], for each
E∈Σ

0= k
Z
M

mðEÞdγðmÞ=
Z
M

mðEÞdðkγ+ − kγ−ÞðmÞ

=
Z
M

mðEÞdkγ+ðmÞ−
Z
M

mðEÞdkγ−ðmÞ

= kγ+ðEÞ− kγ−ðEÞ:

Therefore, kγ+ = kγ−, negating injectivity. ▪
Lemma 2. If M⊆ΔðS;ΣÞ is finite, then

M= 2M = σðm1mðEÞ : E∈ΣÞ

Moreover, the map ν1 ν from ΔðMÞ to ΔðS;ΣÞ is injective if and
only if M is linearly independent.
Proof:The equalityM= 2M follows from the fact thatM contains
all singletons. Next we show that σðm1mðEÞ : E∈ΣÞ contains
all singletons. Note that if p≠ q in M, there exists Epq ∈Σ such
that pðEpqÞ≠ qðEpqÞ. Then for each p∈M,

fpg=�m∈M : m
�
Epq
�
= p
�
Epq
�

∀q∈M
�

is a finite intersection of σðm1mðEÞ : E∈ΣÞ-measurable sets
and so it is measurable too.
Recall that ΔðMÞ= fν∈ΔðΔðS;ΣÞÞ : νðMÞ= 1g whereas

ΔðM;MÞ is the set of all probability measures μ : 2M → ½0; 1�.
Let ν1; ν2 ∈ΔðMÞ. Setting νiðmÞ= νiðfmgÞ for all m∈M, it

follows that νi =
P

m∈MνiðmÞδm and νi =
P

m∈MνiðmÞm. Denote
by μi the restriction of νi toM= 2M and note that μi =P

m∈MνiðmÞ∂m ∈ΔðM;MÞ, where ∂m is the restriction of δm
(defined on D) to M, and that μi =

P
m∈MνiðmÞm= νi. If M is

linearly independent, then ν1 = ν2 implies μ1 = μ2. By Lemma 1,
μ1 = μ2. Thus, ν1ðmÞ= ν2ðmÞ for all m∈M and ν1 = ν2. This
proves injectivity.
Conversely, if M is not linearly independent, by Lemma 1 there

existη1 =
P

m∈Mη1ðmÞ∂m andη2 =
P

m∈Mη2ðmÞ∂m inΔðM;MÞ such
that η1 ≠ η2 but η1 = η2. Now, setting λi =

P
m∈MηiðmÞδm ∈ΔðMÞ for

i= 1; 2, it follows that λ1 ≠ λ2 but λ1 = η1 = η2 = λ2. This negates
injectivity. ▪
Proof of Proposition 1: Statement i implies ii. By the Savage rep-
resentation theorem, there are a nonconstant function u : X →R

and a unique (strongly) nonatomic and finitely additive proba-
bility P on S such that setting V ðf Þ= RSuðf ðsÞÞdPðsÞ,

f ≿ g⇔V ðf Þ≥V ðgÞ:
By assumption, each m is nonatomic. By the Lyapunov theo-

rem, there is a unanimous event E∈Σ, say withmðEÞ= 2−1 for all
m∈M. By order consistency, for each F ∈Σ

mðFÞ=mðEÞ ∀m∈M ⇒PðFÞ=PðEÞ [16]

and

mðFÞ≥mðEÞ ∀m∈M ⇒PðFÞ≥PðEÞ: [17]

By ref. 21, Theorem 20, P belongs to the convex cone generated
by M, because PðSÞ=mðSÞ= 1 for all m∈M, and then P∈ coM
and representation [9] holds.
Statement ii implies i. Define P= μ. Because each m∈M is

a nonatomic probability measure, so is P. By the Savage repre-
sentation theorem, it follows that ≿ satisfies P.1–P.6. Finally, we
show that ≿ is order consistent with M. Let E;F ∈Σ and assume
mðFÞ≥mðEÞ for eachm∈ suppμ⊆M. Then for all outcomes x≻ y,
normalizing u so that uðxÞ= 1= 1− uðyÞ, V ðxFyÞ= μðFÞ≥ μðEÞ=
V ðxEyÞ, and so xFy≿ xEy. A fortiori order consistency is satisfied
(with respect to both suppμ and M).
Moreover, for each ≿ satisfying statement i, the cardinal

uniqueness of u and the uniqueness of μ follow from the Savage
representation theorem. If M is linearly independent, for each ≿
satisfying i, μ is unique and Lemma 2 delivers the uniqueness
of μ. Conversely, if M is not linearly independent, by Lemma 2
there exist two different μ1; μ2 ∈ΔðMÞ such that μ1 = μ2; arbi-
trarily choose a nonconstant u : X →R to obtain a binary relation
≿ satisfying i that is represented both by μ1 and by μ2 (together
with u) in the sense of ii. ▪
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Proof of Proposition 2: Let m∈M. Replicating the last part of the
previous proof, if m does not belong to suppμ, then ≿ is con-
sistent with M∖m. Now assume that ≿ is consistent with M ∖m.
Take E∈Σ such that m′ðEÞ= 2−1 for all m′∈M ∖m; by consis-
tency, if F ∈Σ, then

m′ðFÞ=m′ðEÞ ∀m′∈M ∖m⇒ μðFÞ= μðEÞ:
If m belongs to suppμ, then

mðFÞ= 1
μðmÞ

 
μðFÞ−

X
m′∈M ∖m

μ
�
m′
�
m′ðFÞ

!

=
1

μðmÞ

 
μðEÞ−

X
m’∈M ∖m

μ
�
m′
�
m′ðEÞ

!

=mðEÞ:

Because each element of M is nonatomic, by ref. 21, Theorem
20, m∈ spanðM ∖mÞ, which contradicts the linear independence
of M. ▪
Proof of Proposition 3: Clearly statement ii of this proposition
implies point ii of Proposition 1, which in turn implies i.
Conversely, statement i of this proposition implies point ii of

Proposition 1, which together with [5] implies that VEðf Þ=R
Suðf ðsÞÞdμðsjEÞ represents ≿E for all nonnull E∈Σ. However,
suppμð · jEÞ= fm∈ suppμ : mðEÞ> 0g and hence

VEðf Þ= 1
μðEÞ

Z
E

uðf Þdμ

=
1

μðEÞ
X

m∈suppμ
μðmÞ

Z
E

uðf Þdm

=
1

μðEÞ
X

m∈suppμ:mðEÞ>0
μðmÞmðEÞ

mðEÞ
Z
E

uðf Þdm

=
P

m∈suppμð · jEÞ

 
μðmÞmðEÞ

μðEÞ

!Z
S

uðf Þdmð · jEÞ

=
Z
Δ

�Z
S

uðf ðsÞÞdmðsjEÞ
�
dμðmjEÞ

so that ii holds.
The rest follows immediately from Proposition 3. ▪

Proof of Proposition 4: The proof of statement i implies ii of
Proposition 3 has to be modified because consistency yields only
[16]. Then ref. 21, Theorem 20, yields only that P belongs to the
vector subspace generated by M. In any case, there exists a col-
lection fμðmÞgm∈M of scalars such that PðEÞ=Pm∈MμðmÞmðEÞ

for all E∈Σ. From PðSÞ=mðSÞ= 1 for all m∈M, it follows thatP
m∈MμðmÞ= 1. Moreover, by orthogonality, there exists a parti-

tion fEmgm∈M of S in Σ such that mðEmÞ= 1 and m′ðEmÞ= 0 for
all distinct m;m′∈M (see the beginning of the next proof).
Hence, for each m it holds that PðEmÞ= μðmÞ, and so μðmÞ≥ 0.
We conclude that P∈ coM again. The rest of the proof is very
similar to that of Proposition 3. ▪
Proof of Proposition 5: We consider orthogonality and leave abso-
lute continuity to the reader. Suppose μ⊥ ν, i.e., there is A∈D
such that μðAÞ= 1= νðAcÞ. Next we show that there exists a par-
tition fEmgm∈M of S in Σ such that mðEmÞ= 1 and m′ðEmÞ= 0 for
all distinct m;m′∈M. [Note that m′ðEmÞ= 0 for all m;m′∈M
such that m≠m′ actually follows from the fact that fEmg is
a partition and mðEmÞ= 1 for all m∈M.] Let M = fm1; . . . ;mng.
For n= 2, the result is true by definition of orthogonality. As-
sume n≥ 3 and the result holds for n− 1. Then there exists
a partition fFigni=2 of S in Σ such that miðFiÞ= 1 for all
i= 2; . . . ; n. However, m1⊥mi for each i≠ 1, and hence there is
E1i ∈Σ such that m1ðE1iÞ= 1=miðEc

1iÞ. By setting F1 = ∩ i≠1E1i
and Ei =Ec

1i ∩Fi we then have m1ðF1Þ= 1 and miðEiÞ= 1 for each
i≠ 1. The desired partition is obtained by setting E1 = S∖∪i≠1Ei.
Set E=∪fEm : m∈Ag. Clearly, E∈Σ. Moreover, mðEÞ= 1 for

all m∈A and m′ðEÞ= 0 for all m′∈Ac. Then,

μðEÞ= P
m∈M

mðEÞμðmÞ= P
m∈A

mðEÞμðmÞ
=
P
m∈A

μðmÞ= μðAÞ= 1

and

νðEÞ=
X
m′∈M

m′ðEÞν�m′
�
=
X
m′∈Ac

m′ðEÞν�m′
�
= 0; [18]

which implies μ⊥ ν. As to the converse, suppose μ⊥ ν. There is
E∈Σ such that μðEÞ= 1= νðEcÞ. Set A= fm∈M : mðEÞ> 0g.
We have A∈D because A is finite. It holds that

1= μðEÞ= P
m∈M

mðEÞμðmÞ= P
m∈A

mðEÞμðmÞ
≤
P
m∈A

μðmÞ= μðAÞ≤ 1

and so μðAÞ= 1. Moreover,

0= νðEÞ=
X
m∈M

mðEÞνðmÞ=
X
m∈A

mðEÞνðmÞ; [19]

whence νðmÞ= 0 for all m∈A because mðEÞ> 0. We conclude
that νðAÞ= 0 and μ⊥ ν. ▪
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