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Abstract

* Premise of the study: We investigated whether four widespread, photosynthetic Mediterranean
meadow orchids (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea, and Serapias
vomeracea) had either nutritional dependency on mycobionts or mycorrhizal fungal specificity.
Nonphotosynthetic orchids generally engage in highly specific interactions with fungal symbionts
that provide them with organic carbon. By contrast, fully photosynthetic orchids in sunny, meadow
habitats have been considered to lack mycorrhizal specificity.

» Methods: We performed both culture-dependent and culture-independent ITS sequence analysis to
identify fungi from orchid roots. By analyzing stable isotope (**C and **N) natural abundances, we
also determined the degree of autotrophy and mycoheterotrophy in the four orchid species.

* Key results: Phylogenetic and multivariate comparisons indicated that Or. purpurea and Oph.
fuciflora featured lower fungal diversity and more specific mycobiont spectra than A. laxiflora and
S. vomeracea. All orchid species were significantly enriched in N compared with neighboring
non-orchid plants. Orchis purpurea had the most pronounced N gain from fungi and differed from
the other orchids in also obtaining C from fungi.

« Conclusions: These results indicated that even in sunny Mediterranean meadows, orchids may be
mycoheterotrophic, with correlated mycorrhizal fungal specificity.
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Many terrestrial plants benefit from symbiotic microorganisms, but the effectiveness of the
symbiosis (that is the amount of benefit that the plant host derives from the microbial symbiont)
varies among symbiont genotypes in natural populations. Specificity therefore may be a significant
trait of symbiotic relationships established between plants and their microbial partners. Compared
to other plant—microbe interactions, the mycorrhizal symbioses formed by the interaction of plant
roots with some soil fungi are considered to be mainly nonspecific (Bruns et al., 2002; Roy et al.,
2008; Smith and Read, 2008) because the plant is typically generalist toward the mycorrhizal
partner. In these associations, the host plant exchanges photosynthetically derived organic carbon
with mineral nutrients and water taken up by the extraradical fungal mycelium (Smith and Read,
2008).

Specificity in mycorrhizal symbioses has been found to sharply increase in specialized situations.
For example, obligate mycoheterotrophic (OMH) plants are nonphotosynthetic and depend on their
mycorrhizal fungal partners for organic carbon supply (Leake, 1994). Most OMH plants associate
specifically with very narrow clades of fungi (Leake, 2004; Bidartondo, 2005; Merckx et al., 2009;
Hynson and Bruns, 2010). Mycorrhizal specificity has been particularly well documented in OMH
orchids, where molecular studies (e.g., Merckx et al., 2009; Hynson and Bruns, 2010) have revealed
highly specific interactions either with mycobionts that mostly form ectomycorrhiza (ECM) on
neighboring trees or with saprotrophic fungi, which breakdown and assimilate complex organic
substrates (Ogura-Tsujita et al., 2009; Dearnaley and Bougoure, 2010).

Many green terrestrial orchids adapted to shady forest habitats still depend, at least in part, on their
mycorrhizal symbiont for organic carbon, light availability being a major determinant of the degree
of mycoheterotrophy (Preiss et al., 2010). This dual (photosynthetic and mycoheterotrophic)
nutrition has been named partial mycoheterotrophy (Gebauer and Meyer, 2003) or mixotrophy
(Selosse et al., 2004; Selosse and Roy, 2009). In partially mycoheterotrophic orchids, there is in
most cases a wider range of fungal symbionts than in OMH plants, mostly comprising
ectomycorrhizal (ECM) fungi (Bidartondo et al., 2004; McCormick et al., 2004, 2006; Shefferson et
al., 2005; Girlanda et al., 2006).

Fully photosynthetic orchids in sunny meadow habitats have usually been considered to lack
mycorrhizal specificity because of the common isolation of a variety of fungi referred to the form-
genus Rhizoctonia (Warcup, 1971, 1981; Taylor et al., 2002; Rasmussen, 2002). However,
morphological observations and rDNA sequencing have indicated that “rhizoctonias” from orchids
are better regarded as a polyphyletic assemblage of teleomorphic genera belonging to three families
of basidiomycetes (Sebacinaceae, Ceratobasidiaceae, and Tulasnellaceae) ascribed to distinct orders
(Roberts, 1999; Taylor et al., 2002; Weil et al., 2004). Except for the few Australian orchids’
symbionts, whose teleomorphic state was obtained in culture (Warcup, 1971, 1981), identification
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of mycorrhizal fungi in photosynthetic meadow orchids and consequent assessment of mycorrhizal
specificity have been limited until the advent of fungal molecular systematics and ecology
(Waterman and Bidartondo, 2008). Such a recent application has suggested a preference of some
Australian orchids toward a narrow range of mycorrhizal fungi (Bougoure et al., 2005;
Bonnardeaux et al., 2007; Roche et al., 2010). These results are apparently in contrast with the
situation in Gymnadenia conopsea, an orchid widely distributed in Eurasia, which feature a very
wide spectrum of potential fungal partners (Stark et al., 2009). These apparently contrasting data
may derive, at least in part, from the different approaches used to investigate mycorrhizal specificity
in these orchids, for which the mycorrhizal partners have been molecularly identified after the fungi
were isolated with a culture-dependent approach (Bougoure et al., 2005; Bonnardeaux et al., 2007,
Roche et al., 2010) or after direct amplification of root DNA (Stark et al., 2009). The two
approaches may yield different results because analysis of fungal isolates would overlook the
occurrence of uncultivable fungi. On the other hand, fungal isolation allows verification of the
mycorrhizal status by seed germination assays, even though physiological compatibility under
laboratory conditions may differ from that in nature (Rasmussen, 2002).

Knowledge about the identity of mycorrhizal fungi in Mediterranean orchids is so far mostly
restricted to a few Orchis species, as based on either in vitro cultivation of the fungi (Currah and
Sherburne, 1992; Rasmussen, 1995) or recent molecular work (Shefferson et al., 2008; Liebel et al.,
2010; Lievens et al., 2010; Schatz et al., 2010). We have used culture-independent PCR-based and
culture-dependent methods to assess mycorrhizal specificity in four widespread, photosynthetic
Mediterranean meadow orchid species (Ophrys fuciflora, Anacamptis laxiflora, Orchis purpurea,
and Serapias vomeracea). Meadows where the four species occurred in different combinations
provided an interesting scenario to compare the fungal community composition in roots of
sympatric and allopatric plants. Sequence-based operational taxonomic units (OTUs) were defined,
and phylogenetic trees were built with fungal ITS sequences obtained from either fungal isolates or
direct mycorrhizal root DNA amplification, as well as reference sequences. Patterns of occurrence
of fungal sequence types were compared statistically by multivariate analysis. We also investigated
the autotrophic status of the four orchid species by analysis of stable isotope (*3C and °N) natural
abundance. The latter analysis has become established as a convenient tool to assess acquisition of
fungus-derived organic C and N based on stable isotope abundances in plant leaf tissue and hence to
characterize the mycoheterotrophic lifestyle (Gebauer and Meyer, 2003). The principle of this
analysis is based on the observation that N and C in fungi are isotopically distinguishable from N
and C of accompanying non-orchid vegetation. The incorporation of fungus-derived carbon, for
example, is reflected by the plants’ leaf isotope signature since fungal tissues are enriched in the
stable isotope **C relative to accompanying fully autotrophic plants (Hogberg et al., 1999).

MATERIALS AND METHODS

Sampling of orchids and neighboring plants

Anacamptis laxiflora (Lam.) R. M. Bateman, Pridgeon & M. W. Chase, Ophrys fuciflora (F. W
Schmidt) Moench, Orchis purpurea Huds., and Serapias vomeracea (N. L. Burman) Briquet all
belong to the Orchidinae subtribe in the Orchidoideae subfamily of Orchidaceae (Bateman et al.,
2003). These species are rather widespread in Mediterranean meadows: A. laxiflora, Oph. fuciflora,
and S. vomeracea mainly grow in open habitats, whereas Or. purpurea can also be found in forests
(Kretzschmar et al., 2007; Rossi, 2002).

Orchid roots (Table 1) were sampled mainly in four meadows in northern Italy (at 410-450 m
a.s.l.): two meadows on partly abandoned agricultural terraces, ca. 100 m? each (meadows 2 and 3)
and two neighboring plots within a lower meadow, again about 100 m? wide (meadows 1a and 1b).
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In meadows 1a and 1b, agricultural practices (regular grass cutting and patchy treatment with liquid
manure) are still performed. The vegetation at the site features dry grasslands (Festuco-Brometalia),
partly colonized on the terraces by shrubs (Rosa sp., Spartium junceum, Ligustrum vulgare, and
Cornus sanguinea) and trees (Quercus pubescens, Acer campestre, and Ulmus minor). The soil is
alkaline (pH 7.98 + 0.16, N = 40) and originates from Oligocene marls with silt and sand of the
Rocchetta Formation (Tertiary; Geological Survey of Italy, 2007). The C/N ratio of the soil is 16
4 (N = 35), a typical value for rather N-poor grassland soils (Scheffer, 2002). In addition to the main
sampling site, some root samples were also collected in meadows located incentral and southern
Italy (Tuscany and Campania; Table 1).

Table 1. Origin and number of plant samples.

Orchid Site No. plants Species (No. of neighboring
analyzed herbaceous plants analyzed)
Angcamptls Northern ltaly (meadows 10 Bromus erectus (2), Carex hirta (1)
laxiflora 1a, 1b)
Campania, Italy 5 —
Ophrys fuciflora gl)orthern Italy (meadow 8 Bromus erectus (2), Festuca rubra (1)
Campania, Italy 2 —
. Northern Italy (meadows
Orchis purpurea 2.3) 13 Bromus erectus (2), Festuca rubra (1)
Campania, Italy 2 —
Serapias Northern Italy (meadows 14 Bromus erectus (3)
vomeracea 1a, 1b, 3)
Campania, Italy 4 —
Tuscany, Italy 3 —

Root samples were collected in early summer during the flowering season from 2005 to 2007. Roots
of herbaceous plants surrounding the sampled orchids were also harvested for a limited number of
orchid plants at the main study site (Table 1), from the soil core containing orchid roots. Roots were
thoroughly washed with tap water, gently brushed, then sonicated in an ultrasonic bath (three cycles
of 30 s each) to remove adhering soil particles and microorganisms. Roots were then surface-
sterilized with sodium hypochlorite (1:5 active chlorine) for 30 s and rinsed three times with sterile
water. Sections from fresh root fragments were observed by light microscopy, and highly colonized
root fragments were chosen for further analyses. Root samples were either processed immediately
for fungal isolation and light microscopy or frozen in liquid nitrogen and stored at —80° for
subsequent molecular analysis.

Fungal isolation

Fungi were isolated from all collected orchids as well as from specimens of neighboring herbaceous
plants (Table 1). Following surface-sterilization, at least eight root sections 3-5 mm long were
excised from one or two roots per plant and plated onto malt extract agar (MEA) amended with 40
mg gentamicin/L. Petri dishes were incubated at room temperature for up to 2 months to allow any
slow-growing mycelia to develop. Nuclei within hyphal compartments of Rhizoctonia isolates were
counted under UV light after 4',6-diamidino-2-phenylindole (DAPI) staining [5 pg/mL ina 1:1
(v:v) water:glycerol solution].
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DNA extraction and PCR amplification

Genomic DNA from frozen roots (about 0.5-1 g fresh mass) of both orchid and neighboring non-
orchid plants was extracted using the cetyltrimethyl ammonium bromide (CTAB) method modified
from Doyle and Doyle (1990). A DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was used to
extract DNA from the fungal isolates obtained from orchid and non-orchid roots. To increase the
diversity of orchid fungal endophytes detected, DNA from either orchid roots or fungal isolates was
used as a template for three PCR reactions with the primer combinations ITS1F/ITS4 (generic
fungal nuclear internal transcribed spacer, nriTS) (White et al., 1990), ITS1F/ITS4B (for
basidiomycete nrITS) (Gardes and Bruns, 1993), or ITS1/ITS4-Tul (for tulasnelloid nriTS) (Taylor
and McCormick, 2008). Given the low efficiency of direct amplification from neighboring non-
orchid roots, genomic DNA was amplified by nested polymerase chain reaction (PCR), using
ITSIF/ITS4, ITS1F/ITS4B, or ITS1F/ITS4-Tul as the first set of primers, followed by primers
ITS1/ITS4, ITS1/ITS4B, or ITS1/ITS4-Tul, respectively. PCR for all primers combinations was
carried out in a final volume of 50 pL, containing 3 pL of extracted genomic DNA at the
appropriate dilution and 1.5 U of RED TagTM DNA polymerase (Sigma, St. Louis, Missouri,
USA), with the following concentrations: 1x buffer (Sigma), 0.5 pmol/L of each primer, 0.1
mmol/L dNTP. Nested PCR was carried out with the same reagents as described before, using 2 puL
of the product from the first reaction as a template. PCRs were performed in a T3000 Thermocycler
(Biometra, Goettingen, Germany) using the following temperature profile: 95°C for 4 min (1 cycle);
94°C for 35 s, 53°C for 55 s, 72°C for 55 s (35 cycles); 72°C for 7 min (1 cycle). Nested PCRs were
carried out with the same temperature profile, with the exception of the annealing temperature
(65°C for the primer combination ITS1/ITS4 and ITS1/ITS4B; 60°C for the primer combination
ITS1/ITS4-Tul). Negative control reactions without template DNA were performed with each set of
primers.

Cloning and ITS-RFLP analysis

PCR amplicons were purified with QIAquick PCR Purification Kit (Qiagen) and cloned into
pGEM-T (Promega, Madison, Wisconsin, USA) vectors; the vectors were used to transform
Stratagene XL-2 Blue ultracompetent cells (Agilent, Santa Clara, California, USA). White colonies
were randomly picked and plasmid inserts were amplified using the T7 and SP6 vector primers
under the following conditions: 95°C for 3 min (1 cycle); 92°C for 1 min, 55°C for 1 min, 72°C for
1 min (35 cycles); 72°C for 7 min (1 cycle). Twenty clones per plant were randomly chosen for
RFLP (restriction fragment length polymorphism) analysis of ITS PCR product, using the
restriction enzymes Alul and Hhal.

DNA sequencing and sequence analysis

Cloned ITS inserts representative of the different RFLP profiles were sequenced with the same
primer pair as used for amplification. Dye sequencing was carried out on ABI Prism 310 Genetic
Analyzer (Applied Biosystems, Carlsbad, California, USA). Sequences were edited and assembled
using the program Sequencher 4.1 for MacOS 9, and sequence identity was determined using the
BLASTN algorithm available through the National Center for Biotechnology Information (NCBI,
http://www.ncbi.nlm.nih.gov/) against the NCBI nucleotide collection. Sequences chosen for
inclusion in the phylogenetic analyses comprised best BLAST hits as well as fungal sequences from
a variety of terrestrial and epiphytic orchids from different continents and environments, as well as
from non-orchid plants, fungal strains and fruitbodies. Due to the phylogenetic distance between the
fungi identified (Roberts, 1999), distinct phylogenetic analyses were carried out.
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Sequences were aligned using the program Clustal X 2.0 (Larkin et al., 2007) with default
conditions for gap opening and gap extension penalty. Alignments were then imported into program
MEGA 4.0 (Tamura et al., 2007) for manual adjustment. Methods of phylogenetic reconstruction
included Bayesian Markov chain Monte Carlo (MCMC) inference (BI) and maximum likelihood
estimation (ML), using the programs MrBayes v3.1.2 (Huelsenbeck and Ronquist 2001) and
RAXML v.7.0.4 (Stamatakis, 2006), respectively. For the Baysian inference analyses, substitution
models suggested as best-fit to the data under both the corrected Akaike information criterion (AIC)
and the Bayesian information criterion (BIC) were estimated for each data set using the program
JjModelTest version 0.1.1 (Posada, 2008) to provide independent substitution models for each
alignment. For each alignment, four incrementally heated simultaneous MCMC were run over
10000000 generations, under model assumption, using random starting trees and default starting
values of the models. Trees were sampled every 1000 generations resulting in an overall sampling
of 10001 trees. The first 2500 trees were discarded as “burn-in” (25%). For the remaining trees, a
majority rule consensus tree showing all compatible partitions was computed to obtain estimates for
Bayesian posterior probabilities (BPP). Branch lengths were estimated as mean values over the
sampled trees. Such a Bayesian analysis was repeated three times, always using random starting
trees and random starting values for model parameters to test the independence of the results from
the revisiting of the prior topologies during chain growth (Huelsenbeck et al., 2002). ML estimation
was performed with RAXML v.7.0.4 through 1000 bootstrap replicates (Felsenstein, 1985) using the
GTRGAMMA algorithm to perform a tree inference and search for a good topology. Support values
from bootstrapping runs were mapped on the globally best tree using the —f option of RAXML and
—x 12345 as a random seed to invoke the novel rapid bootstrapping algorithm. Nodes receiving a
bootstrap support of <70% in the ML analyses (MLB), or a BPP of <95% in the Bl analyses, were
not considered as well supported.

Alignments and tree topologies are archived in the database TreeBASE (http://www.treebase.org;
submission ID 11297). Tulasnella, Ceratobasidium, and Sebacina sequences were deposited in
GenBank (accession numbers JF926459-JF926519, JF912458-JF912491 and JF912454—
JF912457, respectively).

Comparison of Rhizoctonia spectra in orchid roots

Sequencing yielded diverse spectra of rhizoctonias that could be ascribed to the teleomorphic
genera Tulasnella, Ceratobasidium, and Sebacina (see Results section). These spectra were
investigated by multivariate analysis (discriminant analysis, DA). This method is robust against the
violation of linear data structures and can be used without knowing any property of the data set
(Podani 1994). Since none of the ITS sequence types obtained had 100% identity with GenBank
sequences of identified Tulasnella, Ceratobasidium, and Sebacina species, OTUs were determined.
Based on the final alignment, a distance matrix was constructed using DNAdist from the PHYLIP
suite of programs version 3.6 with default parameters (Felsenstein, 1989, 2005;
http://evolution.genetics.washington.edu/phylip.html). These pairwise distances served as input to
the program mothur v.1.17.3 (Schloss et al., 2009; http://www.mothur.org/) to assign sequences to
OTUs at different distance (sequence identity) levels. DOTUR OTUs at the 97% sequence identity
threshold were compared to terminal clusters, receiving high support (=95% BPP, >70% MLB) in
phylogenetic analyses. Binary data (occurrence/absence of each OTU in individual orchid plants)
were used in DA analysis. The analysis was performed using the SYN-TAX 2000 package
subroutine “canonical variates” with the “Spherized scores of objects” (normalization of
eigenvectors) option. Correlations with the original variables were also analyzed.
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For Serapias vomeracea, it was also possible to use DA to compare the Rhizoctonia spectra in
plants from different meadows at the main study site, namely, meadows 1a and 1b, and meadows at
other Italian sites.

Isotope analysis

Following the sampling methodology of Gebauer and Meyer (2003), plants for isotope ratio mass-
spectrometry (IRMS) were collected at the main study site in April 2007. Five 1-m? plots were
identified for each orchid species, and the same three neighboring reference species were selected
within each plot. Leaf samples of both orchid and reference species were collected, for a total of 20
samples from four orchid species and 60 samples from 12 non-orchids. Leaf samples were dried at
105°C, ground in a ball mill (Retsch Schwingmiihle MM2, Haan, Germany) and stored dry in a
desiccator until analyzed. Relative nitrogen and carbon isotope abundances of the leaf samples were
analyzed in dual element mode with an elemental analyzer coupled to a continuous flow isotope
ratio mass spectrometer as described in Bidartondo et al. (2004). The isotope abundances are
denoted as d-values, where Rsample and Rstandard are the ratios of heavy isotope to light isotope of the
samples and the respective standard.

The 6N and §'3C values were tested for differences between an orchid species and its autotrophic
references using the Kruskal-Wallis nonparametric test and Bonferroni-corrected Mann—Whitney U
tests for post hoc comparisons. When a significant difference between the orchid and its references
was found, a linear two-source isotopic mixing model was applied as described in Gebauer and
Meyer (2003) to estimate the carbon and nitrogen in the orchid leaves possibly derived from
mycorrhizal fungal partners. Because no mycoheterotrophic reference species were present at this
site, a mean enrichment factor & for N (12.8 %o) and *C (7.2 %o) was used, as suggested by Liebel
and Gebauer (2010).

RESULTS

Fungal associates of Oph. fuciflora, A. laxiflora, Or. purpurea, and S. vomeracea

Whereas tubers of A. laxiflora, Oph. fuciflora, Or. purpurea, and S. vomeracea were
nonmycorrhizal, cortical cells of the thinner, emerging fleshy roots were extensively colonized by
hyaline, septate hyphae (5-9[—16] um in diameter) forming typical intracellular coils (Fig. 1).

Fig. 1. Light micrograph of unstained, hand section from Serapias vomeracea, showing
colonization of the cortical cells by fungal hyphae forming pelotons (arrows). Bar = 50 pum.

A diverse spectrum of endophytic fungi was obtained by in vitro isolation from mycorrhizal roots,
including mycelia exhibiting typical Rhizoctonia features (Fig. 2), sporulating fungi, and hyaline or
dematiaceous sterile mycelia. Non-Rhizoctonia basidiomycetous and ascomycetous fungal
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endophytes, including ECM species (i.e., Macowanites vinaceodorus, Terfezia sp., Choiromyces
echinulatus), were also identified following direct amplification of mycorrhizal root DNA with the
fungal universal fungal primers pair ITS1F/ITS4 (Appendix S1, see Supplemental Data online at
http://www.amjbot.org/content/98/7/1150/suppl/DC1).

Fig. 2. Fluorescence micrograph of DAPI-stained fungal isolate from mycorrhizal roots of Serapias
vomeracea, showing typical Rhizoctonia features, such as 90° branching of hyphae. Cells are
binucleate. Bar =10 um. Rhizoctonia isolates were obtained in culture from 43% of S. vomeracea,
40% of Oph. fuciflora, 27% of A. laxiflora and 20% of Or. purpurea individuals (Table 2). All
isolates were binucleate (Fig. 2), and their symbiotic potential was confirmed by germination and
protocorm development assays with orchid seeds (data not shown). Consistent with their binucleate
status (Sharon et al., 2006), ITS sequencing identified such isolates as belonging to the
teleomorphic genera Tulasnella and Ceratobasidium.

Table 2. Occurrence of Tulasnella, Ceratobasidium, and Sebacinafungal endophytes in the roots of
the four orchid species, as assessed by either direct mycorrhizal root DNA extraction or fungal
isolation.

Percentage of analyzed plants harboring

Orchid Tulasnella Ceratobasidium Sebacina
Anacamptis laxiflora 69 50 7
Ophrys fuciflora 100 40 —
Orchis purpurea 47 44 —
Serapias vomeracea 95 33 24

Fungal ITS sequencing following direct amplification of mycorrhizal root DNA also indicated that
Rhizoctonia species were associated with most (55 of 61) orchid plants. In the remaining six plants
(five of Or. purpurea and one of A. laxiflora), Rhizoctonia species could not be identified by direct
root amplification or isolation in pure culture. In such plants, direct root DNA amplification yielded
fungal ITS sequences that matched sequences of ascomycetes belonging to different genera and
higher taxa (e.g., Scutellinia sp., Cadophora luteo-olivacea, Fusarium sp., Tetracladium sp.,
uncultured Pezizomycotina), as well as one sequence of an unidentified basidiomycetous
mycorrhizal fungus (online Appendix S1).

Rhizoctonias identified in the four orchid species were found to belong to Tulasnella,
Ceratobasidium, and Sebacina (Table 2). The dominant teleomorphic genus was Tulasnella (64%
sequences), followed by Ceratobasidium (30% sequences), whereas Sebacina (6% sequences) was
sporadically identified only in S. vomeracea and A. laxiflora (Table 2). Several different
teleomorphic genera of Rhizoctonia were often observed in the same orchid plant, with two genera
co-occurring in 38% of S. vomeracea, 31% of A. laxiflora, 30% of Oph. fuciflora and 13% of Or.
purpurea plants, and all three genera co-occurring in 14% of S. vomeracea plants.
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Rhizoctonia was also identified in neighboring, non-orchid plants (Bromus erectus and Carex hirta)
by in vitro isolation and direct root DNA amplification. A fungal isolate obtained from Bromus
erectus (BR_OP8) collected close to Or. purpurea (plant OP8) was found to belong to Tulasnella
(Appendix S1). Direct amplification of root DNA with the generic primers ITS1F/ITS4 was
successful for all neighboring plants examined, whereas amplification with the specific primers
ITS1IF/ITS4B and ITS1F/ITS4tul was successful only for four of the 12 plants analyzed. Two
sequences from a B. erectus plant (BR_AL9) growing close to A. laxiflora (plant AL9) and one
sequence from a Carex hirta plant (CA_ALS) growing close to another A. laxiflora (plant AL8)
matched Ceratobasidium sequences.

Phylogenetic analysis of the Rhizoctonia endophytes

The Tulasnella, Ceratobasidium, and Sebacina sequences obtained from roots and from fungal
isolates of the four Mediterranean species were aligned with GenBank fungal sequences from a
variety of terrestrial and epiphytic orchids from different continents and environments, as well as
from non-orchid plants, fungal strains, and fruitbodies. Due to the phylogenetic distance between
the teleomorphs (Roberts, 1999; Moncalvo et al., 2006; Hibbett et al., 2007), separate phylogenetic
(Bl and ML) analyses were carried out (Figs. 3-7). In all instances for the fungal sequences from
the Mediterranean orchids investigated, clustering and nodal support were consistent between the
two methods of phylogenetic reconstruction.
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Fig. 3. Bayesian tree obtained from the ITS sequence alignment of tulasnelloid fungi. The
GTR+G+I substitution model was used. Sequences from Ophrys fuciflora (OF), Anacamptis
laxiflora (AL), Orchis purpurea (OP), Serapias vomeracea (SV), and from neighboring non-orchid
species were obtained either with the universal fungal primer pair ITS1F/ITS4 or with the primer
combination ITS1/ITS4-Tul specific for tulasnelloid fungi. The data set includes representatives of
European, American, and Australian meadow and forest photosynthetic orchids, tropical terrestrial
and epiphytic orchids, non-orchid species and fungal strains and fruitbodies. Multiclavula
corynoides (MCUG66440) was used as an outgroup taxon. Clade support as determined using both
Bayesian posterior probabilities (BPP) and nonparametric bootstrapping from 1000 maximum
likelihood replicates (MLB) is reported alongside each node (BPP /MLB). A hyphen (-) indicates
<50% MLB. T, terrestrial; G, green.
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Fig. 4. Detail of the “TUL A” clade in Fig. 3. Sequences from Ophrys fuciflora (OF), Anacamptis
laxiflora (AL), and Serapias vomeracea (SV) were obtained either with the universal fungal primer
pair ITS1F/ITS4 (open squares) or with the primer combination ITS1/ITS4-Tul specific for
tulasnelloid fungi (closed circles). Clade support as determined using both Bayesian posterior
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probabilities (BPP) and nonparametric bootstrapping from 1000 maximum likelihood replicates
(MLB) is reported alongside each node (BPP /MLB). A hyphen (-) indicates <50% MLB.
Operational taxonomic units (OTUs) recognized on the basis of sequence identity and tree topology
are reported. Percentage of Tulasnella sequences and orchid plants are also indicated for the main
OTUs. T, terrestrial; E, epiphytic; G, green.
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Fig. 5. Detail of the “TUL B” clade in Fig. 3. Sequences from Ophrys fuciflora (OF), Anacamptis
laxiflora (AL), Orchis purpurea (OP), Serapias vomeracea (SV), and from neighboring non-orchid
species (BR_OP: Bromus erectus collected close to O. purpurea) were obtained with the universal
fungal primer pair ITS1F/ITS4 (open squares). Clade support as determined using both Bayesian
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posterior probabilities (BPP) and nonparametric bootstrapping from 1000 maximum likelihood
replicates (MLB) is reported alongside each node (BPP /MLB). A hyphen (-) indicates <50% MLB.
Operational taxonomic units (OTUs) recognized on the basis of sequence identity and tree topology
are reported. Percentage of Tulasnella sequences and orchid plants are also indicated for the main
OTUs. T, terrestrial; G, green.
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Fig. 6. Bayesian tree obtained from the ITS (ITS1-5.8S-1TS2) sequence alignment of
ceratobasidioid fungi. The HKY+G substitution model was used. Sequences from Ophrys fuciflora
(OF), Anacamptis laxiflora (AL), Orchis purpurea (OP), and Serapias vomeracea (SV) were
obtained either with the universal fungal primer pair ITS1F/ITS4 (open squares), the primer



combination ITS1/ITS4-Tul specific for tulasnelloid fungi (closed circles), or the ITS1F/ITS4B
primer pair specific for basidiomycete fungi (closed squares). Sequences of distantly related
Ceratobasidium species were used as outgroup taxa. Clade support as determined using both
Bayesian posterior probabilities (BPP) and nonparametric bootstrapping from 1000 maximum
likelihood replicates (MLB) is reported alongside each node (BPP/MLB). A hyphen (-) indicates
<50% MLB. Operational taxonomic units (OTUs) recognized on the basis of sequence identity and
tree topology are reported. Percentage of Ceratobasidium sequences and orchid plants are also
indicated for the main OTUs. T, terrestrial; E, epiphytic; G, green.
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Fig. 7. Bayesian tree obtained from the ITS (ITS1-5.8S-1TS2) sequence alignment of sebacinoid
fungi. The HKY+G substitution model was used. Sequences from Ophrys fuciflora (OF),
Anacamptis laxiflora (AL), Orchis purpurea (OP), and Serapias vomeracea (SV) were obtained
with the universal fungal primer pair ITS1F/ITS4 (open squares). Geastrum schmidelii (EU784247)
was used as an outgroup taxon. Clade support as determined using both Bayesian posterior
probabilities (BPP) and nonparametric bootstrapping from 1000 maximum likelihood replicates
(MLB) is reported alongside each node (BPP /MLB). A hyphen (-) indicates <50% MLB.
Operational taxonomic units (OTUs) recognized on the basis of sequence identity and tree topology
are reported. T, terrestrial; G, green; A, achlorophyllic.



In the phylogenetic trees of the Tulasnella data set (Fig. 3), sequences from the four orchid species
segregated into two main clades. In particular, most sequences from S. vomeracea and A. laxiflora
(>80% and 70% of total sequences, respectively) co-segregated in a clade receiving 100% BPP and
MLB support (indicated as “TUL A” in Fig. 3, magnified in Fig. 4). This group (Fig. 4) included
most sequences from S. vomeracea and A. laxiflora (90% and 64% of plants yielding Rhizoctonia
sequences, respectively), a few sequences from Oph. fuciflora (40% plants) mostly obtained with
the ITS1F/ITS4-Tul primer pair, GenBank fungal sequences from different green meadow and
forest orchids, tropical terrestrial and epiphytic orchids, and fungal strains or fruitbodies (mainly
from Tulasnella calospora). In the other tulasnelloid main clade (indicated as “TUL B” in Fig. 3,
magnified in Fig. 5), Oph. fuciflora and Or. purpurea sequences clustered either independently,
with sequences from the same orchid species (sequences from Or. purpurea plants in Belgium),
neighboring plants (sequence BR_OP8, from a Bromus erectus plant) or sequences from the forest
orchid genus Cypripedium (Shefferson et al., 2007). No Tulasnella sequence was obtained with the
ITS1F/ITS4B primer pair.

Ceratobasidium ITS sequences from the four Mediterranean orchid species were obtained with all
primer pairs and could be aligned with GenBank fungal sequences from green meadow and forest
orchids, from an epiphytic tropical orchid (Psychilis monensis), from ectomycorrhizal plants and
other sources (Fig. 6). Sebacina sequences from S. vomeracea and A. laxiflora were obtained with
the universal fungal primer pair ITS1F/ITS4 and could be aligned with sequences from green and
achlorophyllous forest and meadow orchids, from ectomycorrhizal and other non-orchid plants, and
from fungal fruitbodies (Fig. 7).

In the phylogenetic analyses, terminal clusters (supported by >95% BPP, >70% MLB) comprising
sequences from the four orchid species were consistent with 97% sequence identity groups
recognized by mothur (data not shown) and were therefore regarded as distinct operational
taxonomic units (OTUs). The only exceptions were the large group TUL Al (exhibiting 100—-96%
intra-OTU sequence identities), and the TUL B3 group, which received low nodal support (78%
BPP, <50% MLB). Ten OTUs were thus recognized for Tulasnella, seven for Ceratobasidium and
two for Sebacina (Figs. 4-7). Although direct root DNA amplification yielded a much higher
number of OTUs than fungal isolation, some OTUs (e.g., CER 5) were obtained exclusively by the
latter approach (Fig. 6).

OTUs did not include reference sequences of identified fungal species, the only exception being
OTU TUL A1, which comprised sequences from T. deliquescens and T. calospora (syn. T.
deliquescens sensu Warcup and Talbot, 1967, fide Roberts, 1999).

Several Tulasnella (Figs. 4, 5) and Ceratobasidium (Fig. 6) OTUs included GenBank sequences
from different orchids, mainly European and American green orchids of either open habitats (A.
laxiflora in Hungary, Dactylorhiza spp., Epipactis spp., Orchis spp., Platanthera praeclara) or
forest (Cypripedium spp., Cephalanthera spp., Liparis spp., Epipactis helleborine, Goodyera
repens, Tipularia discolor). Some Ceratobasidium OTUs included sequences from diverse sources,
such as seedlings in forest nurseries, soil, or isolates from non-orchid plants belonging to different
anastomosis groups. Sebacina OTU SEBA 2 (Fig. 7) comprised sequences from non-orchid plants.
The remaining OTUs (comprising unique sequences from A. laxiflora, Oph. fuciflora, Or.
purpurea, and S. vomeracea) either bore a sister-group relationship with other OTUs from the same
orchids, or to GenBank fungal sequences from different European and North American terrestrial
orchids, or were distantly related to both groups. Interestingly, many Tulasnella sequences
(amplified with the universal fungal primers ITS1F/ITS4) clustered in OTUs that were sister groups
to fungal endophytes of Cypripedium species (Fig. 5). Fungal sequences from tropical (terrestrial or
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epiphytic) or Australian orchids were generally more distantly related, the main exception being
sequences from Australian orchids related to T. calospora (Fig. 4).

Mycorrhizal specificity

Alignments of the tulasnelloid sequences obtained from Or. purpurea, A. laxiflora, S. vomeracea
and Oph. fuciflora indicated a wide spectrum of OTUs for the first three species, with a high
evenness (the most frequent OTUs occurring in 50.0-55.6% and the second most frequent OTUs in
22.2-42.9% of the plants). By contrast, a less diverse OTU spectrum was observed in Oph. fuciflora
(where OTU TUL B5 occurred in 70.0%, and the other OTUs in <20.0% of the plants).

Diversity of fungi from Or. purpurea, Oph. fuciflora, A. laxiflora, and S. vomeracea was similar as
these species yielded sequences belonging to 3, 4, 4, and 5 tulasnelloid OTUs, respectively, but
fungal sequences from 90.0% of Or. purpurea and 77.8% of Oph. fuciflora plants belonged to
Tulasnella OTUs that were not shared with other orchid species. Fungal sequences from 64.3% of
A. laxiflora and 52.4% of S. vomeracea plants belonged to Tulasnella OTUs shared between these
two plant species.

Association of the four orchids with ceratobasidioid fungi also featured different degrees of
specificity. For example, OTU CER 6 (grouping 14.8% of Ceratobasidium sequences) was
exclusively found in Oph. fuciflora (40.0% plants). By contrast, OTU CER 1, that contained most
Ceratobasidium sequences (44.4%), encompassed 60.0% and 71.4% Ceratobasidium sequences
from A. laxiflora and S. vomeracea, respectively.

Sebacina sequences were only obtained from A. laxiflora and S. vomeracea.

Discriminant analysis was carried out to compare Rhizoctonia spectra in the four orchid species
(Fig. 8A). The first axis (67.1% of the total variation) discriminated between Orchis purpurea and
the other orchid species. Discrimination between Or. purpurea and the other orchids was mainly
due to OTUs TUL B3, TUL B2, CER 2, and CER 5 (associated exclusively with Or. purpurea) and
OTUs TUL Al, TUL B5, and CER 1 (associated exclusively with the other orchid species), as
indicated by correlations with the first axis. The second axis (30.6% of the total variation)
distinguished instead Oph. fuciflora from the other species, mainly due to OTUs TUL B5 and CER
6 (associated exclusively with Oph. fuciflora). Within the ordination space, no geographical
patterning was found for samples from different plots.
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Fig. 8. Discriminant analysis (DA) plots comparing Rhizoctonia spectra in (A) Ophrys fuciflora

(OF), Anacamptis laxiflora (AL), Orchis purpurea (OP), and Serapias vomeracea (SV) roots
collected at all sampling sites, and (B) S. vomeracea plants collected at the main study site
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meadows 1a and 1b and other sites. Isodensity circles representing each group (circles drawn
around group centroids and expected to contain 95% of the observations within each group) are
shown. Percentage of the total variation accounted for by each DA axis is reported.

Rhizoctonia spectra in plants growing in different meadows and at distant geographic sites were
compared with a separate analysis for S. vomeracea (Fig. 8B). When Rhizoctonia spectra in S.
vomeracea plants collected in meadows 1a and 1b at the main study site and in other sites were
compared (5, 2, and 3, Tulasnella, Ceratobasidium, and Sebacina OTUs, respectively), meadow la
was separated both from meadow 1b and from other sites along the first axis (56.6% of the total
variation). Discrimination between the main and the other study sites could only be appreciated
along the second axis (43.4% of the total variation). OTUs TUL A4, TUL A3, and TUL A2 were
mainly responsible for the separation along axis 1, whereas discrimination along axis 2 was mainly
due to TUL A3 and TUL A2.

Nutrient acquisition

The four orchids analyzed were all significantly enriched in *®N compared to nearby reference
plants (Fig. 9). The results of the linear two-source mixing model showed the highest N gain from
fungi in Orchis purpurea, which was also the only orchid with a significant C gain (Table 3).
Comparatively high 5!°N values were found in both Anacamptis laxiflora and its autotrophic
references (Fig. 9).
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Fig. 9. Mean 8'°N and §°C values (+SD) in leaves of the four orchids (N = 5 per species) and
neighboring autotrophic non-orchid species (N = 5; Be, Bromus erectus; Ch, Carex hirta; Cv,
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Crepis vesicaria; Fv, Filipendula vulgaris; Hn, Helianthemum nummularium; Ls, Linum strictum;
Pl, Plantago lanceolata; Ps, Pimpinella saxifraga; Rb, Ranunculus bulbosus; Sa, Sherardia
arvensis).

Table 3. Percentages of N (mean % N £SD, N=5) and C (mean % C £SD, N=5) derived from fungi
in the leaves of four green orchids that differed significantly in their §*°N values from the
surrounding autotrophic references. The data were calculated based on a linear two-source isotopic-
mixing model.

Orchid % N %C
Anacamptis laxiflora 26 £+ 9** —13+1 *
Ophrys fuciflora 307 *F* —
Orchis purpurea 46 £ 7*** 18+ 1 **
Serapias vomeracea 12 4 ***

DISCUSSION

Mediterranean meadow orchids can feature fungal specificity

Considerable diversity of Rhizoctonia fungi has been uncovered in the four Mediterranean meadow
orchid species. In spite of the limitations of the culture-dependent approach, the fungal isolates
yielded ITS sequences that were not found by culture-independent, direct mycorrhizal root DNA
amplification, and therefore complemented the latter approach. As observed by other authors, the
three primer combinations used in this study resulted in a wide taxonomic coverage of orchid
mycobionts, and a new combination of three ITS primers has been designed to cover a similar
spectrum of mycorrhizal associates in a single amplification step (Taylor and McCormick, 2008).

Tulasnelloid fungi were found to dominate among the rhizoctonias identified, co-occurring with
Ceratobasidium and, only in few A. laxiflora and S. vomeracea plants, Sebacina species. Fungi
related to either Tulasnella, Ceratobasidium, and Sebacina have been found associated with
terrestrial orchids of forests and open habitats, as well as epiphytic orchids (Taylor et al., 2002;
Dearnaley, 2007; Shefferson et al., 2005, 2007, 2008, 2010; Suarez et al., 2008; Yagame et al.,
2008; Waterman and Bidartondo, 2008; Cruz et al., 2010; Roche et al., 2010; Schatz et al., 2010;
Swarts et al., 2010; Wright et al., 2010).

Species remain hard to define within tulasnelloid, ceratobasidioid, and sebacinoid fungi, because
teleomorphic states remain unknown for orchid symbionts, the main exception being Tulasnella
calospora. This species has been obtained from terrestrial orchids from a wide range of sites
(Roberts, 1999) and qualifies as a generalist orchid symbiont. However, T. calospora has been
suggested to comprise several distinct species (Suarez et al., 2006), and this taxonomic problem
may obscure the actual host ranges of this fungus.

Different methods of molecular species identification have been proposed based on single-gene
sequence similarity (BLAST and genetic distance) and tree topology (Ross et al., 2008). Bayesian
analyses of tulasnelloid, ceratobasidioid, and sebacinoid ITS sequences obtained from A. laxiflora,
Oph. fuciflora, Or. purpurea, and S. vomeracea in this study indicated that terminal clusters,
supported by >70% posterior probabilities, corresponded to >97% sequence identity groups. Taking
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the 97% sequence identity OTUs as a proxy for fungal species (Nilsson et al., 2008), several fungi
associated with our four orchid species were found to be possibly conspecific with mycorrhizal
partners of other European and North-American green orchids of both open and forest habitats
(mostly to fungi from Cypripedium spp.). Only few fungi of Australian or tropical/epiphytic orchids
were found to cluster with fungi from Mediterranean orchid species, suggesting some
ecogeographical specificity.

Some OTUs featured fungi reported from non-orchid plants, mostly ECM trees. For instance,
sebacinoid associates included fungi from photosynthetic orchids, thought to be saprotrophic, or
uncultured sebacinoid mycobionts with ECM potential (Weil et al., 2004; Selosse et al., 2007). A
number of fungi associating with A. laxiflora, Oph. fuciflora, Or. purpurea, and S. vomeracea did
not cluster with fungi from other plant species, thus confirming the suggestion (Shefferson et al.,
2007) that a great deal of unassessed phylogenetic diversity still exists within Rhizoctonia, further
broadening the taxonomic range of fungi forming orchid mycorrhiza.

Multivariate comparison of Rhizoctonia patterns in sympatric and allopatric orchid plants, together
with the genetic and phylogenetic range of fungal symbionts in the same plants, indicated for Or.
purpurea and Oph. fuciflora a lower diversity of mycobionts, that were mostly specific to the two
orchid species, than A. laxiflora and S. vomeracea. In phylogenetic analyses, sequences from Oph.
fuciflora or Or. purpurea generally segregated from sequences from S. vomeracea and A. laxiflora,
which instead mostly cosegregated. Similarly, a wide range of levels of mycorrhizal fidelity,
including high specificity, has been reported in Australian open habitat orchids (Warcup, 1971,
1981; Bougoure et al., 2005; Bonnardeaux et al., 2007). For orchids associating frequently with
fungi from different families or orders, it remains to be assessed whether mycorrhizal specificity is
enforced by the plant or rather due to fungal preference.

Comparison of Rhizoctonia spectra in S. vomeracea plants growing in different meadows indicated
very limited site effects. In contrast to the hypothesis of a lack of mycorrhizal specificity in
photosynthetic meadow orchids, discriminant analysis indicated that host preference can be
observed both in co-occurring orchid species and in plants collected at distant geographic sites. This
suggests, at least for this species, that individual plants from different populations are not locally
adapted to the fungi present at that location, but they associate specifically with fungi that are
present throughout their range in similar habitats. These results are apparently in contrast with the
situation in Gymnadenia conopsea (Stark et al., 2009), where taxon composition of the fungal
partners associated with plants at different sites showed little overlap. However, only rhizoctonias
were considered in our multivariate analysis, whereas the full range of fungal associates (including
known mycorrhizal fungi as well as plant endophytes and potential pathogens) was taken into
account by Stark et al. (2009).

A partial mycoheterotrophic strategy in Mediterranean meadow orchids

Stable isotope analysis showed that all four orchid species were significantly enriched in *°N
compared with non-orchid reference species. The comparatively high °N values of both A. laxiflora
and its autotrophic references were possibly due to fertilization with manure. This finding is
consistent with other studies on meadow, forest photosynthetic and achlorophyllous orchids
(Gebauer and Meyer, 2003; Bidartondo et al., 2004; Zimmer et al., 2007; Liebel et al., 2010),
although N gain in photosynthetic and achlorophyllous forest orchids appears to be greater than
gains in A. laxiflora, Oph. fuciflora, Or. purpurea, and S. vomeracea. Among the orchids
investigated, Or. purpurea had the highest N gain from fungi and was the only species also with a
significant C gain. Orchis purpurea was our only nonwintergreen species, sprouting in spring,
which may explain its higher dependency on fungal nutrient supply (Rasmussen, 1995).
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In Or. purpurea, the spatial patterns of seedling recruitment indicate limited seed dispersal (a few
meters from the mother plant); seed germination may be thus confined to particular microsites
where both adults and seedlings are clustered (Jacquemyn et al., 2007). Although the mycorrhizal
fungi are likely to be distributed independently of the orchids (Feuerherdt et al., 2005), higher
abundance of fungal symbionts has been found close to adult plants (Batty et al., 2001; Diez, 2007).
Thus, spatial aspects of Or. purpurea seedling recruitment also suggest dependency on locally
distributed mycorrhizal fungi for protocorm establishment and development.

Earlier studies in orchids growing in open habitat report smaller carbon gains from fungi in
comparison with the more pronounced carbon gain in forest orchids (Gebauer and Meyer, 2003;
Bidartondo et al., 2004; Liebel et al., 2010). Nevertheless, a C gain from fungi might go undetected
due to respiratory carbon loss or be masked by photosynthesis. Stable isotope analyses in our study
were carried out during flowering time; the possibility of (higher) carbon gains from fungi, in either
Or. purpurea or the other Mediterranean species, in different seasons cannot be excluded.

The significance of, and the process leading to the high mycorrhizal specificity of
mycoheterotrophic plants is a matter of ongoing debate, and it remains therefore unresolved
whether such a specificity may be related to fine-tuning of the physiology of the plant—fungal
interactions (Merckx et al., 2009; Hynson and Bruns, 2010; Leake and Cameron, 2010). Where
evolution of mycoheterotrophy concurs with a switch in fungal functional types (e.g., from
saprotrophic to ectomycorrhizal fungi), the question is open whether the new fungal partners are
selected to provide larger and/or more easily available sources of C and nutrients (Leake and
Cameron, 2010). The ultimate source of nutrients delivered by fungal symbionts to their orchid
hosts remains uncertain. Differences in isotopic signatures can be related to the nutrient sources
used by the symbiotic fungi (Gebauer and Taylor, 1999; Leake and Cameron, 2010). Recent
molecular analyses have shown that Rhizoctonia ecology is much more complex than previously
thought. Traditionally, rhizoctonias have been considered saprotrophic and pathogenic fungi.
However, some rhizoctonias were recently shown to be ectomycorrhizal. Sebacinoid fungi have
been recognized among the most common ECM species in temperate and Mediterranean forests
(Glen et al., 2002; Avis et al., 2003; Kennedy et al., 2003; Walker et al., 2004; Richard et al., 2005;
Tedersoo et al., 2006). Some Tulasnella species have also been reported to exhibit ectomycorrhizal
potential (Warcup and Talbot, 1967; Bidartondo et al., 2003). Ceratobasidioid fungi have been
shown to include strains that are endophytes of Pinus sylvestris (Sen et al., 1999), root-growth
promoters (Gronberg et al., 2006), and ECM (Yagame et al., 2008; Bougoure et al., 2009).

Bidirectional transfer of carbon between a green orchid (Goodyera repens) and Ceratobasidium
cornigerum was demonstrated by Cameron et al. (2006, 2008). Characteristic stable isotope
abundance data (**C depletion compared to accompanying plants) indicate that this bidirectional
carbon transfer is more widespread among the tribes Cranichideae and Orchideae (Hynson et al.,
2009; Liebel et al., 2010). Despite the limited sampling, we have shown that some fungi found in
the roots of orchids and of neighboring herbaceous plants clustered in the same OTU. Although
there is currently no evidence of a nutritional link between orchid and non-orchid plants in meadow
habitats, this finding may indicate at least a potential hyphal link.

In conclusion, statistical analysis of mycorrhizal fungal diversity in four photosynthetic
Mediterranean meadow orchids indicates that, as in other mycorrhizal associations (Sanders 2003),
meadow orchids may prefer specific fungal partners in natural conditions. The species showing the
most distinct fungal spectrum (Or. purpurea) was also partly dependant on the fungal partner(s) for
organic carbon, suggesting that specific requirements of the symbiosis (e.g., carbon supply to the
plant) may increase mycorrhizal specificity.
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