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An Ancient and Ecologically Critical Fungal
Lineage

Arbuscular mycorrhizal fungi (AMF) represent a monophyletic

fungal lineage (Glomeromycota) that benefits terrestrial ecosystems

worldwide by establishing an intimate association with the roots of

most land plants: the mycorrhizal symbiosis. This relationship

results in an improved acquisition of nutrients (e.g., phosphate and

nitrates) from the soil by the plant partners and, in exchange,

allows the AMF to obtain the photosynthetically fixed carbon

sources (e.g., sugars) necessary for their survival and propagation

[1,2] (Figure 1). This fungal lineage is known to impact the

function and biodiversity of entire ecosystems by producing

extensive underground networks, composed of hyphae and spores,

that interconnect a number of unrelated individual plant species

[1,2]. These networks also function as a significant sink for

atmospheric carbon dioxide, and represent significant under-

ground ‘‘nutrient highways’’ that benefit entire plant and

microbial communities. Indeed, AMF spores and hyphae are also

a valuable source of food for many soil microorganisms (i.e.,

bacteria, other fungi, and nematodes), and because of their many

beneficial effects on terrestrial ecosystems, AMF are widely used in

organic agriculture and plant nurseries to improve the growth of

economically important species.

Besides their enormous benefits for terrestrial ecosystems

around the globe, AMF are also known for their atypical

evolutionary history and cellular features. For instance, it is

currently thought that this intimate fungal–plant association has

evolved over at least 500 million years—an extremely long-term

co-evolutionary history, which has led many to suggest that AMF

could have played a major role in the colonization of land by

plants [3]. This hypothesis is also consistent with recent reports

describing the capacity of some AMF species to infect the most

ancient plant lineages (e.g., liverworts) and improve their overall

fitness [4].

From a cellular point of view, AMF cells are at odds with those

of many other eukaryotes, harbouring hundreds of haploid nuclei

within one cytoplasm throughout their entire life cycle (i.e., septa

are absent). The genetic structure of these co-existing nuclei has

sparked a long-standing and intense scientific debate, and it is

currently unclear whether such nuclei are genetically similar (e.g.,

homokaryons) [5] or divergent (e.g., heterokaryons) [6,7].

Nevertheless, it is now generally accepted by the mycorrhizal

research community that genes isolated from one spore are often

characterized by an atypically high degree of intra-individual

sequence polymorphism.

The Elusive Genome of AMF Contains a Typical
‘‘Biotrophic’’ Gene Repertoire

Given the outstanding importance of AMF for the overall health

and biodiversity of many ecosystems worldwide, one could easily

assume that the genomes of many AMF would have been already

sequenced and would be readily available in gene depositories for

comparison and inspection. Unfortunately, however, this is far

from being the case, and until earlier this year, sequence

information on AMF consisted of only two published complete

mitochondrial genomes and a handful of unrelated nuclear gene

sequences. So, why is that? Obviously, there are many causes, the

most notorious being difficulties in culturing these fungi under

axenic conditions, the presence of a relatively elevated intra-

individual sequence polymorphism hampering genome assemblies,

and, finally, a nuclear genome size that could well be an order of

magnitude larger than what was previously thought (e.g., most

recent analyses suggest a genome size of around 150 megabases)

[8,9].

This past year, however, the field of AMF genome research

experienced a major breakthrough with the publication of the

transcriptome of the model AMF Rhizophagus (Glomus) intraradices

[10]. The gene repertoire of this AMF was found to mirror that of

other biotrophic fungi, with many genes involved in stealth host

colonization and nutrient assimilation (e.g., metabolism of

phosphate, nitrate, and lipids). Many AMF genes were also found

to be shared exclusively with other, more diverged mycorrhizal

fungi (e.g., Tuber melanosporum, an ascomycete, and Laccaria bicolor, a

basidiomycete), providing long awaited insights into the origin and

evolution of mycorrhiza-specific genes. The R. intraradices genome

also encodes a large number of proteins that have not been

reported in other genomes, suggesting that these have originated

and been maintained to play an essential function exclusive to

these ecologically relevant fungi [10].

An Ancient Asexual Lineage with Many Genes
Necessary for Sexual Reproduction

AMF have long been considered to represent an ancient asexual

lineage, having evolved for over 500 million years in the absence of

sexual reproduction. However, recent studies on the gene content
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of several species have revealed that these organisms harbour a

battery of genes that generally function only during sexual

processes [10,11]. These include proteins that are known only

through their involvement in the process of meiosis (e.g., Spo11,

Dmc1, and Rec8) [12], as well as homologues of genes that compose

the mating type locus of basal fungal lineages (e.g., SexP and SexM

of Mucorales) [13]. The exact function of these gene sets is

currently unknown, and, obviously, their identification is not

conclusive evidence that AMF are indeed capable of undergoing

some sort of cryptic sexuality. Nevertheless, the identification of

sex-related genes in this supposedly ancient asexual fungal lineage

opens up the exciting possibility that AMF may not represent one

of the ‘‘highly exclusive’’ lineages commonly referred to as

‘‘ancient asexuals’’, an artificial grouping that currently includes

the AMF, the ostracod Darwinula stevensoni, and the bdelloı̈d rotifers

[14].

Mycorrhizal Colonization versus Pathogenic
Infection: Similarities and Differences

As sessile organisms, plants have developed many strategies for

interacting with microbes from different kingdoms, both beneficial

and pathogenic, and a relevant goal in biology is to understand

whether plant mutualists and pathogens share common molecular

and cellular mechanisms for colonizing their hosts. Interestingly, a

number of recent findings appear to support this possibility. A

compelling example is represented by type III secretion systems, a

molecular syringe that is used by both pathogenic and symbiotic

bacteria to translocate effectors (i.e., secreted molecules that alter

plant processes and facilitate colonization) into host cells [15]. The

process for colonizing plant tissues reveals additional common

aspects that are shared between fungal plant pathogens and

symbionts. For instance, both rust fungi (pathogens) and AMF

(symbionts) develop feeding structures surrounded by a membrane

of host origin, and in both cases the physical separation of the

fungus is complete but allows nutrient movements. In this

particular example, sugars always flow from the plant towards

the associated fungus, but only in the case of the AMF is the plant

rewarded by a reverse flow of phosphate or nitrogen compounds

[16].

The cellular and molecular mechanisms underlying the

construction of these feeding structures also share many common

aspects between fungal plant pathogens and symbionts. The

biogenesis of the perihaustorial membrane typical of rusts requires

complex polarized events of secretion [17] that mirror those found

in the perifungal membrane biogenesis of AMF [18]. Accordingly,

the transcriptomic profiles of haustorial and arbusculated cells

show an impressive similarity, as their changes indicate an active

metabolism in those cells directly involved in the response to the

invading fungus, irrespective of its nutritional strategy. This has

been shown using laser microdissection, which allows site-specific

profiling specific to host processes following both types of

interactions. For instance, in Arabidopsis infected by Golovinomyces,

genes involved in photosynthesis, cold/dehydration responses,

defence, auxin signalling, and cell cycle were detected [19], while

similar analyses in arbusculated cells from legume plants revealed

an activation of nutrient transporters, cell-wall-related genes, and

transcription factors [18]. In both cases, the data pointed towards

an enhanced plant metabolism imposed by both pathogenic and

symbiotic fungi, and to an accommodation process related to their

colonization events.

Both Mycorrhizal and Pathogenic Fungi Have to
Cope with the Plant Immune System

In order to deal with pathogens, plants have developed an

innate immune system that triggers resistance mechanisms [20]. A

dramatic increase in our current knowledge has originated from

the characterization of both elicitors (or microbial-associated

molecular patterns [MAMPs]) and effectors, the microbial

molecules that initiate effector-triggered immunity [20]. Chitin is

one of the best known fungal elicitors, and many chitin receptors

have been identified as key regulators of plant responses [21]. In

the case of AMF, it is quite interesting to observe that AMF release

diffusible molecules that activate a range of responses in the host

plant [22], and lipochitooligosaccharides have been recognized as

one of these crucial elicitors [23]. The development of genomic

Figure 1. Establishment of the mycorrhizal symbiosis. An AMF contacts the surface of a legume root, by producing swollen structures called
hyphopodia (in yellow) (A). Evident defence reactions are not detectable, and the epidermal cells appear alive, with the nuclei visible as blue spots.
Once inside the root, the AMF colonizes the inner cortical cells, producing highly branched structures called arbuscules. Notwithstanding the massive
colonization, the plant cells remain alive (B). Pictures kindly provided by Andrea Genre and Mara Novero, University of Torino.
doi:10.1371/journal.ppat.1002600.g001
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sequencing projects for mycorrhizal fungi has opened unexpected

possibilities: not only pathogenic fungi, but also mycorrhizal fungi

produce effectors; as virulence factors they reach the host nucleus

and activate different responses [24,25]. These recent discoveries

underpin how ecologically different organisms (e.g., pathogens

versus symbionts) can use a very similar vocabulary during their

dialogue with the host, suggesting that some of the determinants

identified as modulators of host immunity are probably common

to both types of associations [26].
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