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Abstract 

Filamentous polarized growth involves a series of events including polarization of the cytoskeleton 

to selected growth sites, and the transport of secretory vesicles containing the components required 

for growth. The availability of fungal genome sequences has recently led to the identification of a 

large number of proteins involved in these processes. We have explored the Tuber melanosporum 

genome sequence by searching for homologs of genes known to play crucial roles in the 

morphogenesis and cell polarity of yeasts and filamentous fungi. One hundred and forty-nine genes 

have been identified and functionally grouped according to the deduced amino acid sequences (44 

genes involved in cell polarity/morphogenesis, 39 belonging to the actin cytoskeleton and 66 

involved in membrane dynamics, septation and exocytosis). A detailed gene annotation has shown 

that most components of the cell polarity machinery, morphogenesis and cytoskeleton found in 

yeasts and filamentous fungi are conserved, although the degree of similarity varies from strong to 

weak. Microscopic analysis of quick-frozen truffle hyphae detected the characteristic subcellular 

components of the hyphal tip in septate filamentous fungi, while transcript profiles revealed a 

moderately variable pattern during the biological cycle. 
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1. Introduction 

Filamentous fungi grow by means of apical expansion of tube-shaped cells (i.e., hyphae). Hyphal 

tip growth is characterized by the initial establishment of one growth site, followed by its 

continuous maintenance. This differs from budding in yeasts, which is characterized by a short 

period of polarized growth followed by isotropic growth that leads to an almost spherical daughter 

cell (Steinberg, 2007a). The newly available genome sequencing of many fungi (NCBI) has 

highlighted informative homologies between the Saccharomyces cerevisiae yeast and filamentous 

fungi. Several components of the polarisome multiprotein complex, which regulates microfilament 

formation at polarized growth sites in yeast, are well conserved in the filamentous fungal genomes, 

such as Neurospora crassa and Aspergillus nidulans ( Harris and Momany, 2004, Steinberg, 

2007a and Steinberg, 2007b). However, hyphal apical growth requires additional events, such as the 

addition of new material and the coordination of a localized deposition. 

Several investigations have suggested that the Spitzenkörper, a vesicle-rich region that defines the 

center and direction of growth, and other proteins may play a crucial role in such a polarized hyphal 

extension (Bartnicki-Garcia, 1990, Harris et al., 2005, Roberson et al., 2009 and Wessels and 

Simpson, 2007). Some of the proteins involved in these processes belong to the polarisome 

complex, which promotes polarized morphogenesis through the regulation of the actin cytoskeleton 

and signaling pathways (Sheu et al., 1998). Polarity allows vesicles to flow in the direction of the 

Spitzenkörper prior to their fusion with the plasma membrane in order to provide the precursors and 

enzymes that are required for cell extension and nutrition. 

Other aspects of particular interest in filamentous fungi include the mechanisms that are at the basis 

of cell elongation, the formation of new branches and their regulation. It has been demonstrated that 

such morphogenetic changes depend on cytoskeleton modifications and are triggered by external or 

intracellular signaling (Bassilana et al., 2005, Lee and Kronstad, 2002, Thomas et al., 2003, Uetake 

and Peterson, 1997 and Weber et al., 2005). Such a complex network is likely elicited by the 

recognition of a spatial landmark, which triggers the aggregation of protein complexes which – in 

turn – initiate the assembly and polarization of cytoskeleton components that eventually direct 

vesicle delivery to growth sites (Finger et al., 1998). 

The aim of this paper was to explore the Tuber melanosporum genome sequence by searching for 

gene homologs known to play crucial roles in both morphogenesis and/or polarity establishing and 

maintenance in yeasts ( Drees et al., 2001) and in filamentous fungi ( Banuett et al., 

2008 and Borkovich et al., 2004). 

The Perigod black truffle T. melanosporum is an ascomycetous ectomycorrhizal fungus that belongs 

to the Pezizales order. Truffles, like some other ectomycorrhizal fungi, have a dual lifestyle, living 

both in the soil as facultative transitory saprotrophs and within the plant roots as symbionts ( Martin 

and Nehls, 2009). This duality is reflected on the alternation between the hyphal life, which leads to 

the formation of ectomicorrizae (ECM) and symbiosis, and the fructification stage, which leads to 

the formation of fruitbodies containing sexual spores. During these transitions, the mycelium 

undergoes morphogenetic changes, caused by the expression of specific genes, which are triggered 

by genetics and environmental factors ( Martin and Nehls, 2009 and Martin et al., 2010). 

The examined gene/protein networks were divided on the bases of the roles of the single 

components, that are known in other fungi (S. cerevisiae, and other filamentous fungi; Banuett et 

al., 2008; Borkovich et al., 2004; Harris et al., 2009). 
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The first considered group of genes/proteins was represented by the Rho GTPases and Cdc42 

modules, small Rsr and several effectors. Actin and tubulin cytoskeleton components were also 

examined, together with their upstream regulators: the GTPase signaling pathway, via Wiskott–

Aldrich syndrome protein (WASP)-like, Sla proteins and other elements that lead to actin 

nucleation (Drees et al., 2001 and Pollard, 2003). Finally, proteins that belong to the exocyst, 

polarisome and Spitzenkörper complexes were considered. 

2. Materials and methods 
2.1. Biological materials 

The haploid monokaryotic line Mel28 of T. melanosporum was obtained, by Chantal Dupre and 

Gerard Chevalier, from a fruitbody collected by Louis Riousset at St. Remy de Provence (Bouches-

du-Rhone, France) and deposited at the INRA-Clermont-Ferrand. Ectomycorrhizae (ECMs) of T. 

melanosporum were sampled from mycorrhized hazelnut plants (Corylus avellana), produced by 

AGRI-TRUFFE (Saint-Maixant, France). T. melanosporum fruitbodies were collected below 

common hazel trees or oak trees at different locations ( Martin et al., 2010). 

2.2. In silico genome automatic annotation and manual curation 

The putative genes (gene models) that encode the proteins and enzymes involved in hyphal growth 

and polarization were searched for and identified in the T. melanosporum Mel28 genome, using 

BLAST and Gene Ontology tools at the TuberDB Tuber genome database 

(http://mycor.nancy.inra.fr/IMGC/TuberGenome/). Additional searches were performed by 

launching a range of specific genes that are available from fungi at the NCBI GenBank 

(http://www.ncbi.nlm.nih.gov) and UNIPROT (http://expasy.org/) to the Tuber genome database, 

using BLASTN, TBLASTN, and BLASTP algorithms. 

All the detected gene models were inspected manually, and automatically selected gene models of 

the TuberDB database were modified when necessary. The putative orthologous that were detected 

were characterized on the basis of the conserved domains, identities, and E-values. Manual 

annotation was carried out using the Artemis software 

(http://www.sanger.ac.uk/Software/Artemis/), taking into consideration Expressed Sequence Tags 

(ESTs), when available. The manually annotated gene sequences were aligned using the 

CLUSTALX programme (version 1.83.1) (Jeanmougin et al., 1998). Each curated ortholog was also 

used for a BLAST search at http://mycor.nancy.inra.fr/IMGC/TuberGenome/blast.php, which 

includes a database with five reference ascomycota: N. crassa, Magnaporthe grisea, Botrytis 

cinerea, A. nidulans and S. cerevisiae. 

2.3. Phylogenetic analysis 

The deduced amino acid sequences were used for extensive database searching for homolog 

sequences. Protein sequence data were taken from SWISS-PROT and EMBL protein databases and 

the GenBank non-redundant protein database. A multiple protein alignment was applied using the 

ClustalX package (Thompson et al., 1997). Phylogenetic trees were constructed by means of the 

neighbor joining (NJ) method (Saitou and Nei, 1987), using the Kimura 2-parameter model and the 

MEGA computer programme, Version 4.046 (Kumar et al., 1994). Bootstrap analyses were based 

on 1000 re-samplings of the sequence alignment. 
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2.4. Transcriptome analyses 

Transcript profiling was carried out comparing free-living mycelium (FLM) grown on a glucose-

rich agar-medium with ectomycorrhizal root tips of T. melanosporum–Corylus avellana, and 

fruiting bodies (FB), as described in Martin et al., 2010. The T. melanosporum custom-exon 

expression array (4 × 72 K) manufactured by Roche NimbleGen Systems Limited (Madison, WI) 

contained five independent, nonidentical, 60-mer probes per gene model coding sequence. 7496 

annotated protein-coding gene models, 5736 TE sequences, 3913 random 60-mer control probes 

and labeling controls were included in the oligoarray. Technical duplicates were included on the 

array for 1876 gene models. The total RNA preparations (four biological replicates for 

ectomycorrhizae, five for fruiting bodies and seven for free-living mycelium) were amplified using 

the SMART PCR cDNA Synthesis Kit (Clontech), according to the manufacturer’s instructions. 

Single dye labeling of the samples, hybridization procedures, data acquisition, background 

correction and normalization were performed at the NimbleGen facilities (NimbleGen Systems, 

Reykjavik, Iceland), according to their standard protocol. 

Raw array data were filtered for non-specific probes (a probe was considered non-specific if it 

shared more than 90% homology with a gene model other than the gene model it was made for) and 

renormalized using the ARRAYSTAR software (DNASTAR, Inc. Madison, WI, USA). No reliable 

probe was left for 1015 gene models. A transcript was deemed to be expressed when its signal 

intensity was threefold higher than the mean signal-to-noise threshold (cut-off value) of 3913 

random oligonucleotide probes present on the array (50–100 arbitrary units). Gene models with 

expression values higher than threefold the cut-off level were considered as transcribed. A Student 

t-test with false discovery rate (FDR) (Benjamini-Hochberg) multiple testing correction was applied 

to the data using the ARRAYSTAR software (DNASTAR). Transcripts with a significant p-value 

(<0.05) and ⩾fourfold change in the transcript level were considered as differentially expressed. 

The complete expression dataset is available as a series (accession number GSE17529) at the Gene 

Expression Omnibus at NCBI (http://www.ncbi.nlm.nih.gov/geo/). 

Expression levels of the annotated genes were also detected through massive cDNA sequencing of 

the aforementioned FLM, ECM and FB libraries with the Solexa/Illumina technology. Deep 

sequencing was carried out at the Genoscope facilities, as described in Denoeud et al. (2008) and 

mapped to the T. melanosporum genome and gene models, as reported by Martin et al. (2010). The 

single-end reads obtained were 36 nucleotides long and were deposited in Tuber Gbrowse 

(http://mycor.nancy.inra.fr/cgi-bin/secure/gbrowse/). The data were normalized according to sample 

size and gene length and reported in Reads per kilobases of exon model per million mapped reads 

RPKM). 

2.5. Transmission electron microscopy 

Fungal stock cultures were maintained on a malt extract medium. Autoclaved dialysis membranes 

were placed on the surface of malt agar in 9 cm Petri dishes, in preparation for cryofixation. Small 

portions of actively growing mycelia were transferred to the dialysis membrane surfaces and the 

cultures were grown at 25 °C. After 15 days, the membrane surfaces were well colonized. The 

hyphal monolayers and supporting membranes were trimmed with a razor blade to approximately 

4 × 5 mm, and left undisturbed on the agar surface for 45–60 min. Samples were then quick-frozen 

by plunging them into liquid nitrogen-cooled propane (Hoch, 1986 and Howard and O’Donnell, 

1987) and subsequently processed for freeze substitution and embedding, as described in McDaniel 

and Roberson (2000). After cryofixation, the samples were freeze substituted at −85 °C in 1% 

glutaraldehyde (Electron Microscopy Sciences, Washington, PA, USA) and 1% tannic acid in 
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anhydrous acetone for 72 h. The samples were then rinsed thoroughly with three changes of 

anhydrous acetone at −85 °C for a total of 45 min. The cells were transferred into 1% OsO4 in 

acetone for 1 h at −85 °C before being slowly warmed, over 2 h, to −20 °C, then to 4 °C over an 

additional 2 h, and finally to room temperature over 1 h. The specimens were washed with three 

changes of anhydrous acetone for a total of 45 min, slowly infiltrated with Epon–Araldite resin and 

flat embedded between two Teflon coated glass slides (Hoch, 1986 and Howard and O’Donnell, 

1987). Well-frozen hyphae were selected and prepared for thin sectioning according to Howard and 

O’Donnell (1987). Ultra thin sections were post-stained for 5 min in 2% uranyl acetate in 50% 

ethanol and 5 min in Reynolds lead citrate (Reynolds, 1963). The sections were examined under a 

Philips CM10 transmission electron microscope in the Laboratory of Advanced Microscopy, 

Department of Plant Biology at the University of Turin. 

3. Results 

In this study we explored the genome sequence of T. melanosporum to search for orthologs. The 

components that are present and conserved in the T. melanosporum genome are described hereafter 

together with those that are either absent or highly diverged ( Tables 1S and 2S). 

3.1. Rho-type GTPases as key regulators of polarity 

Rho GTPases are key regulators of the actin cytoskeleton; it has been shown that they influence an 

amazing variety of cellular processes that are crucial for coordinated morphogenesis. S. cerevisiae 

contains one Cdc42 and five Rho proteins, from Rho1 to Rho5 ( Borkovich et al., 

2004 and Etienne-Manneville and Hall, 2002; Van Aelst and D’Souza-Schorey, 1997). The T. 

melanosporum genome contains one Cdc42 and four Rho proteins, while Rho5 (present in yeast) is 

absent, as in other filamentous fungi, such as A. nidulans and N. crassa ( Borkovich et al., 2004, 

Etienne-Manneville and Hall, 2002, Harris, 2006 and Harris et al., 2009). The T. melanosporum 

genome contains a clear ortholog of Rac, which is conserved in filamentous fungi and higher 

eukaryotes, but is missing in all sequenced yeasts (S. cerevisiae, Saccharomyces pombe, and 

Candida albicans). Rac proteins can play a crucial role in actin-dependent polarized growth and 

division, and its absence can inhibit the switch to filamentous growth in dimorphic fungi ( Boyce et 

al., 2003). 

Furthermore, a new Rho1-like protein (GSTUM00001369001) was found in the T. melanosporum 

genome. The protein has a clear Rho domain and shows a high similarity with the Rho1 cluster, as 

shown in the phylogenetic tree ( Fig. 1). A comparison of Rho genes and/or deduced amino acid 

sequences was performed (Fig. 1S). The T. melanosporum Rho proteins are around 200 residues 

long, which is in the range of almost all small GTPases. The alignment allowed us to highlight the 

key conserved regions involved in nucleotide and Mg ion binding, which are conserved in all Rho 

GTPases, the Rho insert and the characteristic CAAX motif immediately preceded by a polybasic 

domain rich in lysine residues (K). 
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Fig. 1. Phylogenetic relationships between the filamentous ascomycetes (Aspergillus fumigatus, 

Aspergillus nidulans, Candida albicans, Magnaporthe grisea, Neurospora crassa, Saccharomyces 

cerevisiae, Schizosaccharomyces pombe, Tuber borchii), Basidiomycetes (Ustilago maydis), and 

Metazoa (Drosophila melanogaster) based on amino acid deduced sequences derived from mRNA 

(*) and protein sequences (^) for representative RHO family. The unrooted tree was constructed 

using the neighbor-joining method. Sequences were manually annotated and analyzed using Clustal 

W. The percentages at the nodes represent levels of bootstrap support from 1000 resampled 

datasets. GenBank accession numbers are given in parentheses. The T. melanosporum sequences 

analyzed in this study are highlighted. 

http://www.sciencedirect.com/science/article/pii/S1087184510002367#gr1


A phylogenetic analysis of the T. melanosporum Rho proteins and the orthologous fungal sequences 

encoding for Rho1, Rho2, Rho3, Rac and Cdc42 was performed and the results show that T. 

melanosporum Rho proteins fall into distinct subgroups ( Fig. 1). Bootstrap analysis supported the 

monophyletic clusters obtained within the Rho subfamilies. However Rho5 from Saccharomyces 

resulted radiale from the other Rho groups without apparent phylogenetic relatives. This 

observation is in agreement with the phylogenetic affiliation of Rho-related proteins described by 

Rivero et al., 2001. Members of the Rho2, Rho3, Cdc42 and Rac groups are evolutionarily 

conserved, while the available sequences constituting the Rho4 class are quite strongly diverged, 

making it difficult to predict potential functions. 

3.2. Exocyst complex proteins, polarisome and Spitzenkörper elements 

The exocyst complex comprises eight proteins: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70 and 

Exo84, involved in the docking of exocytic vesicles to the growing tip of the cellular membrane, an 

indispensable event for hyphal-cell growth, in that it permits the deposition of the material 

necessary for cell wall synthesis and plasma membrane extension (TerBush et al., 1996 and Ram et 

al., 2002). The T. melanosporum genome contains coding information on all the components of the 

exocyst complex, as well as two copies of Sec10 and Sec15 each. 

The polarisome was identified in S. cerevisiae as a 12S multiprotein complex that contains Spa2, 

Pea2, Bni1 and Bud6/Aip3 and it was proposed that this complex promotes polarized 

morphogenesis through the regulation of the actin cytoskeleton and signaling pathways. The signal 

from different Rho proteins in fact converges on the Bni1 formin, a polarisome component, to 

control actin organization ( Sheu et al., 1998). The components Bni1, Spa2, Bud6-Aip3 of the 

polarisome complex were found in the T. melanosporum genome, while Pea2 (present in S. 

cerevisiae, Pichia stipitis) was absent, as in Ustilago maydis ( Banuett et al., 2008), A. nidulans ( 

Harris and Momany, 2004) and N. crassa ( Borkovich et al., 2004). 

Recent work on different filamentous fungi indicates that formin, myosin light chain, Sec4 (a Rab 

GTPase), BemA (homolog of S. cerevisiae Bem1), TeaA and TeaR (homologs of S. pombe end cell 

markers Tea1 and Mod5, respectively), and two chitin synthases are components of the 

Spitzenkörper ( Crampin et al., 2005, Leeder and Turner, 2008 and Riquelme et al., 2007). The T. 

melanosporum genome contains coding information on all of these components except TeaR 

(Mod5). 

3.3. Actin cytoskeleton and polar growth proteins 

The actin cytoskeleton in S. cerevisiae is involved in polarized secretion. Actin cables serve as 

tracks on which vesicles move on myosin motors towards active growth and secretion sites (the bud 

tip during polarized growth and the neck region during cytokinesis) ( Pruyne and Bretscher, 2000a, 

Pruyne and Bretscher, 2000b and Xiang and Plamann, 2003). 

The T. melanosporum genome did not offer any major surprises at the structural components of the 

cytoskeleton. Homologs of proteins, such as actin binding protein (Abp1), coronin (Crn1), profilin 

(Pfn), and an assembly of cortical actin cytoskeleton proteins (Sla1 and Sla2), fimbrin (Fim), Pan1, 

some of which are actin patch components, were found in the T. melanosporum genome. One 

formin was found, while 2 and 3 are present in budding and fission yeast, respectively ( Pruyne et 

al., 2002). A Las1-like protein with no match to S. cerevisiae Las1 was also found. This protein is 

highly variable compared to the Las1-like one detected in N. crassa, B. cinerea and M. grisea. 
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Ten actin-related proteins (Arps) were found in S. cerevisiae, and T. melanosporum encodes all of 

them except Arp7, Arp9 and Arp10 which are involved in chromatin remodeling. Genes that code 

for the Arp2–Arp3 complex ( Winter et al., 1999), which are responsible for the nucleation of 

branched actin structures, are present in the T. melanosporum genome. One gene coding for the 

Bee1/Las17 (homolog of the mammalian Wiskott–Aldrich syndrome protein WASP), a down-

stream effector of Cdc42 and activator of Arp2/3, was identified, while Vrp1 (homolog of 

mammalian Wip, Wiskott–Aldrich syndrome protein interacting-protein) was absent. In S. 

cerevisiae, Arp2/3, Bee1/Las17 localize to actin patches and form an actin cap during early bud 

morphogenesis ( Pruyne and Bretscher, 2000a and Pruyne and Bretscher, 2000b). 

The S. cerevisiae genome contains two tropomyosin isoforms, Tpm1 and Tpm2. These proteins 

stabilize actin cables ( Pruyne and Bretscher, 2000a and Pruyne and Bretscher, 2000b). The T. 

melanosporum genome contains a single tropomyosin gene, and the putative protein is similar to S. 

cerevisiae Tpm2, but its function in T. melanosporum still has to be determined. 

Another component of the actin cytoskeleton is represented by myosins. Myosins are actin-

dependent molecular motors that play important roles in contraction, cell motility, and organelle 

transport. As in other filamentous fungi, the T. melanosporum genome contains coding information 

on 4 myosins with a single member in each of the three classes found in S. cerevisiae: a class I 

TmelMyo5), class II (TmelMyhI), a class V (TmelMyo2) ( Tables 1S and 2S, Hodge and Cope, 

2000). 

In addition, T. melanosporum encodes two unconventional myosin domains linked to a chitin 

synthase domain, class XVII (TmelChs8 and TmelChs6). 

A protein, called RmsA in Aspergillus niger, with a central role in several processes, such as 

polarization of actin at the hyphal tip, general metabolism, viability and stress resistance, was also 

found and annotated in T. melanosporum. 

3.4. Genes involved in the tubulin cytoskeleton 

The hyphal growth requires that a large amount of material is transported towards the hyphal tips 

for cell wall synthesis. Intracellular transport in budding yeast is exclusively myosin dependent. 

Filamentous fungi, like higher eukaryotes, instead utilize a combination of actin- and microtubule-

based systems. Analyses of fungal genomes indicate that, in filamentous fungi, there are at least 10 

distinct kinesins, which are the motor proteins that move along microtubule cables to support 

several cellular functions, such as mitosis, meiosis and transport of cargo (Schoch et al., 

2003 and Rischitor et al., 2004; Steinberg, 2007c). 

An examination of the T. melanosporum genome indicates that it encodes 10 distinct kinesins, 3 of 

which (Tmelklp1and Tmelklp2 both members of the kinesin-3 family and Tmelklp4 belonging to 

the kinesin-4 family) are likely to be involved in vesicle and organelle transport and DNA binding. 

Tmelklp4, in particular, shows a 47% identity with N. fischeri, which is related to members of the 

chromosome-associated kinesin KIF4. The proteins of this group seem to perform a variety of 

functions, and have been implicated in neuronal organelle transport and chromosome segregation 

during mitosis. The KIF4 group within the kinesin-4 family is conserved in higher plants, animals 

and in filamentous fungi, but it is not found in unicellular yeasts ( Schoch et al., 2003). 

The blocked in mitosis C protein (Bimc, kinesin-5 family) and kinesin-like protein A (KlpA, 

kinesin-14 family) kinesins have been found to play roles in the mitosis of filamentous fungi and 

many other organisms. These proteins have also been identified in the T. melanosporum genome, 
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suggesting the existence of conservation in functions among filamentous fungi, higher eukaryotes 

and yeasts. However, in yeast, the BimC family members, Kip1p and Cin8p (kinesin-5 family), 

have at least partly overlapping functions, whereas in T. melanosporum only one mitotic kinesin is 

present. In addition to the Kip2p and Kip3p yeast ortholog genes (TmelKlp5, kinesin-7 family, and 

Tmelklp3 kinesin-8 family), the T. melanosporum genome contains two other kinesins (TmelKlp6 

kinesin-10 family and TmelKlp7 kinesin-6 family). These genes are not present in yeast and are 

thought to be involved in the organization of the mitotic spindle and the chromosome alignment in 

the metaphase of animals and filamentous fungi. Their existence suggests different spindle 

formation mechanisms and functions between filamentous fungi, such as T. melanosporum, and 

unicellular yeasts. 

The T. melanosporum genome was also analyzed to find dyneins, the motor proteins that convert 

the chemical energy contained in ATP into mechanical movement energy; they mediate various 

biological processes, including nuclear migration and organelle transport, by moving on 

microtubules while associated with various cellular structures. One heavy chain, one intermediate 

chain, one light intermediate chain and three distinct light chains dyneins, seven dynactin subunits, 

two components of the Lis1-complex (Lis1, Ro11, Borkovich et al., 2004) involved in dynein 

regulation and one NudC, were found in the T. melanospourm genome. After examination of the T. 

melanosporum genome, it was highlighted that the dynein/dynactin subunits of T. melanosporum 

are more similar to those of metazoans than to those of S. cerevisiae. Some of the dynein/dynactin 

subunits present in filamentous fungi and metazoans are not detectable in either S. cerevisiae or S. 

pombe: Dlic, Dlc, p150 Glued – nip100 (Tmel-ro3, dynamitin/p50, p62, p27, p25, and Tctex) ( 

Schroer, 2004). Dyn3 from S. cerevisiae is also absent. 

Tubulin genes have been also found in the T. melanosporum genome. Three groups have been 

identified: two genes encoding the tubulin α-chain and two genes encoding the tubulin β-chain, in 

addition to a tubulin γ-chain gene, exactly as in S. cerevisiae, A. nidulans and other filamentous 

fungi ( Oakley, 2004). Likewise, one tubulin α-chain, two tubulin β-chain and one γ-chain genes are 

present in U. maydis ( Banuett et al., 2008). 

Septins are cytoskeletal GTPase proteins which were first discovered in S. cerevisiae and are also 

present in animals. They are considered key players in cellular organization processes and have 

been shown to be important in fungi, for example, during septum formation and branching. Five 

candidate septins were identified in T. melanosporum data bank. All the five groups present in other 

fungi seem to be represented in the T. melanosporum with one member in each group ( Fig. 2). 

Another candidate (GSTUMT00012098001) was found in the T. melanosporum genome. However, 

only a small piece of the septin domain is present (position from 400 to 446) and the position is 

separate from the other sequences ( Fig. 2, Table 2S). 
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Fig. 2. Phylogenetic relationships between the yeasts (Saccharomyces cerevisiae and 

Schizosaccaromyces pombe) and the filamentous Ascomycetes (Aspergillus fumigatus, Aspergillus 

nidulans) based on amino acid deduced sequences for the representative septin family. The 

sequences were aligned using Muscle (EBi-EMBL) and the unrooted tree was constructed using the 

neighbor-joining method. The tree resulting from a 1000× Bootstrap neighbor-joining analysis. The 

T. melanosporum sequences analyzed in this study have been highlighted. 

http://www.sciencedirect.com/science/article/pii/S1087184510002367#gr2


3.5. Other genes 

Genes coding for proteins that are potentially related to maintaining the organelle and hyphal 

morphology were found in T. melanosporum and are reported in Table 1S. TmelCOG6 is a 

component of the conserved oligomeric Golgi complex, which is composed of eight different 

subunits and is required for normal Golgi morphology and localization, while TmelDopA, a protein 

belonging to the Dopey family, is required for a correct cell morphology and spatio-temporal 

organization of the multicellular structures in the filamentous fungus A. nidulans. S. cerevisiae 

Dop1 is essential for viability and affects cellular morphogenesis. The BolA-like protein family 

consists of the morphoprotein BolA from E. coli and its various homologs. Over expression of this 

protein in E. coli causes a round morphology and may be involved in switching the cell between 

elongation and septation systems during cell division. BolA is also induced by stress during the 

early stages of growth and may play a general role in stress response. 

3.6. Microscopic analyses of truffle hyphal tips 

In order to understand whether the conserved molecular machinery that emerges from the genome 

analysis could be confirmed at the cellular level, the T. melanosporum mycelium was subjected to 

an ultrastructural analysis. Quick-frozen and freeze substituted hyphae of T. melanosporum showed 

good ultrastructural preservation when observed under an electron microscope. Near median 

longitudinal thin sections of hyphae revealed details of the hyphal tip organization ( Fig. 3). 

Vesicles of diverse sizes and with an electron-dense content were present as separate entities or 

with a more organized pattern (Fig. 3, arrows). A closely packed grouping of vesicles was present 

just beneath the apical plasma membrane and it was identified as a component of the Spitzenkörper. 

The vesicles were often closely associated to the apical plasma membrane, suggesting important 

secretion events (Fig. 3). As expected, the microtubules extended into the apical dome and were 

generally positioned parallel to the long axis of the cell (Fig. 3). The microtubules were present both 

in the periphery and central cytoplasmic regions. 
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Fig. 3. Transmission electron micrographs of the hyphal tip cells of Tuber melanosporum. (a) Near 

median section through cell showing microtubules (MT), vesicles (V), mitochondrion (M), plasma 

membrane (PM), cell wall with transparent inner electron layer (*) and outer layer (arrowhead) 

with loose electron dense matrix. (b) Apical dome region of the hyphal tip. The morphological 

diversity of the vesicles (V) and clustering of the microvesicles and what appears to be filasomes 

should be noted. Microtubules (MT) are seen extending to the apical plasma membrane. (c and d) 

Vesicles observed in close association with the apical plasma membrane. (e) Inflated cisternae with 

electron dense lumen of Golgi equivalent. (f) A sub apical hyphal region with elongated 

mitochondria (M), multivesicolar body is also evident (arrowhead), cisterna of Golgi equivalents 

(arrows), and microtubules (MT). (g) Microtubules (MT) were often seen in close proximaty to 

mitochondria (M). Bars correspond to: 0.5 μm in figs. a–b–f–g and 0.2 μm in figs. c–d–e. 

A clear ultrastructural equivalent of the Spitzenkörper as a dense, spheroidal cluster of vesicles, and 

cytoskeletal components as found at the tips of growing hyphae in members of the Ascomycota and 

Basidiomycota (Roberson et al., 2009), was not clearly observed. Spitzenkörpers are not common in 

other phyla and to date they have been described in only one other fungal phylum, 

Blastocladiomycota, and specifically in Allomyces macrogynus ( Vargas et al., 1993) (Fig. 3). The 

vesicle organization seen in Fig. 3 is similar to that characteristically seen in members of the 

Mucorales (Zygomycota) (Roberson et al., 2009). However, the cluster of vesicles appears to be 

more organized in some sections suggesting greater similarities with conventional Spitzenkörpers 

(Fig. 3). Further observations are required to fully clarify the tip organization for T. melanosporum. 
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Mitochondria represented the most common organelle present in the region below the tip (Fig. 3); 

they were sometimes associated with microtubules and inflated tubular membranous systems with 

electron-dense contents. These inflated membranous systems may represent portions of the Golgi 

apparatus, which appeared as inflated tubular and often fenestrated cisternae that varied in shape 

from cup-like to planar bodies. Small vesicles, probably secretory vesicles, with electron dense 

luminal contents, were observed in close proximity to the Golgi apparatus. Multivesicular bodies, 

which are also components of the endomembrane system, were present at the periphery of the 

hyphae. 

3.7. Gene expression profiling 

The expression of the gene encoding enzymes involved in hyphal growth was analyzed using 

whole-genome expression oligoarrays (Martin et al., 2010). Transcript profiling was carried out 

comparing free-living mycelium with ectomycorrhizal root tips and fruiting bodies. Transcripts 

were detected for all the 149 genes under study, indicating that all the encoding protein-genes 

involved in the hyphal growth machinery being considered were expressed, regardless of the fungal 

life cycle (Fig. 4, Table 3S). 
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Fig. 4.  Hypothesised interaction map for proteins involved in Cdc42 – regulated processes and in 

other development pathways in Tuber melanosporum compared to Saccharomyces cerevisiae. Only 

some of the annotated genes were considered in this scheme. The interaction map has been 

designed according to Drees et al., 2001. The proteins present in both the species are in black, the 

proteins present in T. melanosporum and absent in yeast are in red, the Saccharomyces cerevisiae 

proteins not found in T. melanosporum are in green. The relative expression level of several T. 

melanosporum Mel28 genes involved in hyphal growth in ectomycorrhizal root tips of T. 

melanosporum (blue bars) and in fruiting bodies (red bars) are shown in the histograms. The 

transcription level of each gene was measured using NimbleGen whole-genome expression 

oligoarrays ( Martin et al., 2010) and compared to the level in free-living mycelium. *p-value < 0.05. 

The genes circled in blue are part of the cell polarity/morphogenesis; the genes circled in red are 

involved in the actin cytoskeleton; the genes circled in pink are polarisome and Spitzenkörper 

components; the genes circled in yellow are exocyst complex components. 
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In general, only some genes showed a moderate gene expression variation during the examined 

three life cycle stages; the genes whose expression variation was not statistically significant are not 

shown in the figure. 

A slight expression variation of some groups of genes coding for proteins involved in transduction 

signaling, linked to cell polarity and morphogenesis, was observed in the symbiotic phase: the 

GAPs (GTPases activating proteins) Bem 1, 2, 3, Rga1, regulators of Cdc42; Pra1, probably linked 

to organelle biosynthesis; the small GTPase Rsr1, upstream from the Cdc42 pathway; Cla4, an 

effector of Cdc42. Furthermore, important genes coding proteins involved in inositolphosphate 

signaling and cortical actin functioning are up-regulated in the ectomycorrhizal stage: IP6 and IP7 

kinases (TmelVip1, TmelVip2) ( Mulugu et al., 2007). 

Interestingly, a moderate major expression of TmelSec3 and TmelSec15a (twofold and fivefold 

respectively) – components of the exocyst complex – was observed in the fruitbody stage. Some 

polarisome components also showed a particular expression pattern: in particular TmelAip3 shows a 

threefold higher expression in the fructification stage, while TmelSpa2 showed higher expression in 

the mycelial phase ( Fig. 4, Table 3S). 

A moderate up-regulation of some genes involved in the cytoskeleton structure was observed in the 

fructification stage (Arp complex, TmelCro, TmelDec1). Another gene that showed a discrete up-

regulation in the fruitbody and mycelium stage was TmelRmsA, whose product is important for the 

hyphal growth rate ( Meyer et al., 2009; data not shown). 

4. Discussion 

Our knowledge of the molecular components involved in polarized growth in S. cerevisiae, S. 

pombe or A. nidulans and other filamentous fungi has improved rapidly over the past few years ( 

Banuett et al., 2008; Borkovich et al., 2004; Fischer et al., 2008; Seiler and Plamann, 2003, 

Steinberg, 2007a and Virag and Harris, 2006). Nevertheless, the comparison of mechanisms in 

different organisms shows that our understanding of the processes involved is not yet complete. 

Moreover, gaining a better understanding of the process in filamentous fungi would allow us to 

identify new proteins that determine polarized growth. 

A detailed investigation of the T. melanosporum genome ( Martin et al., 2010) shows that 149 genes 

known in literature for their involvement in the hyphal growth of yeasts and filamentous or 

pathogenic fungi can also be identified and functionally grouped in the genome of a mycorrhizal 

fungus (Table 1S). The data set demonstrates the important level of conservation of these genes, 

through fungal genomes, regardless of their nutritional strategies. 

Most of the components of the S. cerevisiae machinery for cell polarity and cell morphogenesis, and 

the cytoskeleton proved to be conserved in the truffle genome. Conversely, some proteins that are 

responsible for the budding yeast morphology were missing (Bem4, Bnr1, Dyn3, Gic1, Gic2, 

Mod5, Msb3, Msb4, Myo2, Myo3, Pea2, Rho5, Sph1, Tpm2, Zds2; Fig. 4). Hence, several aspects 

still need to be highlighted in order to understand which proteins play the role of the lacking ones 

played in yeast. 

Furthermore, the comparison between the T. melanosporum gene set and the genome of the so far 

sequenced filamentous fungi, has confirmed the presence of filamentous growth-specific genes, 

with some exceptions (p24 dynactin, Tables 1S and 2S). In particular, cytoplasmic dynein is 

required in mammals for numerous intracellular transport processes; however, in S. cerevisiae, the 
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dynein function is restricted to ensuring proper nuclear movement and distribution between mother 

and daughter cells during cell division. Consistent with this restricted role, S. cerevisiae dynein and 

dynactin subunits are highly diverged, compared to those of higher eukaryotes, while in filamentous 

fungi the higher complexity of dynein complexes reflects the preponderance of filamentous growth. 

The lack of some components of dynein-dinactin complexes in the T. melanosporum genome, 

compared to other filamentous fungi, might suggest a link to the observed slower hyphal elongation 

rate in T. melanosporum ( Mamoun and Olivier, 1991). Two copies of the Sec10 and Sec15 genes 

from the exocyst complex, and a cofilin-like gene have been detected in the T. melanosporum 

genome. This enhanced complexity of exocyst elements might suggest an important exocytosis 

activity. The presence of two copies of these genes could be explained by a gene duplication event 

mediated by trasposable elements, even though no transposable elements were found for about 3000 

nucleotides up or down-stream from the ORF regions. Furthermore, the gene expression analysis 

did not highlight a subfunctionalization for these genes/proteins in the different stages or tissues of 

the organism. The exocyst complex has recently been identified as an effector for five small 

GTPases, including Bem1, Sec4, Rho1, Rho3, Cdc42 but little is known about their role in 

polarized growth and cytokinesis ( TerBush et al., 1996 and France et al., 2006). For these reasons, 

further studies are necessary to fully understand their role in T. melanosporum and other 

filamentous fungi, and the reason behind their duplication. 

The endocytosis and secretion mechanisms in the filamentous fungus A. nidulans can also involve a 

class I myosin, which is also present in T. melanosporum genome (TmelMyoA5) ( Pruyne and 

Bretscher, 2000a and Pruyne and Bretscher, 2000b). Moreover, on the basis of their similarity with 

yeast and several vertebrate systems (Hodge and Cope, 2000), two other T. melanporum myosins 

(TmelMyh1, class II; TmelMyo2, class V) are probably involved in cytokinesis and organelle 

transport, respectively. However, there is a lacking of experimental data for T. melanosporum and 

other filamentous fungi. In addition, T. melanosporum encodes two unconventional myosin 

domains linked to a chitin synthase domain (TmelChs8 and TmelChs6). These proteins have been 

identified in other filamentous fungi, but they are absent in yeasts, and probably have a function in 

cell wall synthesis and the maintenance of cell wall integrity. Myosin–chitin synthases contain an 

amino-terminal myosin motor-like domain and a chitin synthase domain at the carboxy terminal. 

The function of the motor domain is unknown, but it might involve delivering the myosin chitin 

synthase-attached vesicles to the growth region ( Treitschke et al., 2010). Myosin CHSs may play a 

role in a secretion pathway that is essential for the virulence of fungal pathogens. In U. maydis and 

Fusarium oxysporum, myosin CHSs are critically involved in (and required for) polarized growth 

during plant infection ( Weber et al., 2006 and Martín-Urdíroz et al., 2008). In U. maydis, it has 

been suggested that the Myosin Motor Domain (MMD) of ChsV supports exocytosis but not the 

long-range delivery of transport vesicles ( Treitschke et al., 2010). 

A comparison of the T. melanosporum set of the master regulators of polarity Rho GTPases with 

their budding yeast orthologs was necessary to elucidate the similarities and differences that could 

contribute to the different morphologies of the two organisms. The phylogenetic analysis of T. 

melanosporum Rho proteins and the orthologous fungal sequences encoding Rho1, Rho2, Rho3, 

Rac and Cdc42 showed that they are evolutionarily conserved, with the exception of Rho4, which 

diverged with a great extent, making it difficult to predict the potential functions. Despite the high 

degree of similarity among the members of this family of proteins, little is known about their 

function in T. melanosporum, or in other filamentous fungi. As far as septins are concerned no 

significant evidence was detected; there was support for five groups of septins with orthology 

between kingdoms. Ascomycetes, with completed genome sequences, showed from five to eight 

septins while Basidiomycetes have four or five ( Pan et al., 2007). All the fungi have single Group 1 

and Group 2 septins, while some fungi had multiple Group 3, Group 4 and Group 5 septins. For 

example, ascomycetous yeasts had three Group 3 septin paralogs. Pan et al. (2007) have reported 
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that U. maydis and Eremothecium gossypii are the only two filamentous fungi that are missing in 

the Group 5 septin. 

4.1. Hyphal growth machinery and its transcriptional regulation 

The T. melanosporum mycelium has symbiotic capacities, since the hyphae may establish contact 

with the host roots, producing a novel repertoire of morphologies, like aggregated and/or 

labyrinthine hyphae ( Martin et al., 2007). Comparable morphogenetic events have been described 

in fruitbodies where hyphae associate to produce pseudotissues that surround the reproductive 

structures. We wondered whether the molecular machinery that allows cell polarity and hyphal 

growth associated with conventional hyphal tip morphology was subjected to a differential gene 

expression during the life cycle transitions. 

Transcriptional profiles have demonstrated a moderate but significant gene expression variation 

between the hyphal growth and the symbiotic structure and fruitbody formation, suggesting an 

involvement of the growth molecular machinery in hyphal morphogenesis during transition from 

the hyphal growth to the symbiotic (mantle and Hartig net) and reproductive structures (spores, 

fruiting bodies). 

In particular, an up-regulation has been observed in the symbiotic stage of TmelRsr1, a small 

GTPase that interprets the spatial landmark (axial or bipolar) and recruits another GTPase module 

that consists of the Rho GTPase Cdc42, its guanine nucleotide exchange factor (GEF) Cdc24, and 

its GTPase-activating proteins (GAPs) Bem3 and Rga1/2 ( Casamayor and Snyder, 2002, Park and 

Bi, 2007, Pruyne and Bretscher, 2000a and Pruyne and Bretscher, 2000b). This module in turn 

recruits the actin cytoskeleton, which polarizes secretion towards the site of growth. 

AgRsr1 (Bud1 in yeast) is required in A. gossypii for actin organization, for normal hyphal growth 

and branching, and for positioning of the polarisome component AgSpa2 ( Bauer et al., 

2004 and Knechtle et al., 2003) which interacts with numerous proteins, such as those involved in 

the protein kinase pathway, actin-interacting proteins and with the other polarisome components ( 

Sheu et al., 1998, Shih et al., 2005 and Virag and Harris, 2006b). The Agrsr1 null mutant is 

characterized by false branch initiation, pausing and re initiation of growth which results in bulges 

along the hypha, and the transient appearance and disappearance of AgSpa2, which correlates with 

phases of pausing and growth (Bauer et al., 2004). In C. albicans, another fungus closely related to 

S. cerevisiae, CaRsr1/Bud1 defects result in random budding in yeast cells and in defects in germ 

tube emergence ( Yaar et al., 1997). 

The activation of the pathway involved in hyphal branching is in agreement with the increased 

branching observed during ectomycorrhizae development (as shown in T. borchii by Menotta et al., 

2004). Experimental interaction studies will be conducted in order to understand the activation 

pathway responsible for branching. 

Another gene that shows an interesting marked major expression (sevenfold) during the symbiotic 

phase is TmelPra1. This encodes a prenylated Rab acceptor that exhibits a Gdi displacement factor 

(GDF) activity for endosomal Rab–Gdi complexes in vitro ( Martincic et al., 1997). Rab GTPases 

are proteins localized to organelles of the secretory and endocytic pathways (Lazar et al., 1997). 

They are involved in organelle biogenesis and the maintenance of membrane-bound organelles and 

play a role in the regulation of intra organelle trafficking and intra cellular organelle transport. It has 

been reported that Pra1 protein has a large COOH-terminal hydrophobic region, and it binds 

multiple Rabs (Calero et al., 2002) and that catalyzes the dissociation of endosomal Rab–Gdi 

complexes in S. cerevisiae ( Sivars et al., 2003). In S. cerevisiae, the overexpression of Yip3p 
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(Pra1p) inhibits cellular growth, and it can play a crucial role in vesicles trafficking ( Geng et al., 

2005). 

The high expression of TmelPra1 in the ectomycorrhizal stage can lead to the activation of Rab 

proteins, inducing several mechanisms that are guided by the Rab proteins involved in organelle 

biogenesis and vesicle intracellular trafficking. 

It has been reported (Meyer et al., 2009 and Meyer et al., 2010) that very early events that precede 

hyphal branching indicate the interruption of hyphal elongation, and set the stage for the subsequent 

formation of two new centers of polarization growth. Hence, the Spitzenkorper detaches from the 

apex and disintegrates. Subsequently, an actin re-polarization and increased cell wall biosynthesis 

occur. The necessity of establishing two new vesicles centers during branch formation may explain 

the high degree of expression of TmelPra1 in the symbiotic phase. 

Furthermore, the apical branching event is accompanied by the synthesis of phospholipid signaling 

molecules (P and IP, in that genes that encode the correspondent enzymes) in A. niger ( Meyer et 

al., 2009). This evidence is in agreement with the higher expression of IP6 and IP7 kinases 

(TmelVip1, TmelVip2) in the ectomycorrhizal stage in T. melanosporum. The inositol 

pyrophosphate (PP-IP) produced by Vip1 in fact represents a high-energy signaling molecule that is 

involved in such diverse processes as vacuole biogenesis, stress response, DNA repair, cell wall 

synthesis, telomere maintenance, and phosphate homeostasis. 

The gene expression analyses highlighted an interesting increased expression of some genes during 

the fruitbody stage. Since the hyphae in the fruitbodies associate to produce pseudotissues that 

surround the reproductive structures, an intense hyphal growth rate and secretive activity is 

expected. 

The genes that show a higher activity, more or less marked, at this stage are involved in the hyphal 

growth elongation rate and in the secretory processes aimed at the deposition of material to the 

apex. Among them TmelCog6 encodes a component of the Golgi complex, that is involved in the 

refining of neosynthesized proteins designated to the secretion. Analogously, the increased 

secretion in the fructification stage is reflected in an increased expression of some components of 

the exocyst complex, in particular TmelSec15a, which is involved in secretive processes. In A. 

nidulans, SecC, a homolog of S. cerevisiae Sec3, accumulates at the plasma membrane anterior to 

the Spitzenkörper and may function as a landmark for secretion ( Taheri-Talesh et al., 2008). 

Moreover, a higher expression of TmelAip3, a polarisome component and of TmelBoi1A ( Kasai et 

al., 2004 and Knechtle et al., 2006) can reflect a higher rate of hyphal growth. 

Interestingly, TmelRmsA is more expressed in the fructification and in the vegetative stage. This 

gene (ortholog of Avo1p/Sin1) encodes for a protein that is a component of a kinase complex, 

named Torc2, which is conserved throughout the eukaryotic evolution and which mediates spatial 

control of cell growth by regulation of the actin cytoskeleton ( Wang and Roberts, 2005). This 

complex has been shown to be essential for the determination of cell polarity in S. cerevisiae, 

Dictyostelium discoideum and mammalian cells ( Jacinto and Lorberg, 2008). In S. pombe, it 

interacts with the mitogen-activated protein (MAP) kinase Sty1 ( Wilkinson et al., 1999) and 

induces pseudohyphal growth in stress conditions. It has recently been shown that it is also present 

and functional in the filamentous fungus A. niger ( Meyer et al., 2009 and Meyer et al., 2010). In A. 

niger, it has been shown that a single point mutation in the RmsA gene is responsible for defective 

hyphal growth, suggesting its involvement in the elongation rate of the parent hypha prior to the 

appearance of apical branches ( Reynaga-Peña and Bartnicki-Garcia, 2005 and Meyer et al., 2009). 

The RmsA gene is also present in the T. melanosporum genome and the alignment with the ortholog 
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proteins of yeast and A. niger has allowed us to confirm the presence of the conserved domains. A 

higher gene expression of TmelRmsA in the fruitbody stage might reflect that a higher elongation 

rate is required to envelop the reproductive structures. 

Despite the presence of almost all the genes involved in filamentous hyphal growth, a clear 

ultrastructural equivalent of the Spitzenkörper, which is expected in Asco- and Basidiomycetes 

(Harris et al., 2005 and Roberson et al., 2009), has yet to be identified within the T. melanosporum 

hyphal tip. We predict that the slower hyphal extension rates that are characteristic of T. 

melanosporum lead to a small number of secretory vesicles associated with the Spitzenkörper and 

that these vesicles are not as well organized as they are in other faster growing hyphal species. 

The molecular and cellular analyses have raised many questions regarding fungal morphogenesis: 

as a perspective, it would be interesting to gain a better understanding of the role of the identified 

hyphal growth genes in plant/fungal interaction context. 
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Appendix A. Supplementary material 
 

 

Supplementary Figure 1.  Figure 1S: Multiple alignment of Rho proteins from T. melanosporum and 

representative species. Sequences were aligned with ClustalX and the output file was subsequently 

edited manually. The dashes indicate gaps introduced for optimal alignment purposes. Residues 

identical or similar in at least four sequences are boxed in black or grey, respectively. Secondary 

structure elements are indicated above the aligned sequences. 
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