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Abstract

A generating function approach to the calculation of spectral band shapes including Duschin-

sky and Herzberg-Teller effects is proposed and applied to the computation of the free-base

chlorin Q absorption bands, using molecular geometries and normal vibrations obtained by

density functional theory computations. The results clearly show that non-Condon effects

can significantly affect the relative intensities of the weakest Qy and, to a lesser extent, Qx

bands. The proposed approach is extremely powerful and can be used in the cases where the

molecular size makes the direct calculation of Franck-Condon integrals by recurrence formulae

prohibitive.
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Introduction

The calculation and analysis of absorption and emission band shapes of molecules from first prin-

ciples is a fundamental problem of modern physical chemistry, with a widespread range of ap-

plications, extending from the understanding of the basic aspects of light-matter interaction to

the development of organic dyes with tailored spectroscopic properties.1–4 Apart from the known

difficulties in obtaining equilibrium geometries and normal modes of excited states, a problem

significantly relieved by the development of time-dependent density functional theory (TDDFT),

the direct calculation of Franck-Condon factors, the most common approach for computing band

shapes,5–16 can pose problems for large size molecules, being based on the use of multi-indices

recurrence relations, which require the storage of a large number of FC integrals.

Several ways out have been considered. Algorithms based either on a judicious way of choos-

ing normal mode excitations,13,14,17,18 or on dividing the space of vibrational states into subgroups,

each of them having a defined number of degrees of freedom allowed to be excited,18 have been

proposed but, although very useful, they do not provide a general solution. The recently proposed

perturbative approach allows to avoid the storage of large sequences of integrals, but the calcula-

tion of higher order contributions, needed in the case of strong mode mixing, are difficult to carry

out.12 Criteria for finding out contributions to the total spectral intensity from specific subsets of

FC factors, without explicitly calculating the integrals have also been provided,17 but the approach

does not guarantee that a converged spectrum can actually be computed, since the number of FC

factors can still be too large for a direct calculation.

A different approach is provided by the theory of the generating function (GF) developed by

Lax, Kubo and Toyozawa in the fifties.19,20 Mukamel21 was among the first authors to realize

that such an approach is to be preferred in band shape simulations of complex molecular systems,

since it bypasses the calculation of FC integrals, being therefore particularly suitable for large size

molecules. However the GF approach also poses problems for interpretative purposes, because

it does not directly provide the deconvolution of the spectrum into its vibrational components,

which has to be done by a posteriori analysis. Other authors have developed such an approach in
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the past, although not explicitly tailored to the computation of molecular electronic spectra22,23.

More recently Pollak and collaborators24,25 have introduced an alternative procedure to develop

closed expressions for the generating function in the case of Franck-Condon transtions, and Shuai

and coworkers26–29 have extended Pollak methodology, including Herzberg-Teller effects. Along

that line, Berger and Huh have recently developed a cumulant expansion of the lineshape func-

tion including both Duschinsky and non-Condon effects30. All these contributions could be very

important for the development of new methods and new functionals tailored to the description

of electronic excited states of molecules, inasmuch they provide easy to handle and very reliable

methods for using band shapes as benchmarks.31

In this paper we discuss an approach in which the overall spectral lineshape is computed using

the GF technique and the deconvolution into its components, where needed, is provided a posteri-

ori by a direct calculation of FC integrals. The method include both displacements and Duschinsky

rotations of normal modes, and Herzberg-Teller (HT) effects. The methodology has been applied

to the calculation and analysis of the Qx and Qy bands of the free-base chlorin, the precursor of

chlorophylls, a large chemical system with 114 vibrational normal modes.

Generating function theory of lineshapes

In this section we shortly illustrate the GF approach, deriving an easy to handle formulation which

includes Herzberg-Teller contribution.

The cross section for a radiative transition from a manifold of thermally populated vibronic

states
∣∣vg

〉
to a manifold of vibronic states

∣∣ve
〉

is:

I(ω,T ) = (h̄Zv)
−1 ∑

α=x,y,z
∑

vg,ve

e−βE(vg)|
〈
vg
∣∣µge

α
∣∣ve

〉
|2δ (ω +E(vg)−E(ve)−∆Eeg) (1)

where E(vg) and E(ve) are the energies of the vibrational states in the initial and final electronic

state,
∣∣g〉 and

∣∣e〉, ∆Eeg is the electronic energy difference, µge
α is the α-th component of the electric

transition dipole moment, and β = 1/kT , with k the Boltzmann constant.
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Including first order HT effects, the electric transition dipole moment can be expressed as a

power expansion with respect to the normal coordinates of the initial state Qg about the equilibrium

position:

µge
α = µ◦ge

α +∑
j

(
∂ µge

α
∂Qg j

)
0

Qg j α = x,y,z (2)

The Qg vector is related to his counterpart of the final electronic state Qe by the Duschinsky

transformation:

Qe = JQg +K (3)

where J is the normal mode rotation matrix and K the displacement vector.32

Following the seminal works of Lax19 and Kubo,33 the spectral distribution I(ω,T ) can be

conveniently rewritten as:

I(ω,T ) = 2π
∫ +∞

−∞
e−i(ω+∆Eeg)τ f (τ)dτ (4)

where

f (τ) = Tr{µe−iτHe µe−(β−iτ)Hg}/Tr{e−βHg} (5)

and Hg,He are the Hamiltonian operators of the initial (ground) and final (excited) electronic states

respectively. If the latter ones are expressed in harmonic approximation, the correlation function

f (τ) assumes the following closed form (see Supporting Information):33

f (τ) = [detΦ]−1/2 exp
[
−∆̃Tg(Tg +Te)

−1Te∆
]
·gµ(τ) (6)
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where

Tg = ωg tanh[(β − iτ)ωg/2]; Te = J̃ωe tanh(iτωe/2)J (7)

Cg = ωg/ tanh[(β − iτ)ωg/2]; Ce = J̃ωe/ tanh(iτωe/2)J (8)

Φ = [2sinh(βωg/2)]−2ω−1
g sinh[(β − iτ)ωg](Tg +Te)(Cg +Ce)ω−1

e sinh(iτωe) (9)

∆ =−J̃K; (10)

and

gµ(τ) = |µ◦|2 +2∑
α,r

µ◦α µ(1)
αr Dr + ∑

α,r,s
µ(1)

αr Arsµ
(1)
αs (11)

with

µ(1)
αr =

(
∂ µge

α
∂Qgr

)
0

(12)

X = Te +Tg; Y = Ce +Cg (13)

Dr = (X−1Te∆)r; Ars = (X−1−Y−1)rs/2+DrDs. (14)

It is easy to see that in the above formulation the molecular lineshape has three contributions: i)

pure FC transitions, ii) pure HT transitions and iii) transitions deriving from FC-HT intereferences,

ruling out the possibility to separately analyse the contribution of the two type of transitions to the

overall spectrum.

It is worth mentioning that Shuai and co-workers have recently derived an equivalent expres-

sion for molecular lineshapes based on the GF formalism, but using a different mathematical ap-

proach.28 Our methodology differs from their one inasmuch it requires the inversion of N ×N

matrices.

The GF formulation is very efficient for numerical treatments because the calculation of I(ω ,T )
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can be recast into a discrete Fourier transform problem

I(ω,T ) =
1
N

N

∑
k=1

w(τk) f (τk;T )eiωτk (15)

where w(τ) is a proper window function, necessary to avoid boundary and spectral leakage prob-

lems.34

The appealing feature of the GF approach is in its ability to easily handle the calculation of the

temperature dependence of electronic band shapes, since, at variance with the direct evaluation of

Eq. (1), its computational cost is independent of the value of the temperature. As main limitation,

the method does not provide the assignment of the simulated spectrum in terms of its vibronic

components, requiring for that an a posteriori analysis.

Computational details

The ground state equilibrium geometry and the normal modes of vibration of the free-base chlo-

rin have been computed using density functional theory (DFT), employing the hybrid functional

PBE0 and the standard 6-31+G(d,p) basis set. This functional has already proved to provide good

results for the excited state geometry and transition moment derivative of porphin.18 Equilibrium

geometries and normal modes of the two lowest excited states have been calculated by the time-

dependent density functional theory (TD-DFT) approach, using the same functional and basis set

of the ground state calculation.

The derivatives of the transiton dipole moment µge
α at the equilibrium position, with respect to

the Cartesian coordinates ξi = (xi,yi,zi) of the i-th atom, have been calculated by the second order

formula:

(
∂ µge

α
∂ξi

)
ξ ◦
≈ (µge

α (ξ ◦i +∆ξi)−µge
α (ξ ◦i −∆ξi))/(2∆ξi), α = x,y,z, (16)
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and then projected along the normal coordinates:

(
∂ µge

α
∂Qk

)
0
= ∑

i
(M−1/2L )ik

(
∂ µge

α
∂ξi

)
ξ ◦
, α = x,y,z, (17)

where M is the usual 3N×3N diagonal matrix of atomic masses, and L is the 3N×3N−6 matrix

of normal vibrations expressed in terms of mass-weighted Cartesian displacements.

All calculations have been peformed using the Gaussian09 software package35; the differen-

tiation step ∆ξ has been set to 0.05 Å. Noteworthy, the transition moment at the 6N displaced

geometries can be obtained by Gaussian09 as a by-product of the numerical calculation of the

excited state Hessian matrix.

The Duschinsky matrix J and the displacement vector K have been computed using the stan-

dard procedure.10,32,36–38 The generating function approach has been implemented in a locally

modified version of the MolFC software39.

The spectral lineshapes have been calculated using 213 time steps, achieving a final resolution

of 1 cm−1; a four-term Blackman-Harris window has been used. The assignment of the vibronic

peaks to a specific transition is performed by first computing the entire lineshape, then searching

for possible vibronic states in the selected energy range, and computing the associated FC integrals.

A back-tracking algorithm40 has been implemented for the state search.

Vibronic structure of the Q bands of free-base chlorin

Chlorin, Figure 1, is the porphin derivative obtained by the addition of two hydrogen atoms across

one of the two semi-isolated double bonds of a pyrrole ring without an inner proton. The chemical

reduction does not substantially alter the characteristic spectral pattern: as for porphin there are

two absorptions, each of them constituted by two electronic transitions with different transition

moment polarization: the Soret band in the blue region of the spectrum and the so called Q band

in the red one.41,42 However, in chlorins the intensities of the two absorptions is considerably

different from porphin ones, the Soret band is considerably less intense, whereas the intensity of
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the Q band is markedly increased, being responsible for the green colors which characterize many

of chlorins. Noteworthy, the intensity decrease of the Soret band is almost equally balanced by the

increase in absorption of the Q band, supporting the hypothesis that Gouterman’s four orbital model

also apply to chlorin.43 DFT computations supports the above hypothesis. The computed energy

transitions for the lowest energy excited states, together with oscillator strengths, are reported in

Table 1 for both the gas-phase and the n-octane solution. Denoting by H and L the HOMO and

LUMO, respectively, the Qx and Qy transition are given by:

Qx = -0.37 (H−1→ L+1)+0.61(H→ L)

Qy = 0.55 (H−1→ L)+0.45(H→ L+1)

in full agreement with Gouterman’s four orbital model.41 As concerns the two Soret bands, DFT

computations predict the involvement of a lowest energy π orbital HOMO-2, fully localized on the

unsaturated pyrrole ring:

Bx = 0.56 (H−1→ L+1)+0.34(H→ L)+0.27(H−2→ L+1)

By = -0.32 (H−1→ L)+0.38(H→ L+1)+0.51(H−2→ L)

The computed transition energies, reported in are slightly overestimated, ca. 0.2-0.3 eV for the

Q bands and 0.4 eV for the Soret ones, . The use of a larger, triple zeta basis set, with diffuse

functions on both hydrogen and heavier atoms, does not significantly improve the results.

The room temperature absorption spectrum of free-base chlorin (H2Ch) in n-octane shows in

the visible region a comparatively stronger band at 636 nm (15710 cm−1), which is generally

agreed to be the origin of the lowest energy Qx transition, and a second much weaker absorption

band, located at ca. 490 nm. While the former transition exhibits a well resolved vibrational struc-

ture, extending up to 570 nm (17500 cm−1), the latter one appears almost as a broad unstructured

absorption, consisting of only two peaks at 20400 and 20800 cm−1, neither of which, on the ba-

sis of magnetic circular dichroism and fluorescence polarization spectra,44,45 is believed to be the

origin of the Qy transition.
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DFT computations predict that the equilibrium geometries of the first two excited states are

both very similar to the ground state one. The root mean square variation of the whole set of

inter-atomic distances is 0.023 Å for both Qx (S1) and Qy (S2) with respect to the ground state,

with maximum differences of 0.080 Å for the former and 0.077 Å for the latter. In both excited

states C2v symmetry is lost: the molecule is not planar, due to an out of plane distortion of the

saturated C-C bonds, in which the two carbon atoms are shifted up and down the molecular plane.

Since the distortion in one or the opposite direction are symmetric, both electronic states exhibit a

double well potential energy profile along that coordinate, the barrier to inversion being so small

(0.002 kcal/mol at PBE0/6-31+G(d,p) level) that the effect of the double well potential can be

safely neglected.

The parameters which mostly determine the intensities of the vibronic transitions, i.e. normal

mode equilibrium position displacements and the first derivatives of the electric dipole transition

moments with respect to the normal coordinates, have been reported in Table 2 and Table 3, for the

most active normal modes of the Qx← S0 and Qy← S0 transitions, respectively.

The high resolution absorption spectrum of chlorin has been recorded as an excitation spectrum

in n-octane crystal at 5 K.46 The excitation spectrum in the region of the Qx transition consists of

a very narrow origin, with three clearcut peaks at 154, 288 and 305 cm−1 from the origin. Then,

there are other clearly distinguishable peaks at 711, 870 and 939 cm−1, followed by a weak but

extended vibronic activity in the range 1200-1600 cm−1. The spectrum computed by considering

only FC factors and that including both FC and HT contributions are reported in Figure 2 and

Figure 3, respectively. First of all, there are not significant HT contributions for the Qx band,

the FC and FCHT spectra are quite similar, as expected because the computed transition dipole

moment at the S0 equilibrium geometry is 1.26 a.u. while the transition moment derivatives with

respect to normal modes are, on average, at least one order of magnitude lower, see Table 2. Only

for a couple of vibrational modes, one at 1417 cm−1 (mode 82) the other at 1625 cm−1(mode

90), the transition dipole moment derivatives are comparatively higher (see Table 2), the latter one,

being not a displaced mode, exhibits a distinguishable HT activity toghether with other vibrations
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arount 1400 cm−1(see Figure 3).

The computed spectrum qualitatively reproduce all the main features of the observed one, a

quantitative comparison being ruled out by the fact that during excitation free-base chlorin is

burned into its photoproducts, so that experimental intensities have to be taken as approximate

ones.46 The most intense transition is predicted to be at ca. 20 cm−1, because of the significantly

displacement of the lowest frequency mode. Next, two narrow progressions in the range 130-210

cm−1 and 270-410, with two most intense peaks at 315 and 331 cm−1, and other weak pro-

gressions, peaked at 750 and 1100, 1410, and 1650 cm−1, are predicted, in qualitative agreement

with the observed spectrum. Lastly, a comparatively stronger progression, due to the significant

displacement of the mode at 3077 cm−1, is predicted at 3125 cm−1, a region in which the experi-

mental spectrum also shows some vibronic activity.

Almost all the signals observed in the Qx region of the excitation spectrum can be traced back

to vibrational modes whose equilibrium positions is displaced in the transition, see Table 2, and

HT effects contributes to changing their relative intensities. The most displaced mode is the lowest

frequency one; short progressions due to excitation of this mode are observed in the computed

spectrum for all the higher frequency signals. Furthermore, displaced modes are predicted at ap-

proximately 150, 300, 730 cm−1, regions in which even the room temperature spectrum shows

weak peaks, and at 1000, 1300, and 1450 cm−1, where the low temperature spectrum shows an

important vibronic activity.

For the Qy transition the situation is quite different since the number of displaced modes is simi-

lar to that of the Qx transition, but the HT terms become extremely important. Inspection of Table 3

shows that there are three modes whose equilibrium position is significantly displaced, the lowest

energy mode, which is fully localized on the unsaturated pyrrole ring, an expansion/compression

mode involving the whole macrocycle, and an in plane bending mode involving the exocyclic hy-

drogen atoms, predicted at 305 cm−1 and 1387 cm−1, respectively. By contrast, strong normal

mode rotations are present. By considering only mixing coefficient above 0.4, most of the modes

in the range 850-1650 cm−1 are strongly mixed each other. As well known Duschinsky mixing
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is a second order effect,12 which can be important in regulating interference effects between FC

and FCHT contributions, without giving rise to a direct vibronic activity. Accordingly, although

DFT computations predict a significant mode mixing, the computed Franck-Condon spectrum of

the Qy← S0 transition of chlorin at T=5 K, shown in Figure 4, is dominated by the 0-0 band, apart

that sharp transition, there are a few weak transitions, due to the excitation of the displaced modes

at 305 cm−1, 1078 and 1387 cm−1, see Table 3.

Herzberg-Teller effects completely change the shape of the computed spectrum, compare Fig-

ure 4 and Figure 5, as can be easily understood by inspecting Table 3, where the derivatives of the

electric transition dipole moment (only the y component) with respect to normal coordinates are

reported. The computed transition dipole moment for the Qy← S0 transition is 0.275 a.u., about

one order of magnitude less than that for the Qx ← S0 transition (1.26 a.u.). There are sixteen

modes for which the HT factor is larger than the zero order transition dipole moment by one order

of magnitude, and three of them exhibit HT factors larger by two order of magnitudes. The latter

modes fall in the region 700-850 cm−1, where the spectrum computed including HT effects shows

comparatively intense signals.

The high resolution excitation spectrum recorded in n-octane at 7 K is very broad in the Qy

region, 20000-21500 cm−1 and consists of several well resolved peaks superposed to a contin-

uum. The broadness and the erratic structure of the excitation spectrum has made it difficult the

assignments of the observed peaks; the origin of the Qy band has not been assigned and the possi-

ble involvement of a low lying nπ∗ transition has also been hypothesized to explain some spectral

features.46 By contrast, the computed spectrum at 7 K, consists of isolated peaks, which, even by

convolution using large bandwidths, do not give rise to a broad continuum. Since the Qx region

of the spectrum is well reproduced by computations, testifying about the accuracy of the adopted

computational level, we are led to suppose that the broadness of the absorption band is due to

electronic couplings with the Soret band, as also suggested by the observed oscillator strengths of

chlorin, indicating intensity borrowing from the B to the Q band.43 Notwithstanding, leaving apart

the relative intensities of the spectral signals, which of course cannot be reproduced by a model
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which does not include interactions with other electronic states, the computed HT spectrum allows

for a tentative assignment of the most important spectral features of the Qy transition. The fre-

quency distribution of the computed peaks lead us to assign the series of peaks computed at about

100 cm−1 to the broad signal observed at 3664 cm−1 above the 0-0 Qx transition (for the sake of

simplicity we use the same scheme adopted by Huang et al46, who refers all wavenumbers to the

0-0 Qx transition). Then the broad signal peaked at 4037 can be reasonably assigned to the two

groups of transitions predicted around 300 and 400 cm−1, the former due to the displaced mode

at 306 cm−1, the latter to the combination of the same displaced mode and of the HT active mode

predicted at ca. 97 cm−1, see Figure 5. Then the signal peaked at 4361, 4563, and 4687 cm−1 can

be assigned to the excitation of the modes predicted at 695, 786, and 864 cm−1, which exhibit the

highest HT activity. The last series of comparatively less intense peaks falling between 4986 and

5189 cm−1 can be assigned to the displaced modes 62, 80, and 83, predicted at 1078, 1387, and

1439 cm−1. Of course a deeper analysis, including electronic couplings with the Soret band, is

necessary for a better assessment of the Qy transition.

Conclusions

The high resolution excitation spectrum of free-base chlorin in the visible region of the spectrum

has been analyzed by using a generating function approach together with TD-DFT calculations of

the equilibrium geometries and the normal modes of vibrations of the ground electronic state and

of the two lowest excited ones.

TD-DFT computations fully support the four orbital model of Gouterman, no nπ∗ excitation

being predicted either for the Qx←S0 transition or for the Qy←S0 one. The computed spectrum

reproduce all the main features of the observed one. The Qx←S0 band shape is dominated by FC

factors, Herzberg-Teller contributions can be safely neglected, but for a few peaks, involving the

modes at 1417 and 1625 cm−1, which exhibit a comparatively higher HT activity that FC one. By

contrast, HT effects are significant in the Qy←S0 transition, for which the number of modes show-
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ing a detectable HT activity is higher than those having significant FC factors. The broadness of

the Qy←S0 transition is not well reproduced by calculation, being therefore tentatively attributed

to an electronic couplings with the Soret bands.

The GF approach has proven to be a very powerful method for the simulation of spectral shapes

of large molecules, being able to handle the whole set of normal coordinates, furthermore its

computational cost is independent of the value of the temperature, allowing for an easy simulation

the temperature dependence of electronic band shapes and radiationless transition rates.37 The

main limitation of the GF approach, i.e. the lack of the assignment of the simulated spectrum in

terms of its vibronic components, can be overcome by an a posteriori analysis of the peaks of

interest.

Supporting Information Available

Mathematical derivation of the working equation Eq. (6). This material is available free of charge

via the Internet at http://pubs.acs.org/.
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Table 1: Wavelengths (nm) and oscillator strength of the low-lying electronic states of chlorin
at PBE0/6-31+G(d,p) (PBE0/6-311++G**) level of computation.

gas phase n-Octane
State λ o. s. λ o. s. λ a

exp
Qx 537 (541) 0.089 (0.094) 543 (547) 0.149 (0.155) 636
Qy 488 (491) 0.005 (0.004) 490 (493) 0.009 (0.007) ≥ 490
Bx 354 (356) 0.639 (0.628) 367 (368) 0.951 (0.931) 398
By 351 (353) 0.419 (0.411) 367 (367) 1.237 (1.233) 384

a from Ref.46.
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Table 2: Wavenumbers of the ground (ωg) and excited state (ωe), equilibrium position dis-
placements (dimensionless), and first derivatives of the electric dipole transition moment
(a.u./(Å a.m.u.1/2)) for the most active (|K| > 0.1) normal modes in the Qx ← S0 transition
of chlorin. Normal modes with |µ(1)

x,y | > 0.5, are also reported, the µz component is always
negligible.

Mode ωe ωg K µ(1)
x µ(1)

y
1 24.96 21.19 0.397 0.00 0.01
8 151.73 153.26 -0.149 0.00 0.08
12 291.10 290.19 0.126 0.00 -0.05
14 304.76 312.96 -0.306 0.00 0.00
32 728.42 727.37 -0.191 0.10 0.00
35 735.81 749.66 -0.122 0.00 0.00
51 901.13 919.85 0.104 0.00 0.00
53 978.76 994.04 -0.160 0.00 -0.31
74 1281.51 1278.70 -0.002 0.63 0.00
75 1297.44 1288.38 -0.110 0.00 -0.08
79 1391.05 1406.72 0.000 0.00 -0.64
80 1398.48 1416.91 0.059 -0.67 0.00
82 1416.58 1435.11 0.137 1.15 0.00
83 1450.82 1451.81 0.043 -0.81 0.00
85 1455.84 1469.39 0.000 0.57 0.00
90 1527.82 1546.56 0.000 0.00 -0.54
93 1579.91 1601.38 0.082 0.00 -0.56
96 1625.10 1673.43 0.000 1.98 0.00
97 1640.78 1675.00 -0.087 0.00 -1.00
100 3077.55 3090.49 -0.111 0.00 -0.07
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Table 3: Wavenumbers of the ground (ωg) and excited state (ωe), equilibrium position dis-
placements (dimensionless), and first derivatives of the electric dipole transition moment
(a.u./(Å a.m.u.1/2)) for the most active (|K|> 0.1) normal modes in the Qy← S0 transition of
chlorin. Normal modes with |µ(1)

x |> 2, are also reported. µ(1)
y,z components are negligible.

Mode ωe ωg K µ(1)
x

1 23.81 21.19 0.340 -0.03
8 150.53 153.26 0.187 0.02
14 305.96 312.96 0.488 0.10
62 1078.81 1077.32 -0.099 -1.04
80 1387.43 1416.91 -0.192 -1.76
81 1417.53 1421.67 -0.120 0.30
83 1439.36 1451.81 0.101 1.14
86 1451.72 1481.91 -0.108 -0.87
98 1668.11 1699.38 0.132 -0.04
2 47.42 50.90 0.000 4.73
4 96.44 97.03 0.000 -4.90
5 97.84 97.35 0.000 13.01
6 122.80 129.19 0.000 7.08
13 301.95 308.07 0.000 -13.05
26 650.77 659.35 0.000 8.42
28 670.43 697.73 0.000 9.81
31 695.98 713.91 0.000 -26.11
33 731.21 735.59 0.000 -4.77
35 734.65 749.66 0.000 6.26
39 773.18 790.27 0.000 10.95
40 786.52 790.59 0.000 32.80
44 821.47 831.02 0.000 -13.26
47 848.47 875.00 0.000 12.88
48 864.09 884.65 0.000 37.71
102 3127.69 3133.89 0.000 -2.68
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Figure 1: Lowest energy tautomer of free-base chlorin.
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Figure 2: Computed FC spectrum for the Qx ← S0 transition of free-base chlorin at 5K. Inset:
magnification of the region 600-1800 cm−1.
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Figure 3: Computed FCHT spectrum for the Qx← S0 transition of chlorin at 5K. Inset: magnifi-
cation of the region 600-1800 cm−1.
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Figure 4: Computed FC spectrum for the Qy ← S0 transition of free-base chlorin at 7K. Inset:
magnification of the region 600-1800 cm−1.
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Figure 5: Computed FCHT spectrum for the Qy← S0 transition of free-base chlorin at 7K.
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