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Abstract An approach to the calculation of Franck-
Condon factors in curvilinear coordinates is outlined.
The approach is based on Gribov’s concept of curvilin-
ear normal coordinates, which allows for an easy ex-
tension of Duschinsky’s transformation to the case of
curvilinear coordinates, and on the power series expan-
sion of the kinetic energy operator. Its usefulness in
the case of molecules undergoing large displacements
of their equilibrium nuclear configurations upon exci-
tation is then demonstrated by an application to the
vibrational structure of the photoelectron spectrum of
ammonia, whose equilibrium geometry is known to un-
dergo a large shift upon photoionization, changing from
pyramidal to planar.

Keywords Franck Condon factors · curvilinear
coordinates · photoelectron spectra

Introduction

Ammonia is a very interesting molecule for spectro-
scopists and theoreticians. In the ground electronic
state it exhibits two distinct equilibrium nuclear config-
urations which, by interconverting each other along the
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large amplitude motion, the so called umbrella motion,
cause the splitting of the rovibrational energy levels.
Furthermore, ammonia undergoes significantly large dis-
placements of its equilibrium nuclear geometry upon ex-
citation and photoionization, which reflect into broad
absorption bands, with a well resolved vibrational and
rovibrational structure, as shown in Fig. 1 for the 2A

′′
1 ←

X̃1A1 transition. The analyses of both the vibrational
pattern [1] and of the rotational fine structure of some
vibronic peaks [2] of the UV absorption band occurring
at 217 nm have led to the conclusion that the excited
electronic state has a planar equilibrium nuclear config-
uration, belonging to D3h point group. A very similar
vibrational pattern has also been observed in the lower
energy region of its photoelectron spectrum, leading to
the conclusion that even the 2A1 ionic state is planar
[3–5].

Both the splitting of the energy levels of the rovi-
brational spectrum and the well resolved vibrational
pattern of the electronic and photoelectronic spectra
provide important experimental data for theoreticians
involved in the application of sophisticated theoretical
models for treating strong anharmonic effects [6,7], and
in the development of efficient methodologies for the
calculations of spectroscopic band shapes, i.e. Franck-
Condon (FC) factors. It is indeed well known that in
the case an electronic transition takes place between
two electronic states exhibiting a large displacement of
their equilibrium positions the calculation of the FC
factors may pose problems, especially when the Carte-
sian representation of normal modes and the harmonic
approximation are adopted [8,9]. In fact, in rectilinear
coordinates a large displacement along a bending co-
ordinate always implies a motion along the two bond
distances forming the valence angle, Fig. 2, so that on
carrying out the projection of the normal modes of one
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Fig. 1 The lowest energy band of the photoelectron spec-
trum of ammonia, reproduced with permission from Rabalais
J.W. et al, (1973) J Chem Phys 58:3370

electronic state onto those of the other – the Duschin-
sky transformation – those stretching modes come out
to be significantly displaced, causing the appearance in
the computed spectrum of several vibrational progres-
sions, due to excitations of both the large amplitude
and the stretching modes, which have no counterparts
in the observed spectrum [9,10].

The most successful attempts to rationalize the pho-
toelectron spectrum of ammonia through the computa-
tion of Franck-Condon factors was based on procedures
which overcome Duschinsky’s transformation, avoiding
the use of normal modes of both electronic states.[11–
14] Recently, a satisfying reproduction of the photo-
electron spectrum of ammonia, based on Duschinsky’s
transformation and the Cartesian representation of the
normal coordinates, has been obtained. However, a
high order polynomial, describing the strong anhar-
monic couplings between the symmetric stretching mode
and the umbrella motion, was necessary for correct-
ing the several progressions caused by the spurious dis-
placement of the symmetric stretching mode predicted
by Duschinsky transformation in the Cartesian repre-
sentation of the normal modes [10]. The adopted method-
ology is therefore quite cumbersome, requiring the knowl-
edge of the potential energy of NH+

3 on a large grid
of nuclear coordinates. In the present work, with the
aim of setting up an easier and general procedure to
compute the FC factors for floppy molecules, those un-
dergoing large displacements of their equilibrium posi-
tions upon light excitation, we afford the computation
of the ammonia photoelectron spectrum by using inter-
nal curvilinear coordinates, with the hope of relieving
the high computational effort of computing anharmonic
potential energy terms.

Theoretical Approach

Curvilinear internal coordinates such as bond elonga-
tions (stretching) or variations of valence angles (bend-
ing) are potentially the best suited to treat molecu-
lar vibrations. Fig. 2 gives the classical description of
the bending motion for an AB2 linear molecule [15],
both in linearized internal coordinates (a) and in true
curvilinear internal coordinates (b). In curvilinear co-
ordinates nuclei are allowed to follow curved trajecto-
ries, whereas linearized internal coordinates force nu-
clear motion along straight lines, defined by the projec-
tions of the exact internal coordinates onto fixed Carte-
sian axes. A linearized internal coordinate sj coincides
with the curvilinear one Sj in the limit of infinitesi-
mal displacements of atoms from their equilibrium po-
sitions. Therefore in the range of validity of the har-
monic approximation there is no distinction between
linear and curvilinear coordinates, but when large dis-
placements are involved, such as those observed in go-
ing from the equilibrium geometry of NH3 to that of
NH+

3 , the two sets of coordinates are no longer equiv-
alent. In the example of Fig. 2, the motion along a
linearized bending coordinate involves an elongation of
the A-B bond. Even if the potential energy were strictly
quadratic in curvilinear coordinates, anharmonic terms
would be needed in the rectilinear representation to ob-
tain an equivalent description of the nuclear motion.[16]
Of course, both the rectilinear and the curvilinear rep-
resentation must lead to identical results when an exact
treatment of the vibrational problem is carried out, but
they yield different results at lower orders of approxi-
mation. In particular, the expression of the potential
energy in curvilinear coordinates is generally simpler
than that obtained by adopting rectilinear coordinates
[15–17], but the linear momentum and the kinetic en-
ergy operators in curvilinear coordinates are much more
involved [18–21].

(a) (b)

s2a s1= s3 = 0, S2a S1= S3= 0,

B B B B

AA

Fig. 2 Representations of the bending motion (at arbitrary
low speed) in rectilinear (a) and curvilinear (b) coordinates
for the linear molecule AB2. S denotes curvilinear coordi-
nates, s rectilinear ones.
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The quantum vibrational Hamiltonian in curvilinear
coordinate is [18]:

ĤS = −ℏ2

2
G1/4

(
∂

∂S

)T
G−1/2 G

(
∂

∂S

)
G1/4 + V, (1)

where S is the column vector of curvilinear internal co-
ordinates, V is the potential energy, G and G are the
metric matrix and its determinant, respectively, both
depending on S. The subscript S in the operator indi-
cates normalization with respect to the S coordinates
and the superscript T denotes transposition. By per-
forming the differentiation, Eq. 1 can be rewritten as:

ĤS = −ℏ2

2

∑
j,k

∂

∂Sj
Gjk(S)

∂

∂Sk
+ V (S) + Vkin(S), (2)

where

Vkin =
5ℏ2

32G2

∑
j,k

Gjk
∂G

∂Sj

∂G

∂Sk

− ℏ2

8G

∑
j,k

∂Gjk

∂Sj

∂G

∂Sk
− ℏ2

8G

∑
j,k

Gjk
∂2G

∂Sj∂Sk
(3)

collects the terms of the kinetic energy operator which
depend only on coordinates, thus acting like a potential
energy term. The easiest way of taking properly into
account the dependence of Gjk on S coordinates is that
of expanding them into a power series. That yields:

ĤS = −ℏ2

2

∑
j,k

G0
jk

∂2

∂Sj∂Sk
+
∑
j,k,ℓ

G′
jkℓ

∂

∂Sj
Sℓ

∂

∂Sk

+
1

2

∑
j,k,ℓ,m

G′′
jkℓm

∂

∂Sj
SℓSm

∂

∂Sk
+ . . .

+ Vkin (4)

where:

G0
jk = Gjk(0) (5)

G′
jkℓ =

(
∂Gjk

∂Sℓ

)
0

; (6)

G′′
jkℓm =

(
∂ 2Gjk

∂Sℓ∂Sm

)
0

. (7)

The Hamiltonian in eq. 4 can be cast into a more
manageable form by introducing curvilinear normal co-
ordinates [18,22,23]. First, the so-called linearized in-
ternal coordinates, which are linear combinations of
Cartesian displacements [24], are introduced:

s = B0σ, (8)

where s and σ are the column vectors of the linearized
internal and the Cartesian displacement coordinates,

respectively, and B0 is the Jacobian matrix whose ele-
ments depend only on the equilibrium geometry of the
molecule. Normal coordinates Q are linear combina-
tions of linearized internal coordinates:

s = L0Q, (9)

in which:

L0 =
∂s

∂Q
= B0M

−1/2L, (10)

where M is the diagonal matrix of atomic masses and L
is the normalized matrix of normal modes in Cartesian
coordinates, whose elements are not a function of the
coordinates. The linear relationship between Q and
s ensures that the elements of matrix of the effective
masses:

G0 = L0L
T
0 , (11)

do not depend on the coordinates s.
Then, “curvilinear normal coordinates” Q̄, defined

as:

S = L0Q̄, (12)

are introduced so that the vibrational Hamiltonian (2)
assumes the form:

Ĥ = −ℏ2

2

∑
r,s

∂

∂Q̄r
grs

∂

∂Q̄s
+ V (Q̄) + Vkin(Q̄), (13)

where:

g = RTGR; R =
(
L−1
0

)T
. (14)

In the limit of infinitesimal vibrational amplitudes,
curvilinear internal coordinates coincide with linearized
ones therefore (Eq.s 9 and 12) curvilinear normal coor-
dinates coincide with the linear ones. This in turn im-
plies that: i) g0, i.e. the metric matrix over curvilinear
normal coordinates at the zero order of expansion, co-
incides with the unit matrix and ii) anharmonic terms
vanish in the potential energy expressed as a function of
Q̄. A power series expansion provides a kinetic energy
operator of the form:

T̂ = −ℏ2

2

∑
r

∂2

∂Q̄2
r

+∆T̂ + Vkin. (15)

∆T̂ and Vkin being the kinetic energy terms originated
by the curvilinear nature of Q̄:

∆T̂

(
Q̄,

∂

∂Q̄

)
= −ℏ2

2

(∑
r,s,t

g′rst
∂

∂Q̄r
Q̄t

∂

∂Q̄s

+
1

2

∑
r,s,t,u

g′′rstu
∂

∂Q̄r
Q̄tQ̄u

∂

∂Q̄s
+ . . .

)
,

(16)
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where, as before (eq. 6):[25]

g′rst =

(
∂grs
∂Q̄t

)
0

=
∑
j,k,l

G′
jkℓRjrRksL

0
ℓt; etc. (17)

and a potential energy in the form:

V = 2π2c2
∑
r

ν̃2r Q̄
2
r +∆V (Q̄) (18)

where ∆V collects the anharmonic terms of the poten-
tial and ν̃r are the harmonic frequencies expressed as
wavenumbers. Combining Eq.s 15 and 18, the vibra-
tional Hamiltonian may be written as:

Ĥ = Ĥ0 +∆T̂ +∆V + Vkin, (19)

where and Ĥ0 is the harmonic Hamiltonian:

Ĥ0 = −ℏ2

2

∑
r

∂

∂Q̄2
r

+ 2π2c2
∑
r

ν̃2r Q̄
2
r, (20)

Approximate eigenfunctions of Ĥ can be obtained by
means of perturbation theory [26] or variational method,
using the basis set of the eigenfunctions of Ĥ0.

Q̄ and S are linearly related by eq. (12), this is the
key-point for the extension of Duschinsky’s transforma-
tion [27] in curvilinear normal coordinates. Remind-
ing that internal coordinates S represent displacements
from equilibrium positions:

S = ζ − ζ0 = L0Q̄ (21)

and denoting with a prime one of the electronic states
involved in the transition:

ζ = ζ0 + L0Q̄ (22)
ζ = ζ′

0 + L′
0Q̄

′. (23)

By equating (22) and (23) and eliminating Q̄:

Q̄ = L−1
0 L′

0Q̄
′ + L−1

0

(
ζ′
0 − ζ0

)
= JQ̄′ +K

(24)

Results

Several sets of internal coordinates for describing the
vibrational motion of ammonia in both the neutral and
the cationic 2A1 state have been proposed [7,15,28–30].
We have adopted the set suggested by Hoy et al. [15]
and developed by Handy and coworkers [7], which, al-
though not orthogonal in the whole range of nuclear
coordinates as that of ref. [30], offers the advantage
that the elements of the G matrix are already tab-
ulated. It consists of the three N-H stretching coor-
dinates (r1, r2, r3), the angle (β) that each N-H bond

forms with the trisector, i.e. the axis forming the same
angle with each bond vector, see Fig. 3, and any two of
the three valence angles (αi) obtained by projecting am-
monia onto a plane perpendicular to the trisector. The
adopted set of coordinate is shown in Fig. 3. Instead of

b

b

b

N

M

a2

H

H

H

2

3

1

a3

1
r

3
r

2
r Fig. 3 Trisector axis (NM) at any nuclear configuration of

ammonia: M belongs to the H1-H2-H3 plane and is chosen in
such a way that ∠H1NM = ∠H2NM = ∠H3NM = β

r1, r2, r3 we have used the symmetry adapted stretch-
ing coordinates R1, R2, R3 defined as:

R1 =
1√
3
(r1 + r2 + r3)

R2 =
1√
6
(2r1 − r2 − r3)

R3 =
1√
2
(r2 − r3)

(25)

Harmonic vibrational frequencies and equilibrium
geometries of the ground electronic states of NH3 and
NH+

3 , computed at fourth order of the Møller Ples-
set perturbation theory, including single, double and
quadruple excitations, in conjunction with the
6-311++G(3df,3pd) basis set (hereafter MP4/TZ) are
given in Table 1.

Table 1 Predicteda (MP4/TZ) bond lengths (req, Å), va-
lence angles (αeq, degrees) and harmonic frequencies of the
two symmetric mode (ν̃i as wavenumbers, cm−1) of NH3

(1A1) and NH+
3 (2A1).

req αeq ν̃ b
1 ν̃2

1A1 1.0114 106.76 3523.94 1056.72
2A1 1.0203 120.00 3423.10 876.67

aFrom ref. [10]. bHerzberg notation, ν̃1(2) refers
to symmetric stretching(bending).

The B0 and G matrices have been evaluated fol-
lowing the procedure given in ref. [7] and transformed
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according to Eq. (25). Analytical expressions of the ele-
ments of G are given in the Appendix. The coefficients
g′rst and g′′rstu appearing in the ∆T̂ term are reported
in Table 2.

Table 2 First (u.m.a−1/2Å−1) and second order
(u.m.a−1Å−2) power expansion non null coefficients of
the kinetic energy of the 2A1 electronic state of cationic
ammonia

g′212 0.1217
g′221 −1.1273
g′′2222 −0.1372
g′′2211 1.9063
g′′1212 −0.0686
g′′1122 0.1668

The potential energy surface of NH+
3 as a function

of Q̄1 and Q̄2, the symmetric stretching and bending
curvilinear normal coordinates, respectively, has been
calculated at the MP4/TZ level of approximation, over
a grid of 431 points, covering the range req − 0.05 Å ≤
r ≤ req + 0.05 Å and αeq − 10◦ ≤ α ≤ αeq + 10◦.
The potential energy has been fitted by different poly-
nomials, one without coupling terms between the Q̄1

and the Q̄2 coordinates, the others with coupling terms
having maximum order 4 in each variable. Since in
the D3h point group the totally symmetric stretching
and the out of plane bending belong to different irre-
ducible representations, all the terms in odd powers of
Q̄2 are zero. The coefficients of the fitted polynomials
are given in Table 3. It must be remarked that we have
deliberately chosen to use a small grid of points, much
smaller than that used previously in the literature [31,
10], in order to test the effectiveness of a good choice
of internal curvilinear coordinates in relieving the com-
putational efforts of computing anharmonic potential
energy hypersurfaces for the calculation of FC factors.

Table 3 The coefficients of different polynomial fits of the
potential energy surface of the 2A1 electronic state of cationic
ammonia in terms of curvilinear normal coordinates (coeffi-
cients in cm−1/(amu1/2 Å)n, rms error in cm−1).

P1 P2 P3

q22 11319.66 11319.66 11318.95
q42 11885.66 11886.66 11799.86
q21 173774.00 173774.00 173766.66
q31 −279077.51 −206229.84 -206229.85
q41 161562.75 161562.75 152225.84
q1q22 −14873.10 -14873.09
q21q

2
2 3196.46

rms error 22.2 0.3 0.2

The photoelectron spectrum of ammonia consists of
two transitions, one corresponding to the removal of
an electron from the HOMO, the nitrogen lone pair
3a1 orbital, the 2A

′′
1 ← X̃1A1 transition, the other

corresponding to the removal of an electron from the
1e orbital, the 2E ← X̃1A1 transition. The ground
state electronic configuration is 1a212a

2
11e

43a21 [4]. The
2A

′′
1 ← X̃1A1 lowest energy absorption exhibits a long

vibrational progression, extending over about 2 eV and
consisting of sixteen well resolved vibrational peaks see
Fig. 1.[5] The highest intensities occur for the 7-th and
8-th peak, whose intensity are nearly the same,[5,32]
but the origin of the band at lowest energy is still un-
certain, it could be either the 0′ ← 0 transition or a hot
band. The observed vibrational spacings is ca. 0.12
eV (970 cm−1), so that the long vibrational progression
has been assigned to the ν2 mode (Herzberg’s notation
[33]), the so called umbrella mode. In the high resolu-
tion spectrum recorded by Edvardsson et al. [32], the
strong progression due to the symmetric bending mode
is accompanied by a much weaker but well resolved one,
falling at higher energy, which was tentatively assigned
to the asymmetric bending mode with one more quan-
tum on the symmetric bending mode Q′

2.
As concerns neutral ammonia, a good representa-

tion of the two quasi-degenerate vibrational states is
all we need for computing the photoelectron spectrum.
A few test computations, carried out with an analyti-
cal anharmonic potential which reproduces the height
of the inversion barrier (1882 cm−1), showed that the
lowest energy states are well described by the symmet-
ric and antisymmetric linear combinations of the two
lowest energy vibrational states of each nuclear configu-
ration, no significant contributions of higher energy har-
monic wavefunctions have been found. From the sym-
metric vibrational ground state, transitions to vibra-
tional states with even quantum numbers are allowed,
whereas states with odd quantum numbers are excited
from the antisymmetric combination. Since the sym-
metric and antisymmetric vibrational modes of neutral
ammonia are separated by only 0.79 cm−1 [29], Boltz-
mann populations of the two levels are equal and that
allows to compute FC factors using only one equilib-
rium configuration of neutral ammonia. The initial
state in all the FC calculations is therefore the har-
monic ground vibrational state of the neutral molecule,
the only one significantly populated at room tempera-
ture.

Among the six normal modes of the 2A1 cationic
state, only the symmetric stretching and the symmet-
ric bending inversion modes, play a role in the pho-
toelectron spectrum if vibronic couplings are neglected
[32,10]. The stronger progression observed in the pho-
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toelectronic spectrum extends over an energy range of
about 2 eV, so that a good representation of at least the
lowest sixteen states associated to the inversion mode
is needed. Thus both potential anharmonic terms and
the ∆T̂ kinetic terms are in principle important for this
electronic state. Anharmonic wavefunctions of NH+

3

have been computed by using the variational method,
truncating the expansion of Eq. (16) to second order
and neglecting the Vkin term, which is known to give
very small contributions to the energies of the vibra-
tional states [17,18]. Forty harmonic oscillator basis
functions for each mode centered in the minimum en-
ergy nuclear configuration of the cationic state have
been used; that choice ensures convergence on the ex-
cited vibrational states in an energy region much larger
than that of interest. Eigenstates have been computed
by an implicitly restarted Arnoldi procedure. Analyti-
cal integrals have been used.[34]

The 2A
′′
1 ← X̃1A1 photoelectronic spectrum of am-

monia computed by considering a harmonic potential
obtained at MP4/TZV level of computation, and the
kinetic energy operator ∆T̂ of Eq. 16 is shown in figure
4.
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Fig. 4 Computed photoelectronic spectra of NH3 at har-
monic level, including the kinetic energy operator ∆T̂ .

Although the main features of the experimental spec-
trum are reproduced by FC computations, the pre-
dicted intensity distribution is significantly different from
the observed one. The maximum peak height occurs
for the 5 ← 0 transition, but the 6 ← 0 one exhibits
a significantly lower intensity than the 5 ← 0 transi-
tion. More important discrepancies are observed in the
high wavenumber region, where the relative intensities
of the computed spectrum decay much faster than the
experimental ones. The intensities of the higher-energy
transitions are significantly underestimated, and there-
fore the spectrum exhibits only 13 peaks, whereas in the
experimental one at least 16 peaks are clearly observed.

The results obtained by using a harmonic potential are
thus in many aspects similar to those previously ob-
tained by employing the internal coordinate represen-
tation but using a simplified expression of T̂ , without
including the ∆T̂ terms [35,10]. Indeed, the ∆T̂ ki-
netic operator only provides corrections of a few tens of
cm−1 on the computed energies, without significantly
affecting the computed eigenvectors.

The computed spectrum obtained by using the P1

anharmonic potential of Table 3 together with kinetic
∆T̂ is shown in figure 5 and compared with the exper-
imental intensities of ref. [32]. The latter ones have
been obtained from the peak areas of the deconvoluted
photoelectron spectrum. The whole spectrum is well re-
produced, especially as concerns its decay in the longer
wavenumber region, which had posed problems in pre-
vious theoretical investigations [12]. The experimental
bandwidth is also well reproduced by FC calculations;
Rabelais’ experimental spectrum shows sixteen well re-
solved peaks, with a little not resolved tail, whereas the
theoretical one exhibits one more. The computed spec-
trum also shows the presence of a second much weaker
progression, which the calculation assigns to transitions
to vibrational states with excitations on the bending
mode Q′

2 and a single quantum on the totally sym-
metric stretching mode Q′

1, in agreement with previous
theoretical results [13,14,10]. The weaker progression is
very well resolved in the high resolution spectrum of Ed-
vardsson et al,[32] who tentatively assigned it to tran-
sitions to a vibrational progression of the asymmetric
bending mode with one more quantum on the symmet-
ric bending mode Q′

2. The first mode is of E symmetry,
and therefore vibronic couplings should be invoked to
justify the presence of such combination bands in the
experimental spectrum. In the experimental spectrum
the weak progression starts just after the sixth peak
of the stronger progression, about 5400 cm−1 after the
0′ ← 0 transition and exhibits a maximum for the third
peak. In the computed spectrum the weak progression
starts after the fifth peak and the maximum peak height
falls at the forth peak. The adopted scaling was the
same as for the main progression, thus the good agree-
ment between the relative intensities of the weak and
the strong progression further supports our assignment.

The computed spectra obtained by using the other
potential energy functions of Table 3 are very similar
to that obtained by using the simplest P1 potential as
concerns the stronger progression; a slight detriment
on the intensities and width of the weaker progression
is observed when couplings between the Q′

1 and Q′
2 are

introduced in the potential energy expressions, possibly
because of the small grid used in the electronic calcu-
lations, not sufficiently large, especially for the totally



Franck Condon factors in curvilinear coordinates: the photoelectron spectrum of ammonia 7

symmetric stretching mode, for providing the coupling
terms with the required accuracy for calculations of the
FC factors.

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

frequency (cm
−1

)

In
te

n
s
it
y
 (

a
.u

.)

Fig. 5 Computed photoelectronic spectra of NH3. (–) an-
harmonic potential P1 of Table 3, (×) relative experimental
intensities from ref [32].

The deviation from the experimental relative inten-
sities is more pronounced for low energy levels, whereas
the high region of the spectrum is better reproduced.
That unexpected behavior, the quality of the computed
states should be higher than those at higher energy,
can be due to the presence of overlapping bands in the
experimental spectrum which makes it difficult the es-
timate of FC factors by the deconvolution technique.
Indeed, on the assumption that the first observed band
is a hot band, as experimental and theoretical evidence
leads to suppose [32,13], a possible explanation of the
low intensity is that other peaks of the hot progres-
sion could be hidden under the lower energy peaks. In-
deed previous calculations of FC factors from the |0 1⟩
state of neutral ammonia indicates that the transition
0′ 0′ ← 0 1 is not the most intense one, but it should
be accompanied by at least four transitions of the type
n′ 0′ ← 0 1 (n=1,2,· · · ) , which have still higher inten-
sities.[10] Those hot transitions could affect the inten-
sities of the peaks of the main progression making the
comparison of the computed and the observed spectrum
even more difficult.

Conclusion

Prediction of the band shapes for radiative transitions
between electronic states with significantly different min-
imum energy nuclear configurations along an angular
coordinate (floppy molecules) requires caution. Gri-
bov’s definition of curvilinear normal coordinates al-
lows the generalization of Duschinsky’s transformation

to the case of curvilinear coordinates. Those coor-
dinates can be extremely useful for floppy molecules,
inasmuch they could allow for decoupling the displaced
modes, making it easier the computation of the poten-
tial energy hypersurface. Here we have shown that the
photoelectron spectrum of ammonia, the prototype of
a floppy molecule, can be reproduced with sufficient
accuracy by using the curvilinear internal coordinate
representation of the normal modes of the neutral and
ionic state, providing that anharmonic potential energy
terms are properly included. However, the computa-
tional effort for the characterization of anharmonic po-
tential energy terms is significantly relieved by using
curvilinear coordinates, both because in the case of am-
monia curvilinear coordinates allows for decoupling the
two active modes with a good accuracy, and because
of the limited number of electronic computations to be
carried out for the characterization of the potential en-
ergy hypersurface. Indeed in the Cartesian coordinate
representation a grid of about 4300 points, covering the
range 0.57 ≤ r ≤ 1.65 Å and 40◦ ≤ α ≤ 120◦ was
necessary for obtaining reasonable results, whereas in
the present work a much smaller grid of 431 points,
covering the range req − 0.05 Å ≤ r ≤ req + 0.05 Å
and αeq − 10◦ ≤ α ≤ αeq + 10◦ has been sufficient.
In the case of ammonia, probably because of the good
choice of internal coordinates, the dependence of the G
matrix terms upon the curvilinear coordinates play a
minor role, it can be neglected if a high accuracy on
frequencies is not required.

Computational details

MP4 and Franck-Condon factor computations were car-
ried out by using the Gaussian 09 suite of programs [36]
and a development version of the MolFC package [37–
39].

Acknowledgements The financial support of the Univer-
sity of Salerno is gratefully acknowledged.

Appendix 1: The G matrix

In the following:

α1 = 2π − α2 − α3; (26)

ψi =
αi

2
; i = 1, 2, 3; (27)

µ =
mNmH

mN +mH
. (28)
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Gββ =
cos2ψ1

4µ
(
sin2ψ2

) (
sin2ψ3

) (
R1√
3
+ 2R2√

6

)2
+

cos2ψ2

4µ
(
sin2ψ1

) (
sin2ψ3

) (
R1√
3
− R2√

6
+ R3√

2

)2
+

cos2ψ3

4µ
(
sin2ψ1

) (
sin2 ψ2

) (
R2√
6
− R1√

3
+ R3√

2

)2
+

(cotψ2) (cotψ3)
[
2
(
sin2ψ1

) (
cos2β

)
− 1
]

2mN

(
sin2ψ1

)(
R2√
6
− R1√

3
+ R3√

2

)(
R1√
3
− R2√

6
+ R3√

2

)
+

(cotψ1) (cotψ2)
[
2
(
sin2ψ3

) (
cos2β

)
− 1
]

2mN

(
sin2ψ3

)(
R1√
3
+ 2R2√

6

)(
R2√
6
− R1√

3
− R3√

2

)
+

(cotψ1) (cotψ3)
[
2
(
sin2ψ2

) (
cos2β

)
− 1
]

2mN

(
sin2ψ2

)(
R1√
3
+ 2R2√

6

)(
R2√
6
− R1√

3
+ R3√

2

) (29)

GR1R1 =
1

µ
−

4 sin2β
(
sin2ψ1 + sin2ψ2 + sin2ψ3

)
− 6

3mN

(30)

GβR1 =

√
3 sin(2β)

6mN sinψ2

(
cosψ3 sinψ1

R2√
6
− R1√

3
+ R3√

2

− cosψ1 sinψ3

R1√
3
+ 2R2√

6

)

−
√
3 sin(2β)

6mN sinψ3

(
cosψ1 sinψ2

R1√
3
+ 2R2√

6

+
cosψ2 sinψ1

R1√
3
− R2√

6
+ R3√

2

)

−
√
3 sin(2β)

6mN sinψ1

(
cosψ2 sinψ3

R1√
3
− R2√

6
+ R3√

2

− cosψ3 sinψ2

R2√
6
− R1√

3
+ R3√

2

)
(31)
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