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Summary 

 

The stemness state is characterized by self-renewal and differentiation properties. 

However, stem cells are not able to preserve these characteristics in long-term culture 

because of the intrinsic fragility of their phenotype easily undergoing senescence or 

neoplastic transformation. Furthermore, although isolated from the same original tissue 

using similar protocols, adult stem cells can display dissimilar phenotypes and important 

cell clone/species contamination. Finally, the lack of a clear standardization contributes to 

complicate the comprehension about the stemness condition. In this context, cell lines 

displaying a particularly stable phenotype must be identified in order to define one or 

multiple benchmarks against which other stem cell lines could be reliably assessed. The 

present paper demonstrates that it is possible to isolate from the rat dental pulp a stem cell 

line (MUR-1) that does not display neoplastic transformation in long-term culture. MUR-1 

cells stably express a broad range of stemness markers and are able to differentiate into 

adipogenic, osteogenic, chondrogenic, neurogenic and cardiomyogenic lineages 

independently of the culture passages. Moreover, serial in vitro passages have not 

changed their immunophenotype, proliferation capacity or differentiation potential. The 

uniqueness of these characteristics candidates MUR-1 as a model to reliably improve the 

understanding of the mechanisms governing the stem cell fate in the same as well as in 
other stem cell populations. 



Introduction 
The interest around stem cells has increased over the years proportionally to new findings. 

Although postulated about one century ago [1], stem cells were revealed only in the 1963 

[2]. The discovery of “cluster of hæmatopoietic cells” within the bone marrow paved the 

way to the first stem cells transplant [3] starting the regenerative medicine era. 

In the last decade, stem cells have been identified in almost all body tissues [4], from 

which they have been isolated on the basis of their intrinsic characteristics of self-renewal 

and potency. Among others, adult mesenchymal stem cells (MSC) have attracted great 

attention for their ability to generate different cell lineages [5-7], fueling the assumption that 

they could be the panacea to regenerate all injured tissues. Nevertheless, the clinical 

worthiness of MSC to repair injured organs remains a chimera. In fact, owing to the poor 

knowledge of some MSC intrinsic features together with the inadequacy of current 

handling and engraftment protocols, clinically reliable cell treatments are still lacking.  

In mammals, MSC are segregated in particular tiny regions (niches) in which the 

microenvironment governs their quiescence, self-renewal and/or commitment [8]. Each 

niche is thus responsible for MSC features and behavior in terms of growth and 

differentiation potential. In bone marrow, MSC represent only a small percentage (0.5-10% 

depending on the anatomical site) of the total cell population [8-10] and are often hardly 

identifiable for their morphological and biochemical camouflage with the differentiated 

surroundings [8,11]. Moreover, even if correctly isolated, MSC are not able to retain their 

stemness condition when cultured in vitro for long-term [12], very likely because of the lack 

of niche control. Consistently, stem cell primary cultures undergo senescence and their 

capabilities of self-renewal and multi-potency are faded by an innate drift towards 

commitment linked to in vitro conditions [13,14]. On the other hand, MSC, when apparently 

not affected by senescence after prolonged in vitro culture, may acquire cytogenetic 

abnormalities prompting unwanted neoplastic transformations [15].  

Furthermore, although isolated from the same tissue following identical protocols, primary 

MSC cultures can display dissimilar phenotypes, corresponding to different stages of cell 

immaturity along the differentiation pathway [16-18] and/or important contamination 

problems [13,19-24]. Consistently, similarly to the Hindu “Blind men and an elephant” tale 

[25], different investigators have described the same stem cell population using a plethora 

of often non-specific “Cluster of Differentiations” markers. As result, the lack of 

standardized procedures in stem cell research [26] confuses and complicates the 

comprehension about the stemness condition, consequently frustrating the regenerative 



medicine philosophy itself. On these evidences, it is of paramount importance to identify 

populations that can be used as benchmarks to validate further advancements in stem cell 

research. In this context, the aim of the present study has been to verify the phenotypic 

stability in long-term culture and the capability to differentiate upon specific stimuli of a 

stem cell population (MUR-1, from latin Mòrsus/Múrsus = muzzle) isolated from the dental 

pulp of rat continuously growing incisors. Indeed, the results have shown that MUR-1 are 

adult mesenchymal stem cells characterized by geno/phenotypical stability and non-

tumorigenicity in long-term culture. These characteristics candidate them as a benchmark 

in stemness/differentiation studies as well as to assess the potency of other stem cell 

populations.  
 



Materials and Methods 

Cell Isolation and Purification 

Dental pulp stem cells (DPSC) were isolated from mandible incisive teeth of five months 

old male Wistar rats (Charles River, Monza, Italy). The dental pulp was gently removed 

through the apical foramen. The resulting tissue was washed twice in phosphate buffered 

saline (PBS) and centrifuged for 5 min at 1000 rpm; subsequently, the dental pulp was 

digested, washed, and seeded as previously described [27]. After 24 h, non-adherent cells 

were removed while the remaining cells were cultured in RPMI-1640 supplemented with 

10% fetal calf serum (FCS), 100 U/ml penicillin G, 40 μg/ml gentamicin sulfate and 2.5 

μg/ml amphotericin B (all from Sigma-Aldrich, St Louis, MO, USA) at 37°C in a humidified 

5% CO2 atmosphere. The final clone selection was conducted by serial dilutions in 96-well 

plates. Only wells enclosing homogeneous population were considered for further 

expansion. Among them, one clone (named MUR-1) was chosen for subsequent 

experimentations.  

 

MUR-1 Culture Conditions and Cryopreservation 

Cells were cultured in 75 cm2 TPP® flasks (TPP AG, Switzerland) as above described, 

without any feeder-layer. Cells were harvested twice a week with 0.25% trypsin solution 

(Sigma-Aldrich). Standard 1:4 dilution ratio was used for cell expansion while MUR-1 

cryopreservation was performed in the same culture medium added of 10% DMSO. 

 

FACS Analysis, Cell Growth Kinetics, and Colony-Forming Units Fibroblastoid Assay 

Cell volume and morphological complexity was assessed by a FACScalibur (Beckton 

Dickinson Italia SpA, Buccinasco, Italy) instrument, after suspension at the density of 

5x105 cells/ml. Doubling time (DT) of cell line was calculated as previously described [28] 

in cells (1x105) seeded into 25 cm2 flasks and cultured in complete medium. The 

clonogenicity of DPSC was determined by means of the Colony-Forming Units 

Fibroblastoid (CFU-F). Cells were seeded in 25 cm2 flasks at the density of 2, 5, or 10 

cells/cm2. After two weeks, the adherent cells were toluidine blue-stained, and 

macroscopic colonies were counted. All experiments were performed in triplicate. 

 

Light and Electron Microscopy 



MUR-1 cell morphology in adherent conditions was investigated in cells cultured on 

coverslips (DelChimica, Napoli, Italy), stained with haematoxylin/eosin, and observed by 

light microscopy. For electron microscopy, cells were processed as previously described 

[29]. 

 

Karyotype Analysis  

Chromosome analysis was performed every 6 months of culture adopting a conventional 

G-banding karyotype protocol. Briefly, cells undergoing active division were blocked at 

metaphase by colchicine and actinomycin D, detached from the growth surface by trypsin–

EDTA, and subsequently swollen by exposure to hypotonic KCl solution. Cells were then 

fixed in methanol/acetic acid solution, glass-mounted and finally metaphase dishes were 

identified by light microscope and photographed. Chromosomes were identified according 

to the Committee for a Standardized Karyotype of Rattus norvegicus [30]. 

 

mRNA and Protein Expression Analysis 

Total RNA was extracted with TRIreagent solution (Sigma-Aldrich) according to 

manufacturer’s instructions. One microgram of RNA was purified from contaminating DNA 

through a Deoxyribonuclease I kit and retrotranscribed with Random Hexamer Primer 

according to M-MuLV Reverse Transcriptase manufacturer’s instructions (all reagents 

were from Fermentas International Inc., Burlington, Canada). PCR reactions were carried 

out using 2.5 μl cDNA, 2.5 μl 10X PCR Buffer II (Roche Applied Science, Indianapolis, 

USA), 1.5 μl 25 mM MgCl2, 0.5 μl 10 mM dNTP (Fermentas), 0.75 μl of each specific 10 

μM primer (Sigma-Genosys), and 0.05 U/μl Taq DNA Polymerase (Fermentas) to a final 

volume of 25 μl. Specific primer sequences are summarized in Table 1. Amplification 

products were separated by agarose gel electrophoresis. DNA bands were stained with 

ethidium bromide and digitally captured by Kodak ImageStation. As positive controls, 

cDNAs extracted from brain (for Thy1, cKit, Oct4, Stella, SSEA1, Tubb3, and Sox2), foetal 

brain (MEF2C), heart (GATA4, ACTC1, CX43, and ADRB1), pancreas (Islet1), lung 

(ADRB2, Fragilis1, ALPL, and HLA-DR), and liver (HDAC6) were used. 

Protein expression was assessed by immunocytochemistry analysis. MUR-1 cells were 

cultured on poly-D-lysine-coated coverslips and then incubated with specific primary 

antibodies overnight at 4°C and then with appropriate secondary antibodies for 1 h at room 

temperature. Primary antibodies are reported in Table 2. Image acquisition of CD90, 



CD117, YAP1, vimentin, Nkx2.5, CD45, and CD34 expression was carried out with a LSM 

510 confocal laser microscopy system (Zeiss, Jena, Germany), while FLK1, alpha smooth 

muscle actin (αSMA), cMyc, CD105, and GATA-4 expression was visualized under a Leica 
DRMB microscope equipped with a digital camera. 

 

Differentiation Culture Conditions 

The adipogenic differentiation was induced by growing MUR-1 cells in RPMI-1640 

containing 10% FBS, 1.7 μM insulin, 1 μM dexamethasone, and 0.5 mM 

methylisobutylxanthine (Sigma-Aldrich) [31]. After 5 days of induction, cells were fixed with 

4% paraformaldehyde for 20 min, washed with PBS, incubated with Nile Red (Sigma-

Aldrich) for 10 min to emphasize lipid vesicles occurrence [32] and then observed by 

confocal laser microscope. For electron microscopy, differentiated cells were processed as 

previously described [29].  

Osteogenic differentiation was induced in MUR-1 cells cultured in complete medium 

supplemented with 10 mM β-glycerophosphate, 0.05 mM ascorbic acid, and 100 nM 

dexamethasone [33]. After 3 weeks, osteogenic differentiation was evaluated by alkaline 

phosphatase staining kit (BioOptica Milano SpA, Milano, Italy).  

MUR-1 chondrogenic differentiation was induced by complete medium supplemented with 

10 ng/ml TGF-β3, 0.025 mM ascorbic acid, and 100 nM dexamethasone [34]. After 3 

weeks, differentiated cells were highlighted with toluidine blue staining as described 

elsewhere [35].  

MUR-1 neuro-glial differentiation was induced by pre-treating cells with 1 mM β-

mercaptoethanol in complete medium for 24 h and then with 35 ng/ml retinoic acid for 72 

h. Subsequently, MUR-1 cells were grown in complete medium supplemented with 5 ng/ml 

PDGF (Platelet-derived Growth Factor), 10 ng/ml bFGF (basic Fibroblast Growth Factor), 

252 ng/ml GGF (Glial Growth Factor), and 14 μM Forskolin for 2 weeks [36]. The induction 

of neuro-glial phenotype was confirmed by specific immunostaining for neuron growth-

associated protein 43 (GAP43 - Goat, 1:100, Santa Cruz Biotechnology, Santa Cruz, CA, 

USA), glial fibrillary acidic protein (GFAP - Mouse, 1:50, DakoCytomation, Dako Italia SpA, 

Milano, Italy) and S100 protein (Rabbit, 1:400, Sigma-Aldrich). MUR-1 cells without 

differentiation factors were prepared in the same conditions and used as negative controls. 

Myocardial differentiation was induced through direct co-culture of MUR-1 with murine 

neonatal cardiomyocytes in complete medium for 7 days. Neonatal cardiomyocytes were 

obtained as described elsewhere [37] and plated at the concentration of 5x104 cells/cm2 



onto fibronectin (2 μg/ml)-laminin (0.2%) pre-coated glass chamber slides (BD 

Biosciences, San Jose, CA). Twenty-four hours later, MUR-1 cells, previously labeled with 

1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI, Vybrant™, 

Molecular Probes, Life Technologies Italia, Monza, Italy), were seeded onto 

cardiomyocytes at a 1:5 ratio. MUR-1 without cardiac cells and viceversa were prepared in 

the same conditions and used as controls. The induction of myocardial differentiation was 

assessed by evaluating sarcomeric α-actinin (Mouse, 1:700, Sigma-Aldrich), connexin 43 

(CX43) (Rabbit, 1:100, Sigma-Aldrich) and Troponin I (Rabbit, 1:50, Santa Cruz 

Biotechnology) expression.  

 

Colony Formation and Tumorigenicity Assay 

Soft-agar assay was carried out to evaluate the possibility that MUR-1 cells could undergo 

anchorage-independent growth. Briefly, 1x105 MUR-1 cells were seeded into 10 mm Petri 

dish in 0.3% agar-complete medium. Cells were cultured for 21 days and then colony 

formation assessed by means of light microscopy. MUR-1 tumorigenicity was evaluated in 

vivo by injecting 1.0 or 10x106 cells between the shoulder blades in six male Wistar rats 

randomly divided into two groups. Animals were followed for 60 days, evaluating whether 

masses were developing in the injection area. At 10, 30 and 60 days, one rat for each 

group was anesthetized and sacrificed. Tissues surrounding the injection area were 

excised and processed for histological analysis by standard haematoxylin/eosin stain. The 

whole experimentation was performed according to the Ethic Committee of the University 

of Turin, Italy. 

 

Statistical Analysis 

DT and CFU-F were expressed as arithmetical mean ± standard deviation. DT results 

were analyzed with a two-tailed paired t-test, whereas one-way ANOVA and Newman-

Keuls Multiple Comparison Test (for post-ANOVA comparisons) were used to evaluate the 

statistical significance of the CFU-F differences. All analyses were carried out with 

GraphPad Prism version 5.00 (GraphPad Software, San Diego, CA, USA, 

www.graphpad.com), with P < 0.05 as the significance cut-off. 



Results 
 

CFU-F, Growth Kinetic, Karyotype and Morphological Characteristics 

Under light microscopy (Fig. 1A), adherent MUR-1 cells showed a fibroblastoid shape; 

after haematoxylin/eosin staining (Fig. 1B), they displayed an irregular and eosinophilic 

cytoplasm with central round nucleus. Electron microscopy revealed a pale, eccentric and 

irregularly shaped nucleus with one or more nucleoli located near the MUR-1 perinuclear 

cisternae (Fig. 1C,D). Chromatin was spread throughout the nucleus except for a thin 

dense layer located immediately inside the perinuclear cisternae (Fig. 1D,E). The 

cytoplasm was rich in mitochondria and ribosomes predominantly associated with 

endoplasmic reticulum (Fig. 1F,G). Yet, ultrastructural observation showed that the 

irregularities of the plasma membrane seen by light microscopy were due to small 

pseudopodia located all around the cells (Fig. 1C,H). 

MUR-1 cells were characterized by an estimated doubling time of 25.4±2.2 and 23.2±1.8 h 

at the exponential growth phase, when assessed after thirty (P30) and two-hundred (P200) 

culturing passages, respectively (P30 vs. P200, P=0.120). The frequency of CFU-F was 

proportional to the cell seeding density (P=0.0028 and P=0.001 at P30 and P200, 

respectively). The CFU-F corresponding to 2, 5, and 10 cells/cm2 was 73.7±14.4, 

179.7±23.7, and 250.0±55.9 for MUR-1 at P30, and 77.0±10.5, 147.3±26.8, and 

256.7±43.8 for MUR-1 at P200, respectively (Fig. 2A). Results did not show any significant 

differences in terms of CFU-F between P30 and P200 passages. As evinced by FACS 

analysis, MUR-1 was a population with homogeneous dimensions and morphological 

complexity (Fig. 2B). During the entire cell culture time, G-banding cytogenetic analysis of 

MUR-1 cells did not reveal macroscopic chromosome alterations, if compared with the 

reference rat karyotype (Fig. 2C). In addition, cryopreservation did not affect MUR-1 

characteristics, in accord to what already described [38]. 

 

 

MUR-1 Gene and Protein Expression  

Analysis of mRNA expression (Fig. 3) revealed that MUR-1 cells transcribed several genes 

related to the embryonic/pluripotent undifferentiated status, as the transcription factor 

OCT4 (POU5F1), the membrane glycoprotein Thy-1 (CD90), the tyrosine-kinase receptor 

c-Kit (CD117), the developmental pluripotency-associated protein 3 (Stella), the stage-

specific embryonic antigen 1 (SSEA1), the interferon-induced transmembrane protein 1 



(Fragilis 1), and the hystone deacetylase 6 (HDAC6), but not the SRY-box2 transcription 

factor (SOX2). Contextually, commitment transcripts were present: MUR-1 cells expressed 

mRNAs encoding for the transcription factors GATA4 and MEF2C, as well as the 

cytoskeleton components ACTC1 and tubulin β3, the gap-junction CX43, and the receptor 

ADRB2, but they did not transcribe those for the ISL-1 transcription factor (islet-1), ADRB1 

receptor, the non tissue specific alkaline phosphatase (ALPL), and the major 

histocompatibility complex HLA-DR.  

At the protein level (Fig. 4), the expression of stem cell antigens CD90 and CD117 was 

further confirmed. Consistently, the presence of c-MYC transcription factor, TGFβRIII 

receptor Endoglin (CD105), FLK1 receptor (VEGFR2 or CD309), CX43, important 

transcription factors (NKX2.5, GATA4, and YAP1), intermediate filament vimentin, and α 

smooth muscle actin (αSMA) was highlighted. MUR-1 cells did not express typical blood 

lineage commitment markers, namely CD34 and CD45.  
 

Plasticity of MUR-1 Cells  

Adequately treated MUR-1 cells have been able to successfully differentiate in precursors 

of different histotypes, also after prolonged culture (P200). Following adipogenic stimuli, 

the presence of lipid-rich cells was detectable with the lipophilic Nile Red dye (Fig. 5A): 

indeed, ultrastructural observation indicated the presence of lipid droplets inside the cells 

(Fig. 5B). If compared with untreated MUR-1 cells (Fig. 5C), chondrogenic medium led to 

the formation of round-shaped cell clusters characterized by a basophilic cytoplasm (Fig. 

5D). Similarly, osteogenic stimulation induced the aggregation of clusters of alkaline 

phosphatase-stained round-shaped cells surrounded by a dense extracellular matrix (Fig. 

5E,F).  

MUR-1 cells were also able to trans-differentiate into other cell types. If cultured with 

appropriate growth factors (see Materials and Methods section), MUR-1 may acquire 

neuronal morphologies including bipolar one (Fig. 5G), and express neuro-glial markers, 

such as GAP43 (Fig. 5H), GFAP (Fig. 5I), and S100 (Fig. 5J), within 2 weeks of 

incubation.  

The co-culture of MUR-1 with neonatal cardiomyocytes induced cardiac differentiation as 

demonstrated by the expression of troponin I (Fig. 5K,L), CX43 (Fig. 5M,N) and α 

sarcomeric actinin (Fig. 5O,P), assembled in sarcomeric bands within the cells.  

 

Soft-Agar and Isograft Assay  



After more than 6 months of continued culture, MUR-1 cells were assessed for their 

tumorigenic potential. Both in vitro and in vivo tests showed no cells colony and mass 

development in the soft-agar test and in subcutaneously injected tissues, respectively. 

Also autoptic analysis of isograft areas of injection did not reveal the presence of any 

inflammatory infiltrates (data not shown).  

 



Discussion 
 
Dental pulp holds promise to be an interesting source of different adult stem cell 

populations generally characterized by an enhanced differentiation potential [39-41], 

although the gene/antigen expression profile is comparable to bone marrow stem cells 

[27]. Nevertheless, the actual potential of DPSC has been underestimated, since 

investigations have predominantly been focused on obtaining cells for in vivo 

dental/calcifying tissue recovery. 

The present study demonstrates that, among DPSC, it is possible to isolate a cell line 

(MUR-1) displaying uncommon properties and behavior, even thought morphological 

features strictly resemble those of MSC [27]. Ultrastructural analysis of MUR-1 cells 

reveals a finely dispersed euchromatin, presence of numerous mitochondria featuring 

tightly pleated cristae, and several ribosomes associated to the endoplasmic reticulum, 

clues of easy access to transcription factors, enhanced energy production and protein 

synthesis, respectively. Furthermore, MUR-1 cells transcribe and translate the classical 

CD90+/CD117+/CD34-/CD45- profile without commitment to blood lineages, typically 

depicting the undifferentiated mesenchymal condition [7]. This expression pattern 

associates with that of both c-Myc and Oct4, which are essential to induce self-renewal in 

embryonic stem cells and are pivotal to sustain pluripotency [42]. Intriguingly, MUR-1 cells 

also express Stella antigen, further clue of self-renewal and multi/pluripotency. In fact, 

Stella has been observed, up to now, only in the embryo inner mass cells and in the germ 

cells line [43], where it acts as protector of the DNA demethylation, as demonstrated by its 

involvement in epigenetic reprogramming [44]. In addition, MUR-1 cells express the 

embryonic SSEA1 marker, which is also specific for neural crest cells [45,46], and Fragilis 

1, which is mainly present in the mesoderm and the pharyngeal arch during the embryo 

development [47]. Finally, the expression of YAP1, marker of epithelium-mesenchyma 

transition [48], could represent the remnant of the ecto-mesenchymalization process 

underlying the dental pulp development. Indeed, the dental pulp originates from an unique 

mesenchyma-epithelium cross-talk, in which the epithelium of the first pharyngeal arch 

interacts with the neural crest, considered as the mesenchymal counterpart [49-51].  

These evidences indicate that MUR-1 are characterized by a very early differentiation 

status, as also confirmed by their high proliferation rate and clonogenic potential. Notably, 

both phenomena remain unchanged up to the 200th culture passage.  Since cells cultured 

in vitro for extended periods could escape senescence when affected by genetic 

aberrations and neoplastic transformation, MUR-1 cells have been repeatedly karyotyped 



without any evidence of macroscopic chromosomal alterations.  Furthermore, they were 

neither able to grow in vitro without adhesion-support nor to provoke mass development 

after injection in living experimental animals. Taken together, these evidences indicate that 

long-term cultured MUR-1 cells cannot be considered cancerous. 

Beside these characteristics, MUR-1 cells translate both CD105 and Flk1 antigens 

strengthening the mesenchymal feature, though they are also typical endothelial markers 

[52,53]. Notably, albeit being negative for ADRB1, MUR-1 cells display a cardiac/vascular-

like CD117+/Flk1+/NKX-2.5+/MEF2C+ profile, together with the low expression of endoderm 

gene GATA4. Such a pattern concurs to postulate a parenting with those cells driving the 

cardiogenesis during the embryo development [54,55]. In addition, CX43 is functionally 

organized in cell membranes, likewise the high motility neural crest cell subpopulation that 

arises in the endothelium of the aortic arch arteries and the septum between the aorta and 

the pulmonary artery [56], and portions of the cardiac conduction system [57]. These data 

suggest that MUR-1 cells could share a neural crest ancestral progenitor, while prone to 

differentiate to cardiomyocytes. Additionally, MUR-1 cells express ADRB2 that is involved 

in both adipo- and osteogenic differentiation [58,59], and vimentin, a marker of early neural 

phenotype [60], but also generally related to the mesenchymal status [61]. Finally, markers 

of differentiations, such as non-tissue-specific alkaline phosphatase or HLA-DR, have not 

been detected.  

This broad profile of MUR-1 gene and antigen expression is reflected by their potency. 

Indeed, MUR-1 cells are able to adopt an adipocyte, chondrocyte and osteocyte  

phenotype, as evinced by the intracellular lipid vesicles development, the basophilic 

cytoplasm and alkaline phosphatase activity, respectively. These capabilities are 

substantially equivalent to those of stem cells from bone marrow. Furthermore, besides the 

above mentioned differentiating capabilities, MUR-1 cells can generate neuronal and glial 

precursors expressing typical markers, such as GFAP, GAP43 and S100, which are 

involved in neurite formation and elongation [62,63]. Finally, they can differentiate to 

cardiomyocytes expressing troponin I and α sarcomeric actinin in properly assembled Z-

disks; conversely, CX43 expression and location remain as in undifferentiated MUR-1 

cells. Notably, the MUR-1 extended differentiating potential remains unchanged 

independently of the cell passage and is not significantly affected by supplement/feeder-

layer free culture conditions, such as when they are cultured in low-antioxidant high-

glucose RPMI-1640. This is a very peculiar feature of MUR-1 cells, since the increment of 



the Reactive Oxygen Species (ROS) level within stem cells is believed to be inversely 

correlated with the maintenance of their stemness state [64].  

It can be speculated that MUR-1 peculiar characteristics could be related to the continuous 

growth of Myomorpha teeth during the entire animal life; however, adult stem cells deriving 

from other continuously growing tissues do not display a similar behavior. For example, 

when bone marrow-MSC are cultured in vitro, they lose the capability to self renew within 

30-50 population-doublings [65,66]. 

All these observations indicate that the MUR-1 cells phenotype can be properly maintained 

even after isolation from their native niches. This is in apparent contrast with the notion 

that niche is crucial in regulating stem cells proliferation, self-renewal and differentiation 

potential [67]. It can be conjectured that, under some respect, culture conditions mimic the 

native niche environment. 

In conclusion, MUR-1 is a cell population phenotypically very stable in conventional culture 

conditions and, at the same time, endowed with a very extensive differentiating potential 

that can be easily activated with specific stimuli. This makes MUR-1 a very reliable model 

to study the mechanisms regulating stemness state and to test biologically active 

substances of potential pharmacological interest. Furthermore, MUR-1 could represent a 

benchmark to assess the characteristics and potential of many other stem cell populations, 

whose phenotypic instability has so far hampered to deepen the knowledge about their 

behavior. 
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