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Abstract. In this work we present the outcomes of a radio-frequency OAM transmission
between two antenna arrays performed in a real-world context. The analysis is supplemented
by deep simulative investigations able to provide both a preliminary overview of the experimental
scenario and a posteriori validation of the achieved results. As a first step, the far-field OAM
communication link is tested at various frequencies and the corresponding link budget is studied
by means of an angular scan generated by the rotation of the receiving system. Then, on the
same site, two digital television signals encoded as OAM modes (` = 1 and ` = −1) are
simultaneously transmitted at a common frequency of 198.5 MHz with good mode insulation.

1. Introduction
The last few years have witnessed a growing interest in electromagnetic radiation carrying
Orbital Angular Momentum (OAM), which has found relevant applications in nanotechnologies
[1], astronomy [2–5], quantum physics [6–8], optics [9, 10] and radio communications [11,12].

OAM beams represent classes of solutions to the Helmholtz equation characterized by a
wavefront which consists of ` intertwined helices, described by the azimuthal phase term ei`ϕ,
where ` is the OAM mode index, and a doughnut-shaped beam profile for ` 6= 0. Each
class comprises a theoretically infinite set of orthogonal solutions which offers, in principle,
the possibility to encode separate channels on the same frequency, an idea that was originally
proposed for optical communications [9]. More recently, this aspect and its implications have
been deeply explored both theoretically [11] and experimentally [12] also in the RF domain,
leading to significant results [13,14].

A great amount of possibilities exists to generate OAM beams at various frequency ranges
[15–18]; among these, one of the most suitable for radio transmissions consists in the use of
antenna arrays, where the sought-for solutions can be implemented by means of a proper array
synthesis technique [19].
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In the present work we perform the experimental analysis of an OAM-based radio transmission
with antenna arrays in the VHF TV band (174÷230 MHz) supported by a preliminary numerical
study. The experiment represents, to the best of our knowledge, the first case of multiple OAM
transmission/reception of Digital Video Broadcasting-Terrestrial (DVB-T) signals using a single
array of identical radiators on both sides of the communication link, in the far-field region. One
of the main results of the experiment lies in the verification of the feasibility of such transmissions
in a real-world context. Moreover, a validation of the “OAM-link pattern” concept, introduced
in [20], is provided.

Section 2 concerns the description of the experimental set-up and the motivations behind
our choices. Then, section 3 resumes the fundamental concept of OAM-link pattern, which
enables a preliminary estimation of the results expected from measures. Some brief notes on
the numerical simulations carried out in order to support the experimental investigation are
provided in section 4. The technical details on the electronic devices employed for the OAM
multiplexing/demultiplexing, the tests set-up and the experimental analysis are explained in
section 5. Finally, sections 6 and 7 report the study and the results relative to the simultaneous
transmission of two DVB-T signals encoded as OAM ` = 1 and ` = −1 modes, performed with
the same experimental apparatus described in the previous part of the work.

2. A brief description of the experimental set-up
The motivation behind the choice of working with antenna arrays is dictated by the fact
that, although extensively studied in literature both theoretically and numerically [11, 19], to
the best of our knowledge there are no experimental reports of their usage in OAM far-field
radio transmissions. Moreover, antenna arrays are better suited to implement a multimode
transmission with respect to other OAM antennas. Indeed, a single array fed via beamforming
network can support the simultaneous transmission of several independent OAM modes, in
contrast to other antennas like the twisted parabolic reflector [18]. In addition, this solution offers
the possibility to validate the functionality of specially designed electronic devices conceived as
beamforming networks for the OAM mutiplexing and demultiplexing in antenna arrays, designed
and patented before the experimental analysis [22]. In the following, we will refer to such devices
as OAM “mode sorters”.

In order to ensure technical simplicity, a minimal number of array elements was considered,
allowing to check the OAM concept far from the cases treated in literature, where many more

Figure 1. Two different views of the experimental site (reproduced from Google Earth, c© 2015
Google).



Figure 2. Schematic illustration of the link (left) and a photograph of the transmitting UCA
employed in the experiment (right).

elements are usually taken into account.
As shown in Fig. 1, the two systems were placed on the two opposite ends of the flat roof of the

RAI Research Centre. The choice of the location for the experiment was essentially motivated
by two factors: the height and the arrangement of the building, which permit negligible ground
reflection, and the intention to show a true far-field transmission (a link distance of 40 m
corresponds to more than three times the far-field threshold for the case under consideration).

The decision of working in the frequency band around 205 MHz, which corresponds to a
wavelength λ = 1.46 m, was dictated by the purpose of a TV transmission and by the need to
work in a frequency range where the functionalities of the electronic devices were ensured.

3. An overview of the “OAM-link pattern” concept
When considering OAM transmissions between antenna arrays, a proper phase-weighting must
be introduced at the receiver in order to account for the azimuthal phase profile of a vortex wave
and lead to a non-null on-axis power transfer response [21]. To this end, in [20], the following
formula for the OAM-link budget estimation between two facing arrays was obtained:
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, (1)

where k = 2π/λ is the modulus of the wave vector, η is the vacuum impedance, R is the
resistance of the radiators, NT and NR indicate the number of elements in the transmitting and
the receiving array, respectively, while Φn

` is the feed coefficient associated to the nth antenna,
resulting from the synthesis of an OAM mode with index ` over the considered array layout.
Furthermore, hT and hR are the effective heights for each link of length rnp connecting the nth
transmitting antenna to the pth receiving one, and vice versa.

In (1) only a receiving configuration with `R = `T allows for a correct reception of the
incoming OAM beam with azimuthal index `T . In this case, expression (1) defines, as a function
of the azimuth and elevation angles of one of the two arrays, the OAM-link pattern, characterized
by an on-axis maximum where the conventional radiation pattern exhibits the central null.



Figure 3. Total received power normalized to the total radiated power vs the rotation angle
αR relative to the receiving array. The considered arrays are 4-elements UCAs made of folded
Yagi-Uda antennas and separated by a distance d = 40 m. The OAM beam transmitted with
azimuthal index `T = 1 at a frequency of 205 MHz is received according to two different rephasing
configurations.

Following the approach described in [20], we can evaluate the link budget for a couple of facing
UCAs made of half-wave dipoles by simply inserting in (1) the effective height formula relative
to this type of antenna [23]. In the case of an N -element UCA, the synthesis coefficients for
the generation of an OAM beam with index ` are simply fixed by requiring the phase difference
between each pair of subsequent array elements to be δϕ = 2π`/N [11]. The relation that
determines how many OAM modes such array can support is: −N/2 < ` < N/2.

In order to conform our analysis to the experiment, which will be described in the following,
we consider two identical 4-element facing UCAs with radius R = 1.5 m and separated by a
link distance d = 40 m, as schematically depicted in Fig. 2. Since the array elements used
in the experiment are folded Yagi-Uda antennas, a simple way to address the problem consists
in introducing a correction to the expression (1) for the link budget estimation in the case of
half-wave dipoles, which correspond to the driven elements of each Yagi-Uda antenna. The
presence of four parasitic elements in the Yagi-Uda antennas makes the radiation pattern of
the arrays more directive, focusing the emitted radiation along the direction of propagation in
transmission and increasing the ability of the receiving array to intercept the incoming beam
along the same direction. This effect can be taken into account by adding to the link budget an
amount equal to twice the power gain difference between the Yagi-Uda antenna and a half-wave
dipole. Since the considered Yagi-Uda antennas have a gain of about 7 dBi and the gain of
a half-wave dipole is estimated at 2.15 dBi, the values obtained with expression (1) should be
approximately increased by 5 + 5 = 10 dB.

According to these arguments, Fig. 3 shows the behaviour of (1) as a function of the angle
αR relative to the rotation of the receiving array around the y-axis passing through its center,
for the couple of facing Yagi-Uda antenna arrays. Due to the orthogonality between OAM
modes and having the emitted beam an azimuthal index `T = 1, only a rephasing with index
`R = `T = 1 maximizes the received signal at αR = 0, while a destructive configuration occurs
whenever `R 6= `T .

For completeness, Fig. 4 reports the behaviour of formula (1) at two fixed angles αR versus



Figure 4. Total received power normalized to the total radiated power vs the link distance d.

the link distance between the Yagi-Uda antenna arrays. As can be observed, for any value of
αR the curve corresponding to the proper reception of the incoming OAM mode (i.e. the solid
green line) follows the well-known asymptotic behaviour d−2`T−2.

For arrays of isotropic radiators, the destructive configuration `R = −`T settles to zero
at αR = 0, where the orthogonality of the OAM modes is at its maximum, and decreases
with distance according to the usual law d−2`T−2 when αR 6= 0. Due to the directivity of
the considered array elements, this receiving configuration for the system under examination
approximates the case of arrays made of isotropic elements only at great distances, as can be
seen in Fig. 4 (dashed red line).

4. Simulations
The numerical analysis performed to support the experiment was carried out via the RF module
of the software Comsol Multiphysics R©[24], which is based on the Finite Element Method (FEM)
and represents a valuable tool, enabling one to take into account the system complexity as well
as couplings among antennas. On the other hand, the analysis needs a complete meshing of
the whole space involved in the electromagnetic transmission, so a high computational demand
for large systems is required. A further problem arises from the necessity to introduce the
Perfectly Matched Layer (PML), an adsorbing region which mathematically reproduces the
effect of the free space outside the volume of interest where the electromagnetic transmission
between the antenna arrays takes place. Being the PML absorbing efficiency numerically limited
and strongly sensitive to the incidence angle, one has to enlarge the region of interest in order to
prevent reflections of tangential rays on the PML walls, that would compromise the evaluation
of the model parameters, especially when such quantities are small.

We studied the electromagnetic transmission of OAM waves between two identical facing
arrays of four Yagi-Uda antennas, each composed by five parallel thin metal strips and fed
by a lumped port on the driven element. All the involved quantities were set according to the
experimental values and the wavelength was fixed at λ = 1.46 m. The receiving array orientation
was parameterized in αR, which corresponds to the angle of rotation of the array around the
y-axis passing through its center, while a further parameterization was provided by the distance
d between the transmitting and the receiving systems.

The main goal of our simulation was to compute the OAM-link pattern as a function of the
variable αR in terms of a parametric sweep on the total received power, which can be expressed



Figure 5. OAM-link pattern for the transmission of an `T = 1 wave at 40 m, extrapolated from
the curve computed at 20 m in order to cope with excessive computational demand.

as a suitable combination of post-processed quantities:
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where Φi
` is the ith synthesized coefficient for the considered OAM mode and V i

port represents
the corresponding model port voltage, i.e. the open-circuit voltage at the terminals of the ith
antenna.

As explained before, we have to avoid possible reflections from the PML walls, a problem that
is the more severe the smaller the distance between PML and antennas. Further complications
lie in the fact that the OAM beam divergence angle is larger than in the ` = 0 case and that each
reflection is accompanied by a change in sign of the azimuthal index `. For these reasons, the
distance between the PML walls and the antenna arrays should be considerable, introducing a
trade-off between precision in the calculated quantities and computational expense. As a matter
of fact, it was verified that, in correspondence with a not enough large transmission volume,
the unwanted reflections affect the curves and in particular the red one in which the incoming
wave `T = 1 is read in destructive configuration `R = −1, causing the disappearance of the
expected central dip around αR = 0. On the other hand, the meshing of a whole 40 m-length
transmission volume, large enough to avoid most of the reflections on the PML walls, would have
required an excessive computational capacity to be tolerated by our server machine. Fortunately,
beyond a given distance (which is expected to approximately match the far-field threshold) the
OAM-link pattern does not show any significant changes except for a scale factor related to the
beam divergence, therefore leading to the possibility of reasonable extrapolations at very high
distances. The application of this useful procedure to our case is presented in Fig. 5, where
the OAM-link pattern relative to the transmission of an `T = 1 wave at 40 m is extrapolated
from the corresponding pattern computed at 20 m with Comsol Multiphysics R© according to
the far-field decays of the OAM beams shown in Fig. 4.



5. OAM transmission measurements
5.1. Mode sorters
In order to introduce suitable phase shifts to both the transmitting and the receiving
antenna arrays, a proper electronic device, called mode sorter, was designed with the aim of
encoding/decoding up to N − 1 OAM-modes in the case of N -element UCAs [22].

Although with N = 4 antennas the ` = 0 mode could be generated too, we chose to limit
our investigation to just ` = ±1 modes, for simplicity. The prototyped mode sorter, used
in the experiment and schematically depicted in Fig. 6, was realized in order to reproduce the
following ideal behaviour: the four outputs, connected to the antennas of the transmitting UCA,
determine the emission of an OAM beam with azimuthal index `T = 1 or `T = −1, depending
on whether the input port a or b is fed. For symmetry, when the considered mode sorter is
used in reception, an opposite phase-weighting is introduced over the incident beam; as a result,
the signals read at the output ports c and d are rephased with an index `R = 1 and `R = −1,
respectively.

However, due to the technical limitations of the electronics, the outgoing beam cannot be
intended as a pure OAM mode with index `T = ±1, but rather as a linear combination of all
the OAM modes supported by the considered 4-element UCA, with a prevalence of the `T = 1
or the `T = −1 contribution depending on the input port chosen.

With the aim of realizing an experiment of a real TV signal transmission, a couple of
mode sorters working on TV frequencies was implemented; the reasons of this choice lie in
the availability of commercial components covering a whole TV band and in the presence of free
channels in the VHF spectrum (174÷ 230 MHz).

To design the mode sorters circuit whatever technique can be used. Here a specially devised
synthesis method that allows to avoid components with more than two ports has been employed.
Most phase shifters usually set a severe limit to the bandwidth of the system; in our case with
N = 4 antennas the synthesis method enables the use of two-port 180◦ and 90◦ hybrids, that
can be easily found in the wide-band version. The price to pay is a higher insertion loss than
the one achievable by a narrow-band design.

The mode sorters were tested individually in the laboratory. The maximum amplitude
unbalance among the four antenna ports was measured to be 0.2 dB (i.e. 2% vector error)
and the estimated maximum phase error w.r.t. the nominal values (integer multiples of 90◦)
among the four antenna ports was found to be 2.8◦ (i.e. 5% vector error). Being an analog
high frequency wide-band device with no tuning capabilities, this performance was considered
as acceptable to the purpose of our experiment. To assess an upper bound to the OAM channel
insulation achievable from this couple of mode sorters, the performance of the cascade connection
of the two devices was evaluated. The signal entering port a of the Tx mode sorter should be

Figure 6. Picture (left) and schematic illustration (right) of the mode sorters employed in the
experimental work.



Figure 7. Cascade mode sorters performance: plot of the S21 parameter vs frequency.

mostly conveyed to port c of the Rx mode sorter. Similarly, signal to port b should be mostly
conveyed to port d. Crossed paths should experience a large attenuation.

For the measurement an Anritsu MS2026C Vector Network Analyzer (VNA) was used; Fig.
7 shows as a function of frequency the transmission parameter (S21) which defines, in a two-port
device, the power transferred from port 1 to port 2. Scattering (S) parameters are widely used
in microwave/RF engineering to describe the behaviour of a linear electrical network. In Fig. 7,
the solid green curve is the transmission parameter from a to c vs frequency, while the dashed
red curve is from a to d. As can be observed, at the intended use channel frequency (markers),
the channel insulation (main path/unwanted path, markers delta) is 21.4 dB. In the over-the-air
transmission, of course, this insulation will be impaired by other factors including antennas and
cable unbalances, reflections on nearby objects, etc.

5.2. The test set-up
The antenna array was chosen to be identical for both the transmitting and the receiving systems
(Fig. 2) and it was built using four commercial VHF-band TV reception antennas. We adopted
the Fracarro BLV4F, a 4-element folded Yagi-Uda antenna, individually providing 7 dBi gain.
The array structure was built with plastic PVC pipes, obtaining a D = 3.1 m diameter circular
array. This size results in a far-field range of about 2D2/λ ' 13 m at the frequency of 205 MHz.
Horizontal polarization was chosen, in order to keep feeding cables orthogonal to the dipoles of
the Yagi, in the adopted mechanical arrangement.

Although less modern than the Anritsu MS2026C, a Hewlett-Packard HP8753B Vector
Network Analyzer was used to measure the RF transmission parameters; in this equipment
the S-parameter test set section (HP85046A) can be detached and it is possible to have direct
access to the vector analyzer channels. This allows to measure simultaneously the complex ratio
of two inputs with respect to a reference signal R. The only drawback is that an external coupler
must be provided to feed the reference channel R.

The VNA output is the transmitted signal source and was connected to the transmitting site
via a 100 m low loss coaxial cable, to feed one of the two ports of the Tx mode sorter. At the
receiving side, the resulting signals from ports c (`R = 1) and d (`R = −1) of the Rx mode
sorter were connected to the input ports of the VNA, while the input R is fed by the transmitted



Figure 8. Experiment set-up block diagram for the transmission of the `T = 1 mode.

reference signal from the direction coupler. The set-up block diagram is shown in Fig. 8.
A preliminary direct-loopback test was done, directly connecting the four outputs of the Tx

mode sorter with the relevant inputs of the Rx mode sorter; the results, including the cable
losses, were stored to disk for offline calibration purpose. The transmitting UCA was placed
on a tripod, while the receiving one was mounted on a rotary head with 360◦ goniometer.
Unfortunately, the mechanic arrangement allows to explore only ±2 degrees elevation. In each
test session, before scanning the azimuth, the direction of the beam axis was fine tuned in both
azimuth and elevation. In all the tests the 150÷ 300 MHz frequency range was explored by the
VNA. The measurement data were acquired on a PC connected to the VNA. In the further offline
processing it was possible to clip the frequency range and to apply calibration and frequency
average.

5.3. The experimental tests
Three kinds of test were carried out. First, as a preparatory phase, the classic non-OAM (i.e.
` = 0) link was checked: to this purpose, both mode sorters were replaced with conventional
zero-degrees, 4-way RF splitters. The calibrated measurement result, −25.5 dB, was found to
be in good agreement with the classic link budget estimation of −24.4 dB (Friis formula).

Then, due to the strong sensitivity of the OAM orthogonality to misalignment, in a second
step it was necessary to ensure that both the arrays were perpendicular to the line connecting
their centers. For this purpose, an OAM beam with index `T = 1, characterized by a doughnut-
shaped beam profile with a zero on-axis intensity, was sent to the receiving array and the voltage
signals induced over all its elements were simply summed (this standard reading corresponds to
the `R = 0 receiving configuration). By rigidly rotating the receiving structure, it was possible
to map the intensity profile of the received beam and to determine the angular position of its
minimum, which provides the proper alignment of the arrays, confirmed within a few angular
degrees.

Finally, since the purpose of the third test was to study the behaviour of the two considered
receiving configurations (i.e. `R = 1 and `R = −1) when an OAM mode with index `T = 1 is
transmitted, a signal A provided by the VNA was introduced into the input port a of the mode
sorter connected to the transmitting Yagi-Uda antennas (see Fig. 8). The port b of the Tx



Figure 9. Experimentally derived OAM-link pattern averaged over the frequency range:
200÷ 210 MHz (10 values of frequency centered around 205 MHz).

mode sorter, corresponding to an `T = −1 mode, was not fed and kept properly terminated.
A significant reception of the beam is expected only when the rephasing configuration is

`R = `T = 1. The resulting signals A′′ and B′′, read at the outputs of the receiving mode sorter,
can be expressed in terms of the channel matrix CH relative to the considered system as follows:(

A′′

B′′

)
= CH

(
A
0

)
≡
(

Γ ∆
∆ Γ

)(
A
0

)
, Γ,∆ ∈ C. (3)

The adopted matrix approach describes the whole process in the two-dimensional space relative
to the accessible entries and outputs of the mode sorters. Moreover, since the matrix CH takes
into account the action of the mode sorters over the transmitted signal, it can be decomposed
in the following product:

CH = RX · CHp · TX =

(
α∗ β∗

β∗ α∗

)−1(
γ δ
δ γ

)(
α β
β α

)
, α, β, γ, δ ∈ C (4)

where the pure channel matrix CHp is obtained from CH by removing the unwanted electronic
contribution introduced by the electronics. The mode sorters were expressed in terms of the
two-dimensional matrices TX and RX, which are one the inverse conjugate of the other, due
to their opposite orientation and the OAM chirality inversion at the reception. The reason for
choosing bidimensional matrices lies in the possibility to express, within a tolerable margin of
error, the four-dimensional transmitting outputs and receiving inputs of the mode sorters in
terms of the OAM states with indices ` = 1 and ` = −1. The validity of these assumptions,
together with the bisymmetry of the mode sorter matrices, was experimentally verified on the
basis of several measurements made on the devices themselves, in which known signals were sent
to the various inputs, with relative acquisition of the output signals.

In (4) the matrix elements γ and δ provide an OAM-link budget estimation relative to the
reception of the signal A at the output ports of the receiving mode sorter corresponding to the
`R = 1 and the `R = −1 receiving configurations, respectively.

During the experiment, the receiving UCA, mounted on a mobile support, was rotated
azimuthally around its center by an angle αR ∈ [−20◦, 20◦], with an increment of 2◦; hence,



Figure 10. OAM-link pattern (1) in the presence of simulated angular inaccuracies affecting
the arrays position (αT = 4◦).

the experimental signals A′′ and B′′ were obtained for the different values of the rotation angle
αR and all these measures were repeated for 800 frequency values in the range 150÷ 300 MHz.

In order to obtain the coefficients γ and δ from (3) it was necessary to analyze the action
of the mode sorters alone on the transmitted signal. For this reason, in the preliminary test,
the mode sorters were directly connected one to the other, leading to the acquisition, for every
value of frequency, of the signals A′ and B′, which can be expressed by:(

A′

B′

)
= RX · TX

(
A
0

)
=

(
α∗ β∗

β∗ α∗

)−1(
α β
β α

)(
A
0

)
. (5)

Taking into account (4), equations (3) and (5) allow to derive the coefficients γ and δ for
each value of angle and frequency, starting from all the experimentally known signals.

Fig. 9 displays the behaviour of γ and δ, averaged over 10 frequency values relative to the
205 MHz channel, vs the receiving array rotation angle αR. The condition of maximum phase
compensation of the signal A was expected at the `R = 1 output port of the receiving mode
sorter when αR = 0, in agreement with the theoretical result illustrated in Fig. 3, section 3. On
the contrary, Fig. 9 shows how the respective γ curve presents a slight central dip; moreover,
the dotted red curve δ, which corresponds to the destructive receiving configuration, overcomes
γ moving away from αR = 0 instead of settling at lower values. As we will prove below, the
observed behaviour can be attributed to some experimental inaccuracies, such as unwanted small
angular shifts of the arrays position with respect to their optimum reciprocal centering able to
maximize the OAM orthogonality. Despite this, our experimental result shows that, at αR = 0,
the `R = 1 receiving configuration allows for a significant reception of the `T = 1 signal, while
the `R = −1 output suppresses it, ensuring an insulation of about 15 dB.

In order to provide a theoretical confirmation of the results obtained in the experiment,
formula (1) for the link budget evaluation was considered in the presence of angular shifts
affecting the optimum pointing of the transmitting array. Fig. 10 shows the behaviour of the
OAM-link pattern, given by expression (1), as a function of the rotation angle αR, when the
transmitting array is azimuthally rotated around the y-axis passing through its center by an
angle αT = 4◦. As can be observed, taking into account a possible pointing error, the resulting



Table 1. Link budget estimated with four methods for the considered couple of facing UCAs
composed by four folded Yagi-Uda antennas. The receiving configurations are `R = `T ≡ ` =
0, 1.

Link budget (dB) ` = 0 ` = 1

Theoretical approach -24.54 -42.85
Friis equation -24.40 -
Comsol simulation -24.69 -42.96
Experiment -25.50 -42.99

link budget plot (Fig. 10) becomes very similar to the experimental one (see Fig. 9). Although
the receiving array was mounted on a goniometer characterized by an angular sensitivity of about
1◦, the mechanical arrangement of the transmitting array did not ensure a sufficient accuracy
to avoid errors of the order of a few degrees; therefore we decided not to repeat the experiment.

Table 1 reports the link budget evaluated with the different approaches considered in our
analysis, in correspondence of an optimal antenna pointing. A good agreement among the
theoretical, numerical and experimental results is achieved.

6. Experimental transmission of two digital TV signals
As well known, the crucial factor in a RF link performance is the ratio C/(N+I) where C is the
received signal power, N is the receiver noise power, and I is any incoherent disturbance in the
signal band. In our case, of course, the leakage from the other OAM mode can be considered
incoherent (noise-like), since the two modulating data streams are statistically independent. For
a short link, N is many orders of magnitude lower than I, then C/(N + I) ' C/I, the latter
being the OAM insulation, hereinafter referred to as Signal-to-Noise Ratio (SNR).

The DVB-T standard [25] allows the network operator to tailor the modulation scheme and
error correction code rate to the available SNR. In Table 2 a few configurations extracted from

Table 2. Relevant bit rates and SNR required for QEF reception reported here for some different
modulation and coding schemes.

Modulation Code rate Required SNR for Bitrate (Mbit/s) Bitrate (Mbit/s)
QEF operation @ ∆/TU = 1/32, @ ∆/TU = 1/32,

7 MHz VHF mode 8 MHz UHF mode

QPSK 7/8 7.7 9.237 10.56
16-QAM 1/2 8.8 10.556 12.06
16-QAM 2/3 11.1 14.075 16.09
16-QAM 3/4 12.5 15.834 18.10
16-QAM 5/6 13.5 17.594 20.11
16-QAM 7/8 13.9 18.473 21.11
64-QAM 1/2 14.4 15.834 18.10



Figure 11. Diagram of the transmitting installation.

[25] are reported, with the relevant bit rates and SNR required for “Quasi Error Free” (QEF) ∗
reception.

Actually, such declared performance is simulated, hence an extra implementation loss
(roughly 1 dB) is encountered in commercial TV receivers. In order to allow some margin to the
expected 15 dB value, the modulation 16-QAM with code rate 3/4 was adopted. This allowed
to transmit two 15.8 Mbit/s audio/video streams. In Fig. 11 the structure of the transmitting
installation of the experiment is depicted and the main parameters are summarized.

The two different TV streams, 15.8 Mbit/s each, with high-definition (HD) audio/video
programmes, previously stored on a PC, were played out simultaneously by means of two USB
to ASI (Asynchronous Serial Interface, [26]) adapters (DekTec, DTU-245). The ASI streams
were modulated by two PT5780 DVB-T modulators, both operating on nominal 198.5 MHz, at

Figure 12. Diagram of the receiving installation.

∗Quasi Error Free (QEF) means less than one uncorrected error event per hour, corresponding to a BER (Bit
Error Rate) of 10−11.



Figure 13. A picture of the two TV channels simultaneously received.

7 MHz channel bandwidth. The RF output power was 1 mW each.
The diagram of the receiving installation is shown in Fig. 12. The signals received by the

antenna system are separated in ` = 1 and ` = −1 OAM components by the mode sorter,
the latter feeding two identical commercial DVB-T receivers. Both TV sets were tuned to 198.5
MHz channel. After the reception experiment, each TV receiver was disconnected and the signal
was routed to a Keysight MXA (N9020A) signal analyzer with DVB-T/T2 analysis option to
evaluate the received signal quality.

7. Experiment results and discussion
Assuming a correct antenna pointing, both TV receivers proved to simultaneously receive the
relevant TV programmes (Fig. 13). However, the experiment was carried out in a quite windy
day and the limited mechanic rigidity of the PVC antenna mast did not help to keep optimal
and constant aiming.

In presence of noise and/or interference, the digital TV does not exhibit errors on the screen

Figure 14. Left: a snapshot of the MXA signal analyzer is reported, in a moment when the
measured SNR was 12.77 dB. Right: Channel Impulse Response (CIR) for the ` = 1 OAM
channel.



until the SNR gets very close to a critical threshold. Hence, the margin in received signal quality
cannot be estimated from the screen image, but must be evaluated only by instrumental means.
The MXA signal analyzer with DVB-T/T2 option is able to measure several quality parameters
of the received signal. In particular, this instrument can estimate the SNR and the MER †. In
Fig. 14 the measured Channel Impulse Response (CIR) for the ` = 1 OAM channel is shown.
The main peak, Time = 0, Amptd = 0 dB, is related to direct propagation path; at about 300
ns other components are seen at −22 dB level. This indicates that some propagation paths with
about 300 ns delay were present, 22 dB below the main signal level (for ` = 1) and gives an idea
of the reflecting environment around the experimental site: 300 ns time delay indicates a 100 m
path distance difference.

During our observation with MXA, the insulation between the OAM channels fluctuated
roughly from 11.2 dB (poor aiming) to 15 dB (good aiming) due to the wind. The latter value
is in line with the insulation found during the instrumental tests. In correspondence of strong
wind episodes some error could be seen on the TV screen. In that case, the problem is solved
switching to the 16-QAM 2/3 modulation. Moreover, it is important to emphasize that a device
with adaptive interference cancellation capability would be able to reduce the inaccuracies caused
both by a non-perfect aiming and by the presence of wind, improving the channels insulation.

8. Conclusions
A numerical and experimental study concerning OAM-based transmissions between uniform
circular arrays of Yagi-Uda antennas has been presented. The novelties of this work lie in the
possibility 1) to implement a multimode communication at the same frequency and in the far-
field region using a single antenna system (UCA) at both the transmitting and the receiving
site; 2) to perform an efficient transmission considering a minimal number of array elements; 3)
to validate the OAM-link pattern concept both numerically and experimentally and, lastly, 4)
to test the functionality of the mode sorters as OAM multiplexing and demultiplexing networks
in antenna arrays, showing a satisfactory mode insulation and wide-band operation.

While bearing in mind that the well-known power decay of OAM beams with respect to the
link distance d (i.e. d−2`−2) represents an unavoidable problem, the main goal of this article was
to show the feasibility of the transmission/reception of two digital television (DVB-T) signals
encoded as OAM ` = 1 and ` = −1 modes at the same frequency, over a link distance longer
than three times the far-field range.

Finally, it should be noted that the achieved OAM mode insulation is acceptable for the
purposes of our experiment, but a dedicated post-processing cancellation technique would greatly
improve the performance in a more general application scenario.
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have similar meaning, but MER is estimated on the vector space of signals.
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