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ABSTRACT 

α-enolase is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a 

plasminogen receptor and thus mediates activation of plasmin and extracellular matrix 

degradation. In tumor cells α-enolase is up-regulated and supports anaerobic 

proliferation (Warburg effect), it is expressed at the cell surface, where it promotes 

cancer invasion, and is subjected to a specific array of post-translational 

modifications, namely acetylation, methylation and phosphorylation. Both α-enolase 

overexpression and its post-translational modifications could be of diagnostic and 

prognostic value in cancer. This review will discuss recent information on the 

biochemical, proteomics and immunological characterization of α-enolase, 

particularly its ability to trigger a specific humoral and cellular immune response. In 

our opinion, this information can pave the way for effective new therapeutic and 

diagnostic strategies to counteract the growth of the most aggressive human disease. 
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INTRODUCTION 

Enolase is a metalloenzyme that catalyzes the dehydration of 2-phospho-D-glycerate 

(PGA) to phosphoenolpyruvate (PEP) in the second half of the glycolytic pathway. In 

the reverse reaction (anabolic pathway) that occurs during gluconeogenesis, the 

enzyme catalyzes the hydration of PEP to PGA [1, 2]. Enolase is found from 

archaebacteria to mammals, and its sequence is highly conserved [3]. In mammals, 

three genes, ENO1, ENO2 and ENO3 encode for three isoforms of the enzyme: α-

enolase (ENOA), γ-enolase (ENOG) and β-enolase (ENOB) respectively, with high 

sequence identity [4-6]. The expression of these isoforms is tissue-specific: α-enolase 

is present in almost all adult tissues, β-enolase is expressed in muscle tissues and γ-

enolase is found in neurons and neuroendocrine tissues [1, 7-9]. The monomer of 

ENOA consists of a smaller N-terminal domain (residues 1-133) and a larger C-

terminal domain (residues 141-431). In eukarya, enzymatically active enolase consists 

of a dimeric form in which two subunits face each other in an antiparallel manner [1, 

10]; some eubacterial enolases, by contrast, are octameric [11]. Enolase can form 

homo- or heterodimers such as αα, αβ, ββ, αγ and γγ [1].  

Besides its enzymatic activity, in many prokaryotic and eukaryotic cells, 

ENOA is expressed on the cell surface where it acts as a plasminogen receptor 

promoting cell migration and cancer metastasis [12-23]. Moreover, ENO1 can be 

translated into a 37-kDa protein, c-myc promoter-binding protein (MBP-1), by using 

an alternative start codon [24]. MBP-1 lacks the first 96 residues of ENOA and 

localizes in the nucleus where it binds to the c-myc P2 promoter and acts as a 

transcription repressor, leading to tumor suppression [25-27]. ENOA associates with 

MBP-1 in the transcriptional regulation of the oncogene c-myc [28]. 

 

 



ENOA IS A SURFACE PLASMINOGEN-BINDING RECEPTOR IN TUMORS 

In breast, lung and pancreatic neoplasia, ENOA is localized on the surface of cancer 

cells [29-31], while in melanoma and non-small cell lung carcinoma (NSCLC) cells it 

can be also secreted by exosomes [32, 33]. How ENOA is displayed on the cell 

surface remains unknown. Many glycolytic enzymes and cytosolic proteins that lack 

N-terminal signal peptide reach the surface of eukaryotic cells [34]. In mammal cells, 

some export routes of unconventional protein secretion have been postulated: 

membrane blebbing, membrane flip-flop, endosomal recycling or a plasma membrane 

transporter [35]. One possibility is that phosphoinositides  recruit ENOA and 

translocate it to the cell surface [36]. It is not known if surface ENOA is also present 

as a monomer. As the monomeric form is catalytically inefficient it could be available 

to interact with other proteins that mediate its transport to the cell surface [37]. 

However, in breast cancer cells, surface ENOA maintains its catalytic activity, 

suggesting that cell surface localization does not affect this function [31]. 

Cell-surface ENOA is one of the many plasminogen-binding molecules that 

include actin [38], gp330 [39], cytokeratin 8 [40], histidine-proline rich glycoprotein 

(HPRG) [41], glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [42], annexin II 

[43], histone H2B [44] and gangliosides [14]. ENOA and most of these proteins have 

carboxyl terminal lysines predominantly responsible for plasminogen activation [45]. 

Interaction of the plasminogen lysine-binding sites with ENOA is dependent upon 

recognition of ENOA C-terminal lysines K420, K422 and K434 [14]. In view of the 

surface potential of the human ENOA crystal structure, an additional plasminogen 

binding site that includes K256 has been proposed [10].  

Binding with ENOA lysyl residues leads to activation of plasminogen to 

plasmin by the proteolytic action of either tissue-type (tPA) or urokinase-type (uPA) 

plasminogen activators [19, 46]. Plasmin is a serine-protease with a broad spectrum 



substrate, including fibrin, extracellular matrix (ECM) components (laminin, 

fibronectin) and proteins involved in ECM degradation (matrix metalloproteinases, 

such as MMP3) [47-50]. Binding of plasminogen to the cell surface has 

profibrinolytic consequences: enhancement of plasminogen activation, protection of 

plasmin from its inhibitor α2-antiplasmin, and enhancement of the proteolytic activity 

of cell-bound plasmin [13, 51]. Proteolysis mediated by cell-associated plasmin 

contributes to both physiological processes, such as tissue remodelling and 

embryogenesis, and to pathophysiological processes, such as cell invasion, metastasis 

and inflammatory response [19, 45]. A noteworthy positive correlation exists between 

elevated levels of plasminogen activation and malignancy [46, 52]. Higher expression 

levels of uPA and/or plasminogen activator inhibitor-1 (PAI-1) in tumor tissues 

correlate with aggressiveness and poor prognosis. ENOA takes part, together with 

uPAR (urokinase plasminogen activator receptor), integrins and some cytoskeletal 

proteins, in a multiprotein complex, called metastasome, responsible for adhesion, 

migration and proliferation in ovarian cancer cells [53]. In human follicular thyroid 

carcinoma cells, retinoic acid causes a decrease in ENOA levels that coincides with 

their reduced motility [54], and cell-surface ENOA is enhanced in breast cancer cells 

rendered superinvasive following paclitaxel treatment [55].  

In pancreatic cancer patients, deregulated expression of many proteins 

involved in the plasminogen pro-fibrinolytic cascade (annexin A2, PAI-2, uPA, 

uPAR, MMP-1 and MMP-10) correlates with survival [56-59]. In the same tumor, 

tPA activates a mitogenic signal mediated by ERK-1/2 through the EGFR and 

annexin A2 [60, 61]. These proteins probably form a complex that also includes 

ENOA, as it has been pulled down with annexin A2, cytokeratin 8 and tPA in raft 

membrane fractions of pancreatic cancer cells [62].  

 



ENOA IS A TUMOR-ASSOCIATED ANTIGEN 

Tumor-associated antigens (TAAs) are self proteins that can trigger multiple specific 

immune responses in the autologous host [63]. Activation of the immune system 

against TAAs occurs at an early stage of tumorigenesis, as illustrated by the detection 

of high titers of autoantibodies in patients with early-stage cancer [64], and correlates 

with the progression of malignant transformation [65]. It is not entirely clear how 

TAAs are able to trigger humoral responses, especially as many of those discovered 

so far are intracellular proteins, but are thought to be altered in a way that renders 

them proteins immunogenic [66, 67]. Several hypotheses have been proposed: these 

self-proteins could be overexpressed, mutated, misfolded, aberrantly degraded or 

localized so that autoreactive immune responses in cancer patients are induced [65, 

68, 69]. Moreover TAAs that have undergone post-translational modifications 

(PTMs) (e.g. glycosylation, phosphorylation, acetylation, oxidation and proteolytic 

cleavage) may be perceived as foreign by the immune system [66-68]. The immune 

response against such immunogenic epitopes of TAAs induces the production of 

autoantibodies as serological biomarkers for cancers [70].  

Both its overexpression in tumors and its ability to induce a humoral and/or 

cellular immune response in cancer patients classify ENOA as a true TAA. 

 

ENOA expression is increased in tumors 

The overexpression of ENOA is associated with tumor development through a 

process known as aerobic glycolysis or the Warburg effect [71]. Warburg observed 

that cancer cells consume more glucose than normal cells and generate ATP by 

converting pyruvate to lactic acid, even in the presence of a normal oxygen supply 

[72]. The mechanism of the Warburg effect was uncertain until the recent 

identification of up-regulation of glycolytic enzymes by hypoxia-inducible factor 



(HIF). When a solid tumor exceeds 1 mm3, its cells face hypoxic stress due to slow 

angiogenesis [73, 74]. Because the ENO1 promoter contains a Hypoxia Responsive 

Element (HRE) [75, 76], ENOA is up-regulated at the mRNA and/or protein level in 

several tumors, including brain [77], breast [78-83], cervix [77, 84, 85], colon [77, 86, 

87], eye [77], gastric [77, 88, 89], head and neck [90, 91], kidney [77], leukaemia 

[92], liver [77, 93, 94], lung [77, 95-99], muscle [77], ovary [77, 100], pancreas [29, 

77, 101, 102], prostate [77, 103], skin [104] and testis [77] (Table 1). Results from a 

bioinformatic study support a correlation between ENOA expression and 

tumorigenicity [52, 77]. Moreover ENOA's enzymatic activity may also be increased 

in breast tumor tissue, especially in metastatic sites [82, 83]. Increased ENOA 

expression can influence chemotherapy treatments, as shown in estrogen receptor-

positive breast tumors where it induces tamoxifen resistance [78], and in colorectal 

carcinoma cells where it is overexpressed after 5-fluorouracil administration [87]. 

 

ENOA post-translational modifications in tumors 

PTMs are common mechanisms that control signal transduction, protein-protein 

interaction and translocation [105, 106].  

Reversed-phase liquid chromatography, nanospray tandem mass spectrometry 

(LC-MS/MS) has been used to characterize ENOA PTMs in several cancer and 

normal cell lines (Table 2) (http://www.uniprot.org/uniprot/P06733) [107-115].  

Acetylation, methylation and phosphorylation were the main PTMs (Table 2). 

Acetylation was found in cervix and colon cancer, leukaemia, normal pancreatic ducts 

and tumoral pancreatic cells. Fourteen acetylated lysine residues are common to 

leukemia, pancreatic cancer and normal pancreas, and one of them is the only 

acetylated residue in cervix tumor. Three acetylations are common to both leukemia 

and pancreatic cancer, whereas three are specific for normal and tumoral pancreatic 



cells. However, six specific acetylated lysines were found in pancreatic cancer cells, 

and three in leukemia. The only acetylated serine identified is specific for colon 

cancer (Table 2). 

Methylation has been assessed in normal and tumoral pancreas only. Twenty-

four aspartate and glutamate residues were found in both cell types. However, five 

aspartates and five glutamates are specifically methylated only in pancreatic cancer 

(Table 2). 

Phosphorylation is the PTM that displays the most specific pattern in each cell 

line. Two serine and one threonine residues were specifically found in cervix cancer, 

one threonine and one serine in embryonic kidney, three serines and two threonines in 

leukemia; while two tyrosine residues were found in both leukemia and lung cancer 

and one serine in both tumoral and normal pancreas. 

ENOA in tumor cells is subjected to more acetylation, methylation and 

phoshorylation than in normal tissues, indicating that many PTMs are associated with 

cancer development and some are specific for each kind of tissue or cancer. This can 

reflect the specific activation of pro-mitogenic signalling pathways in tumor cells. In 

many cases PTMs regulate the stability and functions of proteins; for example, in 

metabolic enzymes, acetylation acts as a on/off switch mechanism [116], while 

methylation on carboxylate side chains enhances hydrophobicity by increasing the 

affinity of proteins for phospholipids [115]. We speculate that PTMs are important 

mechanisms in the regulation of ENOA functions, localization and immunogenicity. 

 

ENOA induces a specific immune response in tumors 

Several TAAs induce the production of IgG autoantibody in cancer patients via an 

integrated immune response triggered by CD4+ T cells, CD8+ T cells and B cells. 

TAAs released by secretion, shedding or tumor cell lysis are captured by Antigen 



Presenting Cells (APCs), processed and presented by either MHC class I or MHC 

class II molecules for priming and activation of CD8+ and CD4+ T cells respectively. 

Uptake of antigen by B cells also occurs and is driven by membrane Ig, leading to 

MHC class II antigen presentation to CD4+ T cells. Activated CD4+ T cells, through 

the secretion of appropriate cytokines, trigger B cells to produce IgG against the same 

TAA [117], and CD8+ T cells to differentiate into TAA-specific cytotoxic T 

lymphocytes (CTL). In vivo maintenance and survival of TAA specific CTL is also 

dependent on cytokines released by CD4+ T cells [118]. This coordinated immune 

response suggests that IgGs against TAA are not only a diagnostic tool but also allow 

the selection of TAAs for cancer immunotheraphy. 

In many cancer patients, including pancreatic [119], leukemia [120, 121], 

melanoma [104, 122], head and neck [123-125], breast [126] and lung [30, 96, 99, 

127-130], ENOA has been shown to induce autoantibody production (Table 1). In 

pancreatic cancer patients, autoantibodies to ENOA are directed against two up-

regulated isoforms phosphorylated in Ser-419 [119] (Table 2). Protein 

phosphorylation increases the affinity of peptides for MHC molecules that can be 

recognized by T cells [131]. 

In pancreatic cancer, ENOA elicits a CD4+ and CD8+ T cell response both in 

vitro and in vivo [29]. In pancreatic ductal adenocarcinoma patients production of 

anti-ENOA IgG is correlated with the ability of T cells to be activated in response to 

the protein [29], thus confirming the induction of a T and B cell integrated antitumor 

activation against ENOA. In oral squamous cell carcinoma, an MHC class II-

restricted peptide of human ENOA recognized by CD4+ T cell and able to confer 

cytotoxic susceptibility has been identified [132].  

 

 



Clinical correlations 

The diagnostic and prognostic value of ENOA expression and production of 

autoantibodies to it has been illustrated in several tumors (Table 1). In breast cancer, 

enhanced ENOA expression is correlated with greater tumor size, poor nodal status 

and shorter disease-free interval [78]. In head and neck and non-small cell lung 

cancer, patients with high ENOA expression had significantly poorer clinical 

outcomes than low expressers, including shorter overall- and progression-free survival 

[99, 123]. In hepatocellular cancer, expression of ENOA increased with tumor de-

differentiation and correlated positively with venous invasion [93, 94]. In pancreatic 

cancer, detection of autoantibodies against Ser-419 phosphorylated ENOA usefully 

complemented the diagnostic performance of serum CA19.9 levels up to 95%. The 

presence of this humoral response was also correlated with a longer progression-free 

survival upon gemcitabine treatment and overall survival, supporting the clinical 

significance of phosphorylated ENOA autoantibodies [119]. The concept that 

autoantibody levels can also function as markers for the diagnosis and prognosis of 

cancers has been extensively pursued [69, 133]. 

 

CONCLUSIONS 

Taken as a whole, these findings illustrate the multifunctional properties of ENOA in 

tumorigenesis, and its key implications in cancer proliferation, invasion and immune 

response. In cancer cells, ENOA is over-expressed and localizes on their surface. 

where it acts as a key protein in tumor metastasis, promoting cellular metabolism in 

anaerobic conditions and driving tumor invasion through plasminogen activation and 

extracellular matrix degradation, and also displays a characteristic pattern of PTMs, 

namely acetylation, methylation and phosphorylation, that regulate protein functions 

and immunogenicity. In several kinds of tumors, patients develop an integrated 



response of CD4+, CD8+ T cells and B cells against ENOA, along with anti-ENOA 

autoantibodies in their sera. Clinical correlations propose ENOA as a novel target for 

cancer immunotherapy. In pancreatic cancer, for example, the pancreas- specific Ser-

419 phosphorylated ENOA is up-regulated and induces the production of 

autoantibodies with diagnostic and prognostic value (Figure 1). 
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Figure Legend 

 

Figure 1. Production of autoantibodies to phosphorylated-ENOA in pancreatic cancer. 

ENOA is overexpressed in tumor cells compared to normal tissues and it is present on 

the surface of different cell types where it acts as a plasminogen receptor. ENOA is 

phosphorylated on Ser-419 only in pancreatic tissues, the overexpression of this post-

translationally modified ENOA in tumor condition induces the production of 

autoantibodies with clinical relevance in pancreatic cancer patients. 



Table 1. Expression of ENOA, immune response to it and clinical correlations in cancer. m: 
mRNA; p: protein; e: enzymatic activity; Ab: antibody production; T: T cell response; DFI: 
Disease-Free Interval; M: Malignancy; OS: Overall Survival; PFS: Progression-Free Survival. 
 

Cancer ENOA enhanced expression Immune response to 
ENOA 

Clinical 
correlations 

Brain m [77]   

Breast m, p, e [78-83] Ab [126] DFI, M [78] 

Cervix m, p [77, 84, 85]   

Colon m, p [77, 86, 87]   

Eye m [77]   

Gastric m, p [77, 88, 89]   

Head and neck  p [90, 91] Ab [123-125], T [132] OS, PFS [123] 

Kidney m [77]   

Leukemia p [92] Ab [120, 121]  

Liver m, p [77, 93, 94]  M [93, 94] 

Lung m, p [77, 95-99] Ab [30, 96, 99, 127-130] OS, PFS [99] 

Muscle m [77]   

Ovary m, p [77, 100]   

Pancreas m, p [29, 77, 101, 102] Ab [119], T [29] OS, PFS [119] 

Prostate m, p [77, 103]   

Skin m [104] Ab [104, 122]  

Testis m [77]   


