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Abstract: 

While radiation exposure related to natural sources plays a minor role, medicine-related exposure, 

represents, to date, a major exposure source. Within this exposure interventional electrophysiology 

is a relevant contributor. Unfortunately no safe dose in radioprotection exists, the negative acute and 

long term effects of radiological exposure may emerge at any radiation exposure dose. For this 

reason patients and physicians should be aware of the risk of radiation exposure and the benefits of 

the imaging/procedure balanced by the required radiation exposure. Given this, performing a near to 

zero x-rays transcatheter ablation procedure should therefore represent an aim for all 

electrophysiological lab. Fortunately, the introduction of electroanatomic mapping systems, have 

provided the possibility to perform simple and complex electrophysiological procedures avoiding, 

or at least, limiting the use of radiations. The present review summarizes state of the art of 

feasibility and safety of the near to zero approach for the main electrophysiological procedures, 

highlighting the potential health benefits.  
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Introduction 

Over the last two decades, the field of cardiac electrophysiology has undergone tremendous change 

and evolution. The scope of available therapies has widened considerably, and hitherto 

“untreatable” arrhythmias have become commonplace in most laboratories. More complex 

arrhythmia substrates such as atrial fibrillation (AF), atypical atrial flutter (FL), and ventricular 

tachycardia (VT) are no longer relegated to medical therapy, however these more extensive ablative 

procedures result in longer procedural times, and consequently, longer fluoroscopy times. Given 

that considerable evidence exists as to hazards of this exposure to both the patient and the medical 

personnel, developing technologies and techniques to reduce fluoroscopy use in the 

electrophysiology environment is crucial1.   

The first step to reduce fluoroscopy exposure is to optimize setting and use of the fluoroscopy 

system. It is, in fact, demonstrated that parameters such as pulse rate, collimation, detector 

sensitivity/distance, and signal filtering significantly impact radiation exposure2. On the other hand, 

the advent of three-dimensional electroanatomic mapping (3D-EAM) and cartographic systems, 

originally introduced to allow electrophysiologists to target more challenging arrhythmias by 

offering activation/voltage data and visualization of the catheters and of the created lesions in 3D 

views, have further helped to reduce fluoroscopy exposure, advancing our field towards the dream 

of near-zero radiation interventions.  

 

Biological effects of radiation and evidence of harm.  

Radiation exposure related to natural sources is relatively minimal, whereas nowadays, medicine-

related exposure is considered a major exposure source. Hydroxyl radicals created by X ray 

interaction with water molecules interact with the DNA causing strand breaks or base damage.  In 

addition X-rays also ionize DNA directly. Cellular clearance and repair mechanisms limit oxidative 

damages to the DNA.  However, when double strand damages rather than point mutations occur, 
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radiation related injury can be caused. In general, radiation injuries are induced by the stochastic 

mechanism or the deterministic effect. The stochastic mechanism represents an unpredictable, 

unrepaired radiation damage to the DNA of a limited, potentially single, number of viable cells. The 

deterministic effect, instead, occurs when a significant, predictable number of existing cells are 

sufficiently damaged to cause a directly observable injury. Radiological induced damage can be 

evident following both acute exposition (eg radiation induced skin injuries) or during long term 

follow up. In medicine, both radiological examinations (eg. computed tomography, and 

scintigraphy scans) and several interventional procedures (eg. percutaneous coronary intervention, 

arrhythmia ablation) may expose to a significant amount of radiation. In fact, data from large 

sample size observational studies reported an increased malignancy rate, over a long term follow 

up, both for patients undergoing radiological examinations than electrophysiological procedures3.  

An intervention such as AF ablation, for example, exposes patients to a dose of about 15 mSv 

(ranging from 1-60 mSv), increasing the absolute lifetime risk of a fatal cancer in an adult by 0.08% 

(considered on a background fatal cancer risk of about 20%)4 and this biological harm is obviously 

even higher within the paediatric population5. Additionally, the exposure risk is relevant not only 

for the patient but also for physicians and lab personnel6. It has been estimated that an 

interventional cardiologists presents a median radiation exposure per year equivalent to 

approximately 250 chest X-rays (5mSv), a two to three times higher dose compared to a typical 

radiologists, and this has recently been related to an increased risk of cognitive impairment and 

brain malignancy (in particular on the left side) 7,8,9. For these reasons, in the attempt to avoid an 

uncontrolled increase in radiation exposure and consequent risks, the American College of 

Cardiology stated that the risk of radiation exposure always needs to be balanced by the benefits of 

the imaging/procedure itself. Based on the following three principles: justification, optimization, 

and responsibility for dose limitation, all interventional laboratories should therefore mandatory be 

guided by the ‘ALARA’ (radiation doses ‘As Low As Reasonably Achievable’) principles10.  
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3D mapping systems in Electrophysiology 

Electrophysiological procedures have originally been performed by fluoroscopic guidance. 3D-

EAM systems have emerged as an alternative with the potential to limit or, in some case, avoid 

radiation exposure.  To date, four 3D-EAM systems are widely used to visualize electrophysiology 

catheters without X-rays (Table 1): EnSite NavX and Mediguide technologies (both by St. Jude 

Medical, St Paul, Minnesota, USA), Carto (Biosense Webster, Diamond Bar, California, USA), and 

Rhythmia (Boston Scientific San Jose, CA. 95134 USA).  

The EnSite NavX relies on three pairs of nominally orthogonal skin patches in x-y and z-axis 

positioned on the patient’s chest. These patches create an electrical location field on the patients 

thorax. An additional patch positioned on the abdomen serves as a reference during advancement of 

the catheters in the iliofemoral venous axis. The system collects electrical data from standard 

electrophysiology catheters and uses this information to track or navigate their movement, construct 

3D models of the chamber and create activation and voltage maps. Some years later, the same 

company, has also introduced Mediguide technology. This system provides the possibility to move 

catheters into previously acquired fluoroscopic loops. Pre-acquired ecg and respiration triggered 

biplane short sequences of conventional fluoroscopic frames allow traditional catheter and structure 

visualisation tracking within dynamic, virtual cardiac chamber models (4D model) 11. Catheter 

positioning system is based on a dynamic electromagnetic field integrated with a miniaturized 

single coil sensor mounted on dedicated electrophysiology catheters and a reference sensor attached 

to the patient’s chest12. It should however be reminded that pre-acquired fluoroscopy loops only 

provide an illusion of real-time imaging. Acute clinical variations, such as a pericardial tamponade 

or a pneumothorax, will not be real-time depicted.  

The Carto system, in its present third generation (Carto 3), instead, is based on six skin patches 

positioned on patient’s chest and back that create an electrical based location field. These patches, 

by a location pad technology (with 9 coils), also create a magnetic field. The combination is, 
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therefore, an electro-magnetic field in which catheter movements can be detected. As the catheter 

moves around the chamber, a multitude of such associated locations are created and stored by the 

system. Advanced Catheter Location Technology combines the magnetic location technology with 

current based visualization data in a virtual chamber reference system built by catheter movements. 

As with most of the other systems, this technology offers the possibility of merging the virtual 

chamber with a pre-acquired anatomical image (e.g. magnetic resonance (MRI) or computed 

tomography) allowing physicians to navigate catheters in an accurate representation of the patient’s 

anatomy. Also with this system, activation mapping information, during arrhythmias or sinus 

rhythm, may be projected to the map with a color coded mode, useful for guiding the ablation to the 

origin of the arryhthmia. The Carto-Univu, a module permitting real-time catheter tracking 

superimposed on pre-recorded cine loops, has further implemented the potential of this system.  

Recently a new 3D-EAM, Rhythmia, based on both magnetic and impedance 1-2 mm accuracy 

localization, has been introduced. This system is based on an open architecture permitting the 

choice of  different diagnostic catheters.  However, activation and substrate mapping can be 

performed only with a dedicated catheter (IntellaMap Orion™) that has the peculiarity of being a 

basket, high resolution mapping catheter with 64 low-noise electrodes and 2.5 mm inter-electrode 

spacing. Thanks to the latter and an advanced point acquisition software and process, this system is 

able to generate, by automated and continuous mapping, accurate, high-resolution 3D 

electroanatomical maps. 

In addition, driven by awareness of the beneficial effects of acquiring anatomical details by limiting 

fluoroscopy exposure, new attractive systems continue to become commercially available. For 

example, the recently implemented AcQMap system,13 combining ultrasound guided anatomical 

details to high density bipolar or unipolar voltage signals obtained from a hybrid catheter with 48 

ultrasound transducers and 48 electrodes, seems indeed promising. Eventually, having cardiac MRI 

the capability to show both anatomic and functional tissue data without ionizing radiation, growing 
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interest is directed towards the possibility of real time MRI catheter tracking, obviously, in this 

case, not only in the electrophysiological field14. 

 

Near zero fluoroscopy approach.  

The following is an overview of the state of art on the use of the aforementioned technologies for 

the most frequently encountered electrophysiological procedures, specifically focusing on 

feasibility, safety and radiation exposure. Available literature has been critically analysed in the 

attempt to provide an independent point of view. However, given that the majority of the 

technologies described are available and in current use at our centre, a personal interpretation, 

deriving from personal clinical experience, may emerge. In any case, it should be reminded, that 

none of the commercially available 3D-EAM systems provide such a real-time and location 

precision compared to traditional fluoroscopy. In fact, in addition to what stated above on the limits 

of pre-acquired fluoroscopy loops providing only an illusion of real-time imaging, electroanatomic 

systems deeply rely on reference stability (e.g. electrical signals/external patches/electromagnetic 

field), accurate registration, and patient’s immobility. Moving catheters into sensitive regions (e.g. 

left main or right coronary artery during a retrograde aortic approach), should, in case of 

uncertainty, always be guided by real-time fluoroscopy. On the other side, fluoroscopy, providing 

grey scale frames in which the physician recognizes the different anatomic structures based on 

shadows, position in the chest, appearance and catheter’s movement/signal, strongly relates on the 

physician’s experience.  

Typical atrial flutter Typical FL is an atrial arrhythmia maintained by an anatomical re-entry 

localized in the right atrium. In this arrhythmia, the portion between the inferior vena cava (IVC) 

and the annulus of the tricuspid valve is the critical isthmus and the target of the percutaneous 

ablation procedure. Due to the unsatisfactory success rates of antiarrhythmic drugs, to date, 

percutaneous ablation of typical FL represents the first line approach15. Given the relatively simple 
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anatomic positioning of catheters to treat this arrhythmia, near zero fluoroscopy approaches for 

typical FL ablation have been reported since more than ten years16, 17, 18,19. The clear evidence 

emerging is that 3D-EAM systems broadly reduced fluoroscopy exposure without affecting 

procedure safety and outcome. In a recent study by Macias et al 20, a zero fluoroscopy approach was 

attempted in all consecutive procedures of typical atrial flutter. In this series, a duo-decapolar 

catheter and an irrigated-tip ablation catheter were inserted via two punctures in the femoral vein 

and fluoroscopy was to be used only in case of challenging catheter positioning. In over 60 cases, 

no fluoroscopy was used for about 90% of the procedures. Even more recently Schoene et al 21 

systematically applied Mediguide technology to 20 patients undergoing percutaneous ablation of 

cavo-tricuspid isthmus reporting no difference both in terms of freedom from recurrences, safety, 

and procedure duration while achieving a significant radiation exposure reduction.  

 

Atrioventricular nodal re-entrant tachycardia. Atrioventricular nodal reentrant tachycardia 

(AVNRT) is perhaps the most frequently encountered supraventricular tachycardia (SVT) in the 

electrophysiology lab. Given the high success and low complication rates, transcatheter ablation is 

considered first line therapy22. Since it may be performed in centres with differing levels of 

experience, fluoroscopy times for this procedure are quite variable. However, commonly involving 

children or women in child-bearing age, the potential for radiation exposure is non-negligible. 

Kopelman et al initially reported on the use of nonfluoroscopic mapping systems for a common 

AVNRT 23.  As would be intuitively expected, fluoroscopy times were significantly decreased when 

compared to conventional approach (4.2+/-1.4 vs 15.9+/-6.4 min). Importantly, this did not impact 

negatively on success and complication rates and total intervention times. Evidently, interest for this 

in the paediatric population led to similar reports confirming diminished fluoroscopy times24.  The 

feasibility of eliminating x-ray use altogether by using a 3D-EAM system was demonstrated in a 

relatively small paediatric study showing a 95% reduction in fluoroscopy time with 24 of 30 

patients requiring no fluoroscopy whatsoever 25. The “near-zero” radiation objective has been 
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achieved in subsequent studies using the NavX system for all steps of the procedure instead of 

fluoroscopy, other than in a variety of arrhythmias, also for AVNRT 26,27 (Figure 1).   

In fact, the most recent innovation of the systems permitting real-time catheter tracking 

superimposed on pre-recorded cine loops, as Mediguide (St Jude Medical) and Carto-Univu 

(Biosense Webster) have facilitated this approach also in physicians fond of traditional fluoroscopic 

views28,29. 

Atrioventricular re-entrant tachycardia. Reciprocating atrioventricular reentry tachycardia (AVRT) 

is a SVT maintained by the presence of an accessory pathway (AP, Figure 2). Given the typical 

young age of patients involved and the high efficacy of the treatment, radiofrequency ablation is 

here again considered the first line option. Conversely, for the same reason, radiation exposure due 

to an interventional approach in these patients has been of concern. Drago et al 30 reported his 

experience on 22 paediatric patients in whom a non-fluoroscopic approach was attempted using the 

Carto mapping system. In this series, ablation success rate was 95% and no complications occurred. 

A more recent study reported on the systematic use of a non-fluoroscopic approach in a larger 

cohort of 328 patients31. This group consisted of 35 patients with AVRT whereas patients with left 

sided APs or those who needed a transeptal puncture were excluded from the study.  Procedural 

success was achieved in 99.1% of cases and in 94.7% the procedure was completed without any 

fluoroscopy use at all. A wider experience has been recently reported by Scaglione et al32. In this 

series a total no fluoroscopic approach was used in 44 consecutive paediatric patients with planned 

AP ablation. Right chambers were accessed through a venous transfemoral approach while a 

retrograde transaortic approach was used to access mitral annulus. Only three cases of  left sided 

APs were ablated through a patent foramen ovalis. In this experience a total of 47 AP (left sided 

45%) were ablated without the use of fluoroscopic guidance. Eventually, a multicentre, randomized, 

controlled experience has recently become available in this group of patients33.  In this experience 

on 262 patients undergoing electrophysiological study for SVT, 72% of the AVRT procedures were 

performed without any use of fluoroscopy. Unfortunately, in this setting, left sided AP requiring 
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transeptal puncture were excluded. As discussed later in the AF ablation section, intracardiac 

echography (ICE) may eventually play a role in reducing fluoroscopy exposure during transeptal 

puncture34 also for left sided AP, but such an approach still needs to be standardized and validated.  

 

Ventricular tachycardia  Percutaneous ablation of VT has been increasingly recommended (Figure 

3). VT may be triggered by an ectopic focus or, especially in case of an underlying cardiomyopathy, 

by an area of  slow conduction (eg. scar due to a previous myocardial ischemia) localized in the 

myocardial muscle mass, creating the ideal substrate for re-entry triggered arrhythmias. In any case, 

the ablation procedure necessitates identification of  the ectopic spot and/or the critical isthmus of 

the arrhythmia. For both right and left sided VT, 3D-EAM systems have the potential to 

significantly reduce fluoroscopic exposure. In addition to this, the ability to perform substrate 

mapping (based on both voltage and activation maps) in sinus rhythm together with the detection of 

fractioned or late potentials (seen in the scar areas in underlying ischemic heart disease) hold the 

great advantage of identifying ablation targets without inducing and/or maintaining clinical 

arrhythmia (commonly not well tolerated)35. The first study looking at the feasibility of a near to 

zero approach to the ventricles has addressed right ventricular outflow tract (RVOT) premature 

ventricular contractions (PVCs) both in adults and in the pediatric population36. More recently 3D-

EAM proved feasible also for treating PVCs in adult patients with complex congenital heart 

disease37 and even, by the use of the CartoUnivu system in a high volume center, for ablation of 

VTs by epicardial approach (without increasing complications rates)38. 

Overall it is becoming clear that, in this setting, activation mapping during VT together with 

substrate mapping enhance the clinical utility of 3D-EAM systems beyond radiation exposure 

reduction.  However, complex and/or left-sided VTs not amenable to a retrograde approach remain, 

for the moment, best suited to fluoroscopic guidance.  

Atrial fibrillation AF is the most common arrhythmia in the adult population (particularly in older 

patients), and it represents the widest indication for transcatheter ablation. In fact, considering the 
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limited efficacy of antiarrhythmic therapy, often associated with relevant side effects, percutaneous 

ablation has emerged in recent years as the perhaps most promising therapeutic strategy. Two main 

mechanisms are involved in AF onset: triggers and perpetuation. Arrhythmia triggers are commonly 

localized in the pulmonary veins and this mechanism of arrhythmia is particularly relevant in young 

patients without underlying cardiomyopathy (and atrial remodelling) suffering paroxysmal AF. 

Perpetuating factors, instead, are related to atrial enlargement, tissue fibrosis and consequent 

shortening of atrial refractory period. This mechanism is particularly observable within patients 

with underlying cardiomyopathy suffering persistent or long-standing AF.  

3D-EAM systems able to evaluate instantaneous catheter positioning, respiration triggered 

movement and offering the possibility of integrating radiological images are allowing users to 

perform pulmonary vein isolation (Figure 4) and left atrial substrate modification with minimal use 

of fluoroscopy39,40. In addition to 3D-EAM systems, other technologies have emerged to facilitate 

AF ablation: contact force technology, for example, is able to monitor and measure the 

tissue/catheter contact in order to avoid excessive or insufficient forces on the tip of the catheter. 

After a brief learning curve, this technology further supports manoeuvring in a zero fluoroscopy 

setting41,42. In a multicentre study on 240 consecutive patients undergoing catheter ablation of AF, 

adoption of a 3D mapping system proved to significantly impact routine activity in all centres 

involved, achieving an average fluoroscopy time decrease from 26 ± 15 min to 16 ± 12 min (P < 

0.001)43. More recently a prospective, randomized, blinded trial, clearly showed that the systematic 

use of third generation EAM systems reduced fluoroscopy exposure in patients undergoing AF 

ablation, without increasing procedure duration or affecting safety and short-term efficacy 44. 

Eventually the systematic use of EAM systems integrated with preacquired imaging, in this case 

cardiac magnetic resonance with use of oral gadobenate dimeglumine,45 also presents the advantage 

of visualizing the esophagus, potentially limiting occurrence of atrio-esophageal fistulas, a rare but 

potentially fatal periprocedural complication.  
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As previously stated, to date, the only remaining phase that limits a complete zero fluoroscopy 

approach for AF ablation, and other left sided arrhythmias not approachable by retrograde aortic 

access, is transeptal puncture (TS). In this respect, preliminary data suggest that ICE may become a 

routine strategy to guide TS without fluoroscopy use 39, 40. A recent experience in 80 patients 

showed that by using a third generation mapping system, contact force technology and ICE guiding 

TS, RF ablation of AF was not only feasible without fluoroscopy but also safe, without affecting 

procedure duration, radiofrequency application time and mid-term efficacy 46. Mansour et al 47 

recently reported on the use of the equipment compatible with the Mediguide Technology in order 

to perform a TS without fluoroscopy in a small population of consecutive patients.  In fact, by the 

use of a guidewire with a magnetic sensor on the tip, the authors managed to perform the TS with a 

very low fluoroscopy exposure.  

 

Reasons for performing a fluoroscopy-free procedure  

How is radiation exposure risk perceived by the patient? How many patients would decline 

undergoing a diagnostic imaging scan or an interventional procedure to avoid increasing their 

lifetime cancer risk? To date, awareness on the topic is poor. In our opinion patients need to be 

sensitized to radiation exposure risks. How is radiation exposure risk perceived by physicians? 

Unfortunately, although long-term effects of radiation exposure are relevant, awareness is 

suboptimal in physicians as well. 

Though extremely simplified, to provide a significant highlight on the expected results of an 

increased awareness on the topic, we suggest circulating the findings of the recent NO-PARTY 

Trial33. This study, has reported a potential 96% reduction in the estimated risks of cancer incidence 

and mortality and  a significant reduction in estimated years of life lost and of life affected by a zero 

fluoroscopy approach compared to the conventional approach. A conventional procedure in a 35 

years old patient will result in 1 week of “life lost” and 2 weeks of “life affected” in contrast to 5 
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and 12 hours, respectively, by performing a fluoroless procedure. Other compelling risk reductions 

are summarized in Figure 5.  

On the other side the near to zero fluoroscopy approach should not increase other risks. For this 

reason available data focusing on safety of the approach, based on limited sample sizes and only 

few randomized studies, cannot, to date, be considered conclusive.  

 

Future perspective. Biological effects of radiation are known and, in our opinion, respecting the 

ALARA principles should be mandatory to respect the health of both operators and patients. In the 

last two decades, technology has significantly improved, and we can currently use the systems and 

techniques hereby described to achieve relevant radiation exposure reductions, making the “near to 

zero fluoroscopy approach” indeed feasible, without affecting safety, efficacy, and procedure 

duration. On the other hand the central role of physician’s education needs to be outlined. A low 

fluoroscopic procedure depends upon technology but also on a thorough, regulated and controlled 

training and teaching of the physicians. This is of paramount importance, especially in low volume 

centres with, perhaps, little experience and training on the most recent systems.  

The medical community and patients need to become aware  of this possibility to permit and 

support the evolution from traditional electrophysiology practices towards approaches that 

significantly limit the use of fluoroscopy. The only significant issue that remains is how to 

minimize fluoroscopy during the TS for left-sided procedures, and achieving this could potentially 

nearly eliminate radiation use.  Presently, the usual anatomic landmarks used to guide TS can be 

identified on fluoroscopy but not by 3D-EAM systems.  The use of other technologies such as ICE, 

transoesophageal echocardiography or sensor enabled guidewires are still relatively cumbersome, 

requiring adjunctive vascular access, deep sedation, and/or extra intravascular material.  Once the 

transeptal needle becomes  traceable in any of the available non-fluoroscopic mapping systems, a 

total non-fluoroscopic approach will be possible for the vast majorities of electrophysiological 

procedures.  
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In conclusion, motivated by evidence of feasibility and of a clear measurable cancer risk reduction, 

all electrophysiology laboratories should aim to significantly reduce X-ray exposure by the 

judicious of available systems and technology. Meanwhile, continued technological progress is 

clearly showing that the dream of a complete zero fluoroscopy approach for all arrhythmias 

management is close at hand. 
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Table 1. Available electroanatomic mapping software 
Different electroanatomic mapping software to date available to perform minimally fluoroscopic exposure 
procedures. 
 

Commercial 
name Ensite NavX Mediguide 

Technology  Carto 3 system Localisa Rhythmia 

Localization 
based system 

Voltage guided 
field 

Low powered 
electromagnetic 

field 

Magnetic and 
Impedance field Electrical field Magnetic and 

Impedance field 

Movement 
sensibility 

(mm) 
1.4 0.5 1.0 1.4 1-2  

Multipoint 
mapping 
catheter 
available 

Yes (max 128 
point) 

Yes (max 10 
point) 

Yes (max 20 
point) No Yes (max 64 

point) 

Open 
architecture 

system 
Yes No Yes Yes Yes 

Possibility to 
merge with 
preacquired 

images 

Yes Yes Yes No Yes 
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Figure legends 

Figure 1. Cryoablation of a slow pathway potential (white arrow) by EnSite NavX (left anterior, 

oblique and right anterior oblique views). In white, tetrapolar hissian catheter (Supreme CRD2 5F, 

St Jude Medical). In green, decapolar coronary sinus catheter (Inquiry 6F, St Jude Medical). In blue, 

tetrapolar for right ventricle catheter (Spike Ultra 6 F, FIAB). In Yellow, tetrapolar ablation catheter 

(CrioCath Freezor Xtra, 8F, Medtronic).  

 

Figure 2. Left side accessory pathway ablation by EnSite NavX and Mediguide systems. In green, 

decapolar coronary sinus catheter (Inquiry 6F, St Jude Medical). In blue, tetrapolar for right 

ventricle catheter (Spike Ultra 6 F, FIAB).  In Yellow, tetrapolar ablation catheter (Therapy Cool 

Path Duo 8F, St Jude Medical). Ablation catheter positioning at the left portion of the mitral 

annulus is guided by both the EnSite NavX left lateral view (left) than by visualization (yellow tip) 

in the pre-acquired left lateral fluoroscopy loop (right) in the Mediguide system.  

 

Figure 3. Right ventricle outflow tract tachycardia ablation by Carto 3 system (left). Activation 

map during tachycardia (left lateral view) localizes the earliest activation site (red) at the posterior  

portion of the right ventricle outflow. Radiofrequency delivery at this site (red dots) eliminated the 

arrhythmia. Left ventricle ventricular tachycardia ablation (right) in a patient with coronary artery 

disease. Voltage map documented a wide scar area (<0.5 mV) at the apex of the left ventricle. 

Activation map during ventricular tachycardia (antero-cranial view) showed earliest activation (red) 

at the anterior portion of the periscar area (in presence of a mid-diastolic fragmented potential). 

Please note contact force technology (Smart Touch catheter, Biosense Webster) advising of a 3/9 gr 

pressure on the ventricular wall. 
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Figure 4. Atrial Fibrillation ablation by Carto 3 Univu system. Left: anatomic reconstruction (grey) 

of the left atrium (performed by circular decapolar Lasso Catheter decapolar 7F, Biosense Webster) 

before merging to the pre-acquired MR scan (yellow). Center: posterior and left lateral Carto views 

showing ablation points (red) obtaining pulmonary vein isolation (Navistar Smart Touch 8F, 

Biosense Webster). Right: antero-posterior and postero-anterior views of the left atrium’s 

anatomical map integrated in the fluoroscopic background (Carto Univu module; Ez steer decapolar 

coronary sinus catheter 7F, Biosense Webster). 

 

Figure 5. Lifetime Attributable Risks of cancer mortality with 95% confidence intervals from 

minimal fluoroscopic approach (N=118) and conventional approach (N=113) ablations in function 

of age at exposure and sex (number of cases in 100.000). Data From Casella M et al Europace 2015. 
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