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Abstract 

Objectives: The present prospective, randomized, double-blind study evaluated the bone-forming process of 

implants inserted simultaneously with anorganic-bovine-bone (ABB) in sinus grafting.  

Materials and Methods: A total of 18 threaded mini-implants with Osseotite (O) and Nanotite (N) surfaces 

were placed in 7 patients (9 sites). After 12 months, the implants were retrieved and processed for 

histological analysis. A total of 18 cutting and grinding sections were investigated with bright-field light 

microscopy, Circularly Polarized Light Microscopy (CPLM), Confocal Scanning Laser Microscope (CSLM), 

and Scanning Electron Microscope (SEM) with Energy Dispersive Spectrometer (EDS).  

Results: The BIC rate in native crestal bone was 62.6± 0.4% for N implants and 54.3 ± 0.5% for the O 

implants (p = 0.001). The collagen fiber density, as assessed by CPLM, was 79.8 ± 6.0 nm for the N group 

and 74.6 ± 4.6 nm for the O group (p<0.05). Line scan EDS starting from ABB to newly formed bone 

showed a decrease in calcium content and an increase of carbon while phosphorus content was constant.  

Conclusions: While the N surface improved the peri-implant endosseous healing properties in the native 

bone, when compared to the O surface, it did not improve the healing properties in the bone-graft area. 
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INTRODUCTION 

The rehabilitation of partially or totally edentulous patients with implant-supported prostheses with 

reliable long-term results has become common practice in dentistry. Maxillary sinus floor elevation, first 

described by Boyne and James [1], is indicated when rehabilitating the distal maxillary region, when the 

height of the residual bone is less than 6 mm. The classical sinus lift procedure consists of the preparation of 

the lateral antrostomy through the trap door and subsequent elevation of the Schneiderian membrane to form 

the new sinus floor. The space generated under the repositioned sinus mucosa is filled with a graft material 

(of animal, synthetic or cadaveric origin) alone or combined with autologous bone. Implant insertion 

concurrent with grafting is possible when the bone height is deemed adequate for primary stability [2,3]. 

Otherwise, the implants are inserted at a second stage. Several reviews concluded the following: i) bone 

substitutes appear to be as effective as autologous bone grafts for augmenting atrophic maxillary sinuses
 
[4]; 

ii) implant survival rates compared favorably with reported survival rates for implants placed in the non-

grafted maxilla
 
[5]; iii) rough-surface implants yielded higher survival rates than machined-surface implants 

when placed in grafted sinuses
 
[6] and iv) perforation of the sinus membrane was the most frequently 

reported complication [7]. Literature and clinical practice have clearly shown that implants with Osseotite 

surface (3i Implant Innovations, Palm Beach Gardens, FL) have excellent predictability
 
[8] and allow faster 

integration times, higher bone-to-implant contact (BIC) rates
 
[9] and higher cumulative survival rates, even 

in short fixtures [10] than do the machined titanium surfaces. In addition, Osseotite implants have shown 

higher survival rates than machined implants when used in rehabilitation treatments of the posterior maxilla 

[11,12]. The implants with Nanotite surface (3i Implant Innovations, Palm Beach Gardens, FL) were 

obtained through a discrete crystalline deposition (DCD) of CaP (nominal crystal size of 20 nm) allowing a 

surface coverage of approximately 50%. The suggested nanofeature size of the tightly adherent adsorbed 

CaP/DCD crystal is 50 to 100 nm [13, 14]. 

Indeed, every surface has its own nanotopography, but not all of them are endowed with significant 

repetitive nanostructures. A nanostructured object is defined by repetitive structures the sizes of which range 

between 1 and 100 nm. On the nanoscale level, a more textured surface topography increases the surface 

energy, which improves the surface wettability to blood and the spreading and binding of fibrin and matrix 

proteins [15]. Therefore, surface topography should favor cell attachment and tissue healing, particularly 
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directly after implantation; this is of paramount importance during the osseointegration process. A few in 

vitro studies have already shown that modulating the nanotopography of an implant surface affects bone cell 

behavior [16,17,18]. The effects of nanotopography on biological response are not well known for 

commercially available implants [15] because nanofeatures of the most important commercially available 

dental implants have been assessed only recently [19]. However, clinical evidence has already been provided 

on implant surface textures featuring the application of nanometer-scale CaP [20,21]. 

Several case series [22,23,24] and a systematic review [25] reported the survival rate of implants and 

biomaterials placed in a single-staged approach. However, to the best of our knowledge, little is known about 

the healing process elicited by nanosurface implants that are placed concomitantly with grafting materials in 

humans. Actually, prior to the present research, two histological and histomorphometric evaluations dealt 

with short healing periods, i.e., within three months, and they did not consider bone grafting other than the 

autologous one [26,27]. The aim of this histological and histomorphometric study is to evaluate the bone 

healing process occurring around Osseotite and Nanotite implant surfaces inserted concomitantly with 

anorganic bovine bone (ABB) (Geistlich Söhne AG, Wolhusen, Switzerland) after one year. 
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MATERIAL AND METHODS 

Study design  

A prospective, randomized, double-blind, histomorphometric study was performed on 7 patients (9 sites). 

The inclusion criteria were the following: (1) presence of either interrelated or distal maxillary edentulism 

with at least two missing teeth; (2) ridge height of 5 mm (as assessed by orthopantomograms); (3) no history 

of radiotherapy in the head and neck region; (4) no history of bone-related diseases, autoimmune-related 

disorders and diabetes mellitus; (5) no history of coagulation disorders; (6) non-smoking patients. 

All of the patients were treated at the Prosthodontic Department of the Dental School at the University of 

Turin after signing a written consent. The local Ethical Committee approved the study. Threaded Osseotite 

and Nanotite mini-implants that were 2.18 mm in diameter and 10 mm in length were used.  

 

Surgical protocol  

Each site underwent a maxillary sinus lift using the lateral window approach described by Boyne and James
 

[1]. After elevating the flap, the preparation of a top-hinge door in the lateral maxillary sinus wall was 

performed using piezosurgery (Mectron S.p.A., Carasco, Italy). This door was then pushed inward and 

upward together with the Schneiderian membrane to a horizontal position to form the new sinus floor. The 

space underneath lifted the door, and the sinus mucosa was filled with ABB. At the same time, two mini-

implants were inserted into the grafted sites, one from the Nanotite group (test) and one from the Osseotite 

group (control), for a total of 18 implants. A random cross-location method was used to determine whether a 

mesial or distal position was to be assigned to either the test surface or the control surface within each site. 

The researchers did not know the generated identification sequence. All of the bone grafts were covered by 

collagen membranes (Geistlich Söhne AG, Wolhusen, Switzerland). No perforations of the Schneiderian 

membrane occurred nor were any complications registered. The mini-implants were removed along with the 

adherent bone during definitive implants placement using a customized harvester 12 months after the sinus 

graft procedure.  
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Histological processing 

The 18 samples were immersed in 10% buffered formalin, than they were dehydrated in graded 

concentrations of ethanol and embedded in resin (Technovit 7200 VLC, Kulzer, Wehrheim, Germany). After 

polymerization, the specimens were sectioned along the longitudinal axis with a high-precision diamond disc 

at about 100 µm with a custom built sawing and grinding apparatus (TT System, TMA2, Grottammare, 

Italy). A total of 36 sections were obtained (two longitudinal central sections for each retrieved mini-

implant). Eighteen sections were ground down to about 60 ± 10 µm and stained with acid fuchsine and 

toluidine blue for BIC evaluation. Among the remaining specimens, 14 sections were chosen (two for each 

patient treated) to be investigated under polarized light. The sections measuring 100 ± 5 µm were left 

unstained. 

Histomorphometric analysis 

All experimental sites were measured by the same investigator (T.T.) without knowing the identification of 

the implant group. Histomorphometry was used to evaluate the BIC rate. The investigation was conducted in 

a transmitted brightfield Light Microscope Axiolab (Zeiss Oberchen, Germany) connected to a high-

resolution digital camera (FinePix S2 Pro, Fuji Photo Film Co. LTD. Minato-Ku, Japan). A histometric 

software package with image capturing capabilities (Image-Pro Plus 6.0, Media Cybernetics Inc., Bethesda, 

MD, USA) was used. To ensure accuracy, the software was calibrated for each experimental image using a 

software feature named “Calibration Wizard”, which reports the number of pixels between two selected 

points (diameter or length of the implant). The linear remapping of the pixel numbers was used to calibrate 

the distance in microns. 

Circularly Polarized Light Microscopy (CPLM)  

Birefringence was used to evaluate the collagen fiber density (CFD) of the bone pre-matrix present in the 

augmented sites associated with the implants surfaces. The measurements were made in the inter-thread 

region of the apical portion of the implants using polarized light. Because uniform section thickness is 

critical for the quantitative analysis of collagen fiber orientation, 14 ground sections measuring 100 ± 5 µm 

in thickness were used. The CFD was evaluated using a light microscope (Axiolab, Carl Zeiss, Jena, 
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Germany) equipped with two linear polarizers, and two quarter-wave plates retarder arranged to produce 

transmitted circularly polarized light. The optical system was connected to a high-resolution CCD-IRIS 

digital camera (Sony DXC-107-A. Tokyo, Japan) and the images were captured using an image processing 

software (Image-Pro Plus 6.0, Media Cybernetics Inc., Bethesda, MD, USA)  

Basic principles for birefringence measurements 

Birefringence is the optical technique of measuring orientation in an optically anisotropic material by 

quantifying the retardation of polarized light passing through a given sample. Each material is endowed with 

its own refractive index: birefringence is a characteristic property of the tissue dependent on the molecular 

alignment and the orientation and nature of the chemical bonds [28,29]. Had molecules and bonds formed a 

random organization, the refractive indices of the two rays would be equal, and the retardation would be 

zero. However, as the degree of alignment of polypeptide chains and chemical bonds in the collagen 

increases, the difference in the refractive index of the two rays increases and so does the retardation.  

The method used in this research was fully reported elsewhere [30]. Three levels of optical retardation (OR) 

values were estimated when the collagen fibers were positioned at ± 45° relative to the ‘‘plane of polarized 

light’’. OR was measured in nanometers by the Senarmont method using a λ/4 compensator and 

monochromatic light (λ= 546nm) obtained by a narrow band-pass interference filter (Edmund Industrial 

Optics, Barrington, USA) [31,32]. 

 

Scanning electron microscopy (SEM) and Energy Dispersive Spectrometer (EDS) Analysis   

To investigate the relationship between biomaterial particles and bone, the specimens were polished with 0.5 

µm alumina to an optical finish, lightly etched with 0.1 N of HCl solution for 10 s, treated with trypsin (80 

U/ml) at pH of 7.4 for 15 min at 37°C and finally sputter-coated with gold (Emitech K 550, Emitech Ltd, 

Ashford, Kent, UK). The samples were placed on the storage of a SEM with LaB6 (Zeiss EVO 50 XVP, Carl 

Zeiss SMY Ltd., Cambridge, UK), equipped with tetra solid-state BSE detector. SEM operating conditions 

included 30 kV accelerating voltage, 15 mm working distance, and 1.2 nA probe current. The images were 

captured with 20 scans using a line average technique. To perform a compositional analysis for calcium and 
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phosphorus concentration, an energy dispersive spectrometer (EDS; INCA, Oxford Instruments, Oxon, UK) 

was used. 

 

Roughness evaluation 

The surface roughness (Rs) was investigated using a confocal scanning laser microscope (CSLM), a Zeiss 

Axiovert 200 M with the 510META scanning module (Carl Zeiss, Jena, Germany) equipped with three lasers 

HeNe (543 nm, 1 mW) HeNe (633 nm, 5 mW) and Ar (458- 477- 488- 514 nm, 30 mW). Rs was determined 

through the triangulation method, in which a triangular network is constructed on the surface between 

adjacent profiles, on which the real area corresponds to the sum of the triangular elements [33].  

Calculation of Rs was made considering the mean of all surface height values as: 

( )
1

. . ,
. 1 1

yx

s i j

x y

NN
R Z X Y

N N i j
=

= =
∑ ∑                       (3) 

Where Nx, and Ny were the numbers of pixels in X- or Y-direction. 

 

 

Statistical analysis 

One person performed all of the measurements. Intra-examiner variability was controlled by carrying out two 

measurements for each index. When the difference in the two performed readings exceeded 5% for the same 

index, the measurement was repeated. Statistical analysis was performed by means of a computerized 

statistical package (Sigma Stat 3.5, SPSS inc. Ekrath, Germany). The data were analyzed with descriptive 

statistics and to assess whether they had a normal distribution both Equal Variance and Normality tests were 

used. The difference in BIC rates was evaluated using t-test. The differences among the CFD means divided 

for lower, intermediary and higher values for both Nanotite and Osseotite surfaces were obtained using 

parametric tests after evaluating for normality and conducting the equal variance tests. One-Way ANOVA 

and Holm-Sidak tests were used to evaluate the overall significance and to perform all pairwise comparisons 
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of the mean responses, respectively. Moreover, the t-test was used to compare the means for OR in the two 

investigated implant surface groups. A p value of <0.05 was considered statistically significant. 
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RESULTS 

After a healing period of 12 months, all of the implants, which were stable and surrounded by bone, were 

removed.  

Histologic and histomorphometric results 

The histomorphometric data for both groups showed a bone growth originating from the wall of the native 

crestal bone that covered the ABB particles before reaching the implant surfaces (Fig. 1). In both implant 

groups, the deep threads of the implants (apical) still appeared to be surrounded by the structuring connective 

tissue (Fig. 2 and 3). The grafted particles adjacent to the implant threads were always surrounded by newly 

formed bone and were connected by bone bridging [34]. In some fields osteoblasts were observed in the 

process of apposing bone directly onto the particle surface. No gaps were present at the bone-particles 

interface, and the bone was always in close contact with the particles (Fig.4). The total BIC rate was 37 ± 

11% for N implants and 48 ± 8% for O implants. This difference was not statistically significant (p>0.05) 

(Fig. 5). The histomorphometric evaluations of the specimens revealed that the highest BIC value recorded 

was 56% for O implants and 52% for N implants. While the lowest BIC value was 26% for N implants and 

36% for O implants. In two cases, patients B and C, the BIC value of N implants was higher than that of the 

O implants (Table 1). Moreover, neither was an intragroup difference detected regarding the implantation 

site (mesial vs. distal, p>0.05) nor was any intergroup difference present for the same implantation site 

(p>0.05). At the level of residual crestal bone (first 4 mm of the implants), the BIC rate for N implants was 

62.6± 0.4% while for the O implants, it was 54.3 ± 0.5% (Fig. 6). The difference between the two groups 

appeared to be statistically significant (P = 0.001) (Fig. 7).  

 

Circularly Polarized Light Microscopy (CPLM) results 

The N implant group, despite the lower BIC rate (-10%), showed a significantly higher CFD in the inter-

threads area. The birefringence of peri-implant collagen was first evaluated as three levels of OR: lower; 

intermediary and higher for both groups (Table 2) than averaged for implant surface (Fig.8). The mean value 
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of OR was 79.8 ± 6.0 nm for the N group and 74.6 ± 4.6 nm for O group. The difference was statistically 

significant (p<0.05) (Fig. 9). 

 

Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectrometer (EDS) results 

Under SEM, using backscattered electron signals, the ABB particles were visualized in white-grey due to the 

high atomic number (Z) of the hydroxyapatite components (i.e. Calcium, Phosphorus), while the newly 

formed bone appeared in dark-grey, since it also contained non-calcified organic material (lower Z). The 

EDS analysis was performed to determine the elemental composition along a horizontal line. Starting from 

the bone graft material particles and scanning towards bone along a line, calcium declined progressively in 

concentration, with a small peak at the edge of the particle, carbonium increased on entering bone while 

phosphorus concentrations remain almost constant (Fig.10). 

 

Roughness evaluation 

The Rs values were 0.72±0.18 µm  for O implants, 0.43±0.12 µm for N implants and 0.31±0.20 µm for bio-

oss.  A confocal scanning laser reconstruction showed that the surface topography of the ABB particles was 

much more regular than that of N implant surfaces (Fig.11).  
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DISCUSSION 

The present research confirms the observation of previously published controlled animals studies by 

Stavropoulus et al.  [35] who described a delayed bone formation after four months of healing in presence of 

ABB. The newly formed bone occupied only 12% of the total capsule space compared to the 38% of the 

control specimens. Carmagnola et al. [36,37] reported only 23% of newly formed bone after 7 months, when 

bio-oss was used in dogs. Also, Slotte & Lundgren [38] and Paolantonio et al [39] support that bone healing 

in bio-oss grafted sites is retarded, which is consistent with our observation.  

Here, substantial quantitative and qualitative histological differences between experimental groups 

were seen. As for the BIC rate, these differences were statistically significant within the native bone, in 

which the N implants performed better than the O implants, suggesting that the more complex nano-

topography and/or CaP deposits of the N surface may lead a more efficient osteogenetic process. These 

results are in accordance with Orsini et al. [26] who reported a statistically significant difference for the BIC 

rate of Osseotite and Nanotite surfaces, after a mean healing time of 2 months. The study by Goené et al.
 
[40] 

pointed in the same direction, reporting, after 8-12 weeks, mean BIC rates of 45% for Nanotite and 18% for 

Osseotite. Therefore, the nano-textured surface performed significantly better than the micro-structured 

surfaces. However, these studies focused on implants that had been positioned into fully mineralized native 

bone, which may be the reason for such BIC values.   

In the present study, when the total BIC rate of the O implants was compared to that of the N 

implants, no statistically significant difference was observed. Also, the bone formation process around the 

ABB particles was still ongoing 12 months after grafting, which raises the question whether it is premature 

to insert an implant contemporary to augmentation procedure. 

On the other hand, the rationale of using bone graft substitutes is that the grafts serve as support for 

the sinus membrane and prevent its collapse, and at the same time they may also promote bone formation 

[41]. Our data strongly indicate that simultaneous placement of implant and ABB does not promote but 

rather retard the bone formation. This is consistent with the study by Telleman et al. [27], who compared the 

early peri-implant endosseous healing properties of Nanotite surfaces to Osseotite surfaces in both grafted 

bone and native mature bone in the maxillary regions. They concluded that the Nanotite surface improved 

the peri-implant endosseous healing properties in the native bone of the maxilla but did not improve the 
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healing properties in the bone-graft area, whose behavior may be dictated by several factors [42]. In addition, 

we are also in accordance with Groeneveld et al. [43], who reported that lamellar biomineralization occurs 

primarily near the maxillary host bone.  

A possible explanation for the present results should be related to the relationship between blood clot 

formation/shrinking and biomaterials surfaces. During the implant placement, the blood vessel damage 

results in hemorrhage. Thus fibrin, the reaction product of thrombin and fibrinogen, is released into the 

healing site, allowing for the cell migration [44]. Connective tissue cell migration is concomitant with wound 

contraction, which usually begins around the fifth day post-wounding [45,46], and has been recognized as 

responsible for it [47]. This ability of cells to contract the matrix through which they migrate could possibly 

cause retraction of the transitory fibrin scaffold away from the implant surface. In presence of dental 

implants, this process may be altered: a clot detachment from the inflexible implant surface may occur 

leading to the lower values of BIC reported in grafted than in native bone [48,49]. Instead, bone substitute 

particles are subject to lower forces during the contraction phase due to their remarkable surface area and 

their inclusion within the clot.  

Also, it is conceivable that an important role in the difference between implants and the anorganic 

bovine bone used in the present study may be played by mechanical features. Indeed, the ABB particles were 

almost completely immersed in a newly formed woven bone with some areas of well-organized osteons, 

which did not occur around the apical part of the implants, despite their placement simultaneous to the bone 

substitute material. Notwithstanding the common opinion that bone substitute materials are just to preserve 

the bone volume, providing proper mechanical characteristics is necessary so as to enhance mineralization 

[50]. During implant placement in native fully mineralized bone, the intimate direct contact between the 

implant surfaces and the bone-walls generates a bone strain by slight expansion. Strain signals, which are 

dependent on and proportional to the elasticity level of the tissue, are responsible for the features of 

biomineral formation. Moreover, osteoblasts and osteocytes adjacent to the implant produce various signal 

molecules that act locally to recruit and induce skeletogenic cells to proliferate and differentiate.  

The bone biology of mineral formation is a highly complex and dynamic cell-driven process [51]. Specific 

strain-dependent signals are thought to control this adaptive mode of bony tissue modeling [52,53]. Peri-

implant tissue formation and mineralization by osteoblasts are strongly dependent on the local mechanical 
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environment in the interface zone [54]. Carter and Giori [55] suggested that proliferation and differentiation 

of the osteoblasts responsible for peri-implant tissue formation are regulated by the local mechanical 

environment according to the tissue differentiation hypothesis proposed for callus formation [53]. Moreover, 

collagen mineralization is known to be regulated by the strains, even within an acellular environment [56]. 

The deposition of the collagen fibers is the initial event in the bone formation process. Collagen fibers are 

deposited in an irregular mosaic pattern as a woven matrix, without preferential orientation. The 

incorporation of mineral into the collagen matrix is a progressive process that results in bone maturation. Our 

finding of significantly higher values of both CFD and OR in the inter-threads spaces of N group is 

consistent with a structuring ongoing process significantly more active in the N implant group.  

The aforementioned conditions are responsible for the many possible clinical outcomes including 

post-loading failures, which are thought to be ascribable to the insufficient mechanical resistance of the 

newly formed bone tissue. It is accepted that the dental implant survival is mainly related to the native bone 

quantity of the recipient sites [57], and almost independent of the biomaterial presence, the blood perfusion 

being of paramount importance [58,59].  

All of the observations reported above may help explain the heterogeneous distribution of the BIC 

rate along the same implant surface. In summary, the peri-implant tissues adjacent to the augmented bone 

were still part of an ongoing biological adaptation process mainly consisting of densely collagen fibers not 

yet mineralized.  
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CONCLUSIONS 

Consistently with the scientific literature, an increased BIC rate was noted in the native bone area 

when the Nanotite was compared to the Osseotite surface. However, neither of them improved the healing 

properties in presence of the ABB even after 12 months.  
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FIGURE LEGENDS 

Figure 1.  O implants (a-a1) and N implants (b-b1), both implant groups were partially 

osseointegrated. Along the apical parts of the implant surfaces (regenerated/augmented bone area) 

only focal osseointegration areas were seen. Original magnification x 12. Acid Fuchsine- azur II 

staining. 

 

Figure 2. Map reconstruction showing apical threads of one N implant. The Bio-oss particles  

(BOp) appeared surrounded and bridged by newly formed bone (NB). Between threads densely 

collagen fiber were present (**). Original magnification x 50. Acid Fuchsine- azur II staining.  

 

Figure 3. Map reconstruction showing apical threads of one O implant. The Bio-oss particles  (**) 

appeared surrounded and bridged by newly formed bone (NB). White arrows show newly formed 

bone (NB) between threads in contact with implant surface.  Original magnification x 50 under 

CPL. Acid Fuchsine- azur II staining. 

 

Figure 4. Around the implant threads (I) the Bio-oss particles (BOp) were surrounded and bridged 

by newly formed bone (NB). Original magnification x 100. Acid Fuchsine- azur II staining. 

 

Figure 5. Graph of total BIC rate for O and N implants. No statistically significant difference was 

present (Unpaired t-test) 

 

Figure 6. Images at x 100 of N (a) and O (b) implants under CPL at crestal level. The newly formed 

bone, facing the native bone, along the implant surfaces is more mature with a higher BIC in (a) 

than in (b). 

 

Figure 7. Graph of BIC rate in native bone for O and N implants. A statistically significant 

difference was present (Unpaired t-test). 

 

Figure 8. Image showing N implant (a) and O implant (b) at 100 x.  (I) implant threads at apical 

level; (**) mineralized bone; (*) scanned areas for retardations intensity. Graphical representation 

of Red Green and Blue wavelength intensity vs distance for N implants (a1) and O implants (b1). 
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Figure 9. Graph showing the birefringence of peri-implant collagen fibers. The difference in the 

mean values of O and N groups is greater than would be expected by chance. Statistical significance 

(p = 0.006) was assessed by the Unpaired t-test. 

 

Figure 10. In (a) SEM image using backscattered electron signals of augmented bone tissue. The 

biomaterial particles appeared in white-grey due to the high atomic number of the hydroxyapatite, 

while the newly formed bone appeared in dark-grey. Rectangle b was imaged at higher 

magnification in (b).  In (b) the Biomaterial appeared in white-gray while the newly formed bone in 

dark-gray. EDS analysis was performed at the interface along the black line to determine the elemental 

composition. In (c) are shown the colored lines spectra for each element which indicates the 

concentrations of carbon (red); Calcium (green) and Phosphorus (blue). Calcium declined in 

concentration, the decrease continuing on entering the bone, with a small peak at the edge of the 

particle. Carbon concentration increased on entering bone while Phosphorus concentrations remain 

almost constant. 

 

Figure 11. Surface map reconstructions of roughness of N surface (a) and ABB (b). 
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Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patient BIC Nanotite™ (Surface) BIC Osseotite® (Surface) 

A1 34% (D) 53% (M) 

A2 44% (M) 49% (D) 

B 49% (M) 40% (D) 

C 37% (D) 36% (M) 

D 26% (D) 53% (M) 

E1 24%(M) 37% (D) 

E2 21% (D) 56% (M) 

F 52% (D) 55% (M) 

G 44% (D) 49% (M) 

MEAN 37% 48% 

SD 0.113002 0.07844 
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Table 2 

 

 

 

 

Birefringence variability in collagen fibers detected by optical 

retardation (nm) 

Nanotite Osseotite 

 Mean SD n Mean SD n 

Lower 64,767 4,010 6 61,267 1,366 6 

Intermediary 78,167 1,381 6 72,217 1,814 6 

Higher 96,683 3,131 6 90,367 1,469 6 
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